# Statistical Quantification of Discovery in Neutrino Physics

#### David A. van Dyk

Statistics Section, Imperial College London

PhyStat-nu, Fermilab, 2016

Examples: Mass Hierarchy, CP-violation, Higgs Search

Advice

# Statistical Discovery in Neutrino Physics





#### I am a statistician, not a neutrino physicists...

- I collaborate with astrophysicists, solar physicists, and particle physicists on statistical methodology.
- First contact with neutrino physics: PhyStat-v ...3 months ago

#### Today:

- Summarize a number of statistical issues that pertain to discovery in neutrino physics ... as discussed in PhyStat-v, Tokyo
- Illustrate how they play out in three examples.

```
Motivating Problems
```

Examples: Mass Hierarchy, CP-violation, Higgs Search Advice

## Outline





#### Examples: Mass Hierarchy, CP-violation, Higgs Search



```
Motivating Problems
```

Examples: Mass Hierarchy, CP-violation, Higgs Search Advic

## Outline

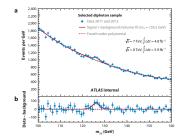


2 Statistical Criteria for Discovery

#### 3 Examples: Mass Hierarchy, CP-violation, Higgs Search

## 4 Advice

#### **Mass Hierarchy**


- normal ( $\Delta m_{32}^2 > 0$ ) vs inverted hierarchy ( $\Delta m_{32}^2 < 0$ )
- $|\Delta m_{32}^2|$  well constrained, degeneracy of sign with  $\theta_{23}$  or  $\delta_{CP}$ .

#### **CP-violation**

- Is there evidence to counter  $\delta_{CP} \in \{0, \pi\}$ ?
- Current data is limited.

#### Bump Hunting (e.g., Higgs serach)

- no bump vs bump
- location of bump unknown
- What is the bump location if there is no bump?



```
Motivating Problems
```

Examples: Mass Hierarchy, CP-violation, Higgs Search Advis

## Outline



#### 2 Statistical Criteria for Discovery

#### 3 Examples: Mass Hierarchy, CP-violation, Higgs Search

## 4 Advice

## Statistical Framework for Discovery

#### Model / Hypothesis Testing

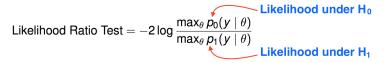
- *H*<sub>0</sub>: The null hypothesis (e.g., no CP-violoation,  $\delta_{CP} = 0$ )
- H<sub>1</sub>: The alternative hypothesis (e.g., CP-violation)
- Without further evidence,  $H_0$  is presumed true.
- "Deciding" on  $H_1$  means scientific discovery: new physics.
- Model Selection: No presumed model. (normal/inverted hierarchy)

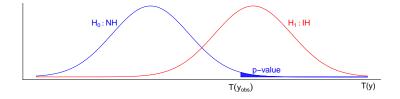
#### Appropriate Statistical Approach Depends on:

- Is H<sub>0</sub> the presumed model? are there more than 2 possible models?
- Is H<sub>0</sub> a special case of H<sub>1</sub>, "nested models"
- Parameters: (i) Unknown values under H<sub>0</sub>?

(ii) No "true value" under  $H_0$ ?, (iii) Boundary concerns.

• Bayesian vs. Frequentist methods


Examples: Mass Hierarchy, CP-violation, Higgs Search Advice


## Statistical Criterion for Discovery

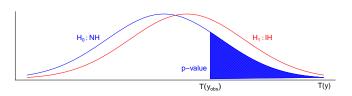
The most common criterion is the p-value,

$$\mathsf{p} ext{-value} = \mathsf{Pr}\left(\mathcal{T}(\mathbf{y}) \geq \mathcal{T}(\mathbf{y}_{\mathrm{obs}}) \mid \mathcal{H}_{\mathsf{0}}
ight)$$

T(·) is a *Test Statistic*, e.g., Δχ<sup>2</sup> or likelihood ratio statistic






Statistical Criteria for Discovery

Examples: Mass Hierarchy, CP-violation, Higgs Search Advice

## Computing p-values

The most common criterion is the p-value,

$$p$$
-value =  $Pr(T(y) \ge T(y_{obs}) \mid H_0)$ 



#### Requires distribution of T(y) under $H_0$

- Distributions depend on unknown parameters (e.g.,  $\delta_{CP}$ ,  $\theta_{23}$ )
- Standard Theory: models nested, all parameters have values under *H*<sub>0</sub>, "large" data set. ... often violated in physics
- Monte Carlo toys infeasible with  $5\sigma$  criterion.

Statistical Criteria for Discovery

Examples: Mass Hierarchy, CP-violation, Higgs Search Advice

### Misuse of P-values

The most common criterion is the p-value,

p-value 
$$= \mathsf{Pr}\left(\mathcal{T}(m{y}) \geq \mathcal{T}(m{y}_{\mathrm{obs}}) \mid m{H}_{0}
ight)$$
 with  $\mathcal{T} =$  test statistic

But....

Statistical Criteria for Discovery

Examples: Mass Hierarchy, CP-violation, Higgs Search Advice

### Misuse of P-values

The most common criterion is the p-value,

p-value 
$$= \mathsf{Pr}\left(\mathcal{T}(\mathbf{y}) \geq \mathcal{T}(\mathbf{y}_{\mathrm{obs}}) \mid \mathcal{H}_0
ight)$$
 with  $\mathcal{T} =$  test statistic

But....



NATURE | RESEARCH HIGHLIGHTS: SOCIAL SELECTION

#### Psychology journal bans P values

Test for reliability of results 'too easy to pass', say editors.

#### **Chris Woolston**

26 February 2015 | Clarified: 09 March 2015

Statistical Criteria for Discovery

Examples: Mass Hierarchy, CP-violation, Higgs Search Advice

### Misuse of P-values

The most common criterion is the p-value,

p-value 
$$= \mathsf{Pr}\left(\mathcal{T}(y) \geq \mathcal{T}(y_{\mathrm{obs}}) \mid \mathcal{H}_0
ight)$$
 with  $\mathcal{T} = \mathsf{test}$  statistic

But....



NATURE | RESEARCH HIGHLIGHTS: SOCIAL SELECTION

#### Psychology journal bans P values

Test for reliability of results 'too easy to pass', say editors.

#### **Chris Woolston**

26 February 2015 | Clarified: 09 March 2015



Statisticians issue warning over misuse of P values

Policy statement aims to halt missteps in the quest for certainty.

#### Monya Baker

07 March 2016

(ASA Statement on Statistical Significance and P-values) February 5, 2016

## The Problem with P-values

#### The misuse of P-values:

- Do not measure relative likelihood of hypotheses.
- Large p-values do not validate *H*<sub>0</sub>.
- May depend on bits of H<sub>0</sub> that are of no interest.
- Single filter for publication / judging quality of research.
- Should be viewed as <u>a</u> data summary, not <u>the</u> summary

Reviewers, Editors, and Readers want a simple black-and-white rule: p < 0.05,  $or > 5\sigma$ .

But, statistics is about quantifying uncertainty, not expressing certainty.

## A Bayesian Criterion for Discovery

To determine mass hierarchy, suppose we find

$$p$$
-value =  $Pr(T(y) \ge T(y_{obs}) | NH) = 0.0001$ 

#### Questions

- Can we conclude NH is unlikely?
- Does Pr(data | NH) small imply Pr(NH | data) is small?

#### Order of conditioning matters!

Consider Pr(A | B) and Pr(B | A) with

- A: A person is a woman.
- B: A person is pregnant.

Examples: Mass Hierarchy, CP-violation, Higgs Search Advice

## **Bayesian Methods**

#### **Bayes Theorem**

$$Pr(NH \mid data) = \frac{Pr(data \mid NH) Pr(NH)}{Pr(data \mid NH) Pr(NH) + Pr(data \mid IH) Pr(IH)}$$

#### **Bayesian methods**

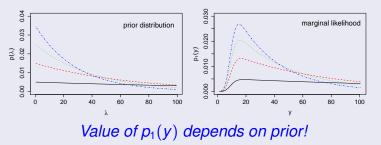
- have cleaner mathematical foundations
- more directly answer scientific questions

... but they depend on prior distributions

• Pr(NH) = probability of NH before seeing data.

Prior distributions must also be specified for model parameters.

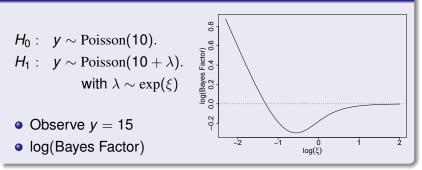
## The Problem with Priors


#### **Bayesian Criteria for Discovery:**

Bayes Factor = 
$$\frac{p_0(y)}{p_1(y)}$$
 with  $p_i(y) = \int p_i(y|\theta)p_i(\theta)d\theta$ .  
 $Pr(H_0 \mid y) = \frac{p_0(y)\pi_0}{p_0(y)\pi_0 + p_1(y)\pi_1} = \frac{\pi_0}{\pi_0 + \pi_1(Bayes Factor)^{-1}}$ 

#### Example: (simplified) Higgs search

Likelihood:  $y|\lambda \sim \text{Poisson}(10+\lambda)$ 


Test: 
$$\lambda = 0$$
 vs  $\lambda > 0$ 



Examples: Mass Hierarchy, CP-violation, Higgs Search Advice

## **Choice of Prior Matters!**

#### **Bayes Factor**



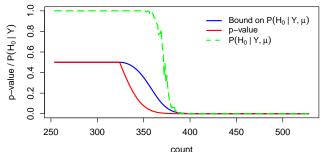
## Must think hard about choice of prior and report!

## Frequentist vs Bayesian: Does it Matter?

#### Model Testing and Model Selection

- Frequency and Bayesian methods may not agree.
  - Bayes automatically penalizes larger models (Occam's Razor)
  - and adjusts for trial factors / look elsewhere effect.
  - Choice of prior distribution is often critical.
- Problem cases: Dimension of model parameters differ.
  - CP-violation:  $H_0 : \delta_{CP} \in \{0, \pi\}$  vs.  $H_1 : \delta_{CP} \notin \{0, \pi\}$ .
  - Higgs search: location and intensity of bump above bkgd.
- Anti-conservative: p-value  $\ll \Pr(H_0 \mid y)$ .
- Remember:

*p*-value and  $Pr(H_0 | y)$  quantify different things!


Interpreting p-value as  $Pr(H_0 | y)$  may significantly overstate evidence for new physics.

Examples: Mass Hierarchy, CP-violation, Higgs Search

Advice

## Example: Searching for a bump above background.

E.g., in toy version of Higgs search with known mass...



.... but researchers interpret p-value as  $Pr(H_0 | y)$ .

Solution: Report both.

## $5\sigma$ Discovery Threshold

#### $5\sigma$ is required for "discovery"

- High profile false discoveries led to conservative threshold
- Treat Higgs mass as known (multiple-testing)
- What would you have done had you had different data"
- Calibration, systematic errors, and model misspecification
- Of course cranking up to 5σ does not address these issues

"In particle physics, this criterion has become a convention ... but should not be interpreted literally <sup>1</sup>."

At PhyStat-nu (Tokyo)....

**Cousins:** Two  $3.5\sigma$  results are better than one  $5\sigma$  result. **van Dyk:** Calibrated  $3.5\sigma$  result better than uncalibrated  $5\sigma$ .

<sup>&</sup>lt;sup>1</sup>Glossary in the Science review of the 2012 CMS and ATLAS discoveries.

```
Motivating Problems
```

Examples: Mass Hierarchy, CP-violation, Higgs Search Advice

## Outline



2 Statistical Criteria for Discovery

Examples: Mass Hierarchy, CP-violation, Higgs Search

## 4 Advice

Examples: Mass Hierarchy, CP-violation, Higgs Search

Advice

## Normal Hierarchy versus Inverted Hierarchy

#### Non-nested parameterized models

 $H_0$ : normal hierarchy  $H_1$ : inverted hierarchy

.e., 
$$\Delta m_{32}^2 \le 0$$
  
.e.,  $\Delta m_{32}^2 > 0$ 

#### Computing a p-value using LRT

- Non-nested models. If no unknown parameters in either model:
   LRT follows a Gaussian distribution under H<sub>0</sub> or H<sub>1</sub>.
- With unknown parameters (e.g.,  $\Delta m_{32}^2$ ,  $\delta_{CP}$ ,  $\theta_{23}$ ):
  - Std theory (Wilks, Chernoff) does not apply: dist'n of LRT unknown.
  - What is null distribution of  $\hat{\delta}$  when fitting  $H_1$ ?
  - Some results, but strong assumptions Apply to reactor neutrino experiments, not accelerator experiments involving δ<sub>CP</sub> (Emilo Ciuffoli).
  - Low power owing to degeneracy.
  - What about uncertainty in |Δm<sup>2</sup><sub>32</sub>|?

Are we back to Monte Carlo (toys)? at  $5\sigma$ ??

## Is There an Easier Solution?

#### Two paradigms for statistical inference:

Likelihood: inference based on  $p(y | \theta)$ . ... and LRT, p-value, etc. Bayesian: inference based on  $p(\theta | y) \propto p(y | \theta)p(\theta)$ .

#### Model Fitting

- Specify one model, fit parameters, estimate uncertainty.
- Frequency and Bayesian methods tend to agree.
- Choice of prior distribution is often not critical.

Some "model selection" can be accomplished via model fitting, e.g., confidence intervals.

Advice

## Normal versus Inverted Hierarchy: Easier Way?

#### Non-nested parameterized models

 $H_0$ : normal hierarchy i.e.,  $\Delta m_{32}^2 \le 0$  $H_1$ : inverted hierarchy i.e.,  $\Delta m_{32}^2 > 0$ 

### Is there an easier solution??

Why not just compute  $Pr(H_0 \mid y) = Pr(\Delta m_{32}^2 \le 0 \mid y)$ ?

In this case Bayes Criterion is particularly easy:

Posterior Odds = 
$$\frac{\Pr(\Delta m_{32}^2 \le 0 \mid y)}{\Pr(\Delta m_{32}^2 > 0 \mid y)}$$

...model fitting with  $\Delta m_{32}^2$  a free parameter.

One model and one prior, easy to compute, not sensitive to prior... what's not to like? Bayesian solution is easier in this case.

Examples: Mass Hierarchy, CP-violation, Higgs Search Advice

## **CP-violation**

### Test: $H_0 : \delta_{CP} \in \{0, \pi\}$ versus $H_1 : \delta_{CP} \notin \{0, \pi\}$

#### p-value

• Standard theory (Wilks, Chernoff) applies...

but insufficient data for asymptotics.

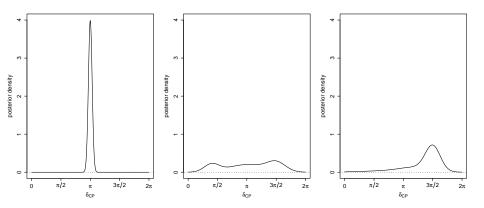
- Monte Carlo (toys) required to assess p-value.
- More data required! (For 5σ??)

### Posterior Odds or Bayes Factor (JOHANNES BERGSTRÖM)

• Sensitive to prior on  $\delta$ , but finite support.

Again, Bayesian solution is easier (with limited data).

#### Still Easier:


- Report a confidence/credible interval for  $\delta_{CP}$ .
- Employ model fitting rather than model selection.

Statistical Criteria for Discovery

Examples: Mass Hierarchy, CP-violation, Higgs Search

Advice

#### Assessing CP-violation via Model Fitting



Is data consistent with  $\delta_{CP} \in \{0, \pi\}$ ??

Examples: Mass Hierarchy, CP-violation, Higgs Search

Advice

## Higgs Search: Is a Bayes Factor Possible?

#### **Basic Model:**

 $\begin{array}{lll} f(y_i|\theta) & = & (1-\lambda)f_0(y_i|\alpha) + \lambda f_1(y_i|\mu) \\ & = & \text{background} + \text{Higgs} \end{array}$ 

*P*-values are anti-conservative. What about  $Pr(H_0 | y)$ ?

**Challenge:** Setting priors on  $\lambda$  and  $\mu$ .

• <u>*Prior on*</u>  $\alpha$ : Luckily,  $Pr(H_0 \mid y)$  is not sensitive to this prior.

Lower Bound on Bayesian evidence for  $H_0$ 

• P-values tend to favor  $H_1$  more strongly than  $Pr(H_0 | y)$ .

[At least when H<sub>0</sub> is "precise".]

• <u>*Prior on*  $\lambda$ </u>: Use a parameterized prior,  $\lambda \sim p(\lambda \mid \beta)$ ,

$$\bar{p}_{1}(y \mid \mu) = \sup_{\beta} \int p_{1}(y \mid \lambda, \mu) p(\lambda \mid \beta) d\lambda$$

$$\Pr(H_{0} \mid y, \mu) = \frac{\pi_{0} p_{0}(y)}{\pi_{0} p_{0}(y) + \pi_{1} p_{1}(y \mid \mu)} \ge \frac{\pi_{0} p_{0}(y)}{\pi_{0} p_{0}(y) + \pi_{1} \bar{p}_{1}(y \mid \mu)}$$

Examples: Mass Hierarchy, CP-violation, Higgs Search

Advice

#### Prior on $\mu$

... or more generally, parameters unidentified under H<sub>0</sub>

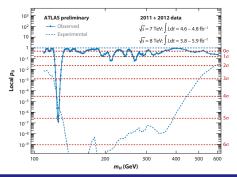
Local  $p(H_0|y)$ :  $\inf_{\mu} p(H_0 | y, \mu)$ Global  $p(H_0|y)$ : properly average over  $p(\mu)$ 

Like global p-value, averaging over  $p(\mu)$  penalizes wide search

$$p_{1}(y) = \int p_{1}(y \mid \mu)p(\mu)d\mu \leq \sup_{\mu} p_{1}(y \mid \mu)$$

$$Pr(H_{0} \mid y) = \frac{\pi_{0}p_{0}(y)}{\pi_{0}p_{0}(y) + \pi_{1}p_{1}(y)} \geq \frac{\pi_{0}p_{0}(y)}{\pi_{0}p_{0}(y) + \pi_{1}\sup_{\mu} p_{1}(y \mid \mu)}$$

$$= \inf_{\mu} p(H_{0} \mid y, \mu)$$


- Simplest choice of  $p(\mu)$  is uniform over the search region.
- Results in a "Bonferroni like correction" to local  $p(H_0|y)$ .

## Is there a better choice??

Statistical Criteria for Discovery

Examples: Mass Hierarchy, CP-violation, Higgs Search Advice

## Choice of Prior on $\mu$



#### Sensitivity of detector varies

- Do we want to search thoroughly everywhere?
- E.g., BF unlikely to favor  $H_1$  for  $\mu > 500$ .
- Good choice:

detection prior  $\propto p$ (Detection |  $\mu$ ) $p(\mu) \propto p(\mu | Detection)$ .

Examples: Mass Hierarchy, CP-violation, Higgs Search

Advice


### Example: Are P-values Biased in Favor $H_1$ ?

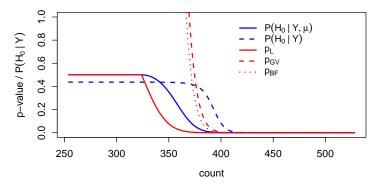
$$y_i \stackrel{\text{indep}}{\sim} \mathsf{POISSON}\Big(f_0(\alpha, i) + \lambda f_1(\mu, i)\Big)$$
  
Test:  $H_0: \lambda = 0 \text{ vs } H_0: \lambda > 0$ 

•  $f_0 = power law$ 

• 
$$f_1 = \mathcal{I}\{i = \mu\}$$

• 100 bins




Examples: Mass Hierarchy, CP-violation, Higgs Search

Advice

## Natural Bayesian correction for multiple testing

- Varying the count in the line bin (3.5 GeV).
- The expected count in this bin under  $H_0$ : 330.

Compare local/global p-value (red); local/global Bayes (blue), p-value vs Bayes.



Prior on  $\mu$  naturally and simply corrects for the "look elsewhere effect"

```
Motivating Problems
```

Examples: Mass Hierarchy, CP-violation, Higgs Search

Advice

## Outline



2 Statistical Criteria for Discovery

3 Examples: Mass Hierarchy, CP-violation, Higgs Search



Advice

# Frequentist or Bayesian?

#### Do you have to choose??

- Bayes prescribes methodology.
- Frequentists evaluate methods.
- Frequency evaluation of Bayesian methods.
- Model fitting: often little difference in fits and errors.
- Why not control rate of false detection

and assess probability of new physics?

• Why throw away half of your tool box?

I'm impressed with the openness of neutrino researchers to both Bayesian and Frequency based methods.

- Lots of Bayesian and Frequentist proposals at PhyStat-v.
- My experience with cosmologists and particle physicists.

## Strategies

#### What is a physicists to do?

- Controlling false discovery is critical in physical sciences.
- Comparing p-values with a predetermined significant level can control false discovery.... if used with care, e.g., no cherry picking!
- When confronted with small p-values researchers *...even statisticians!!...* may believe *H*<sub>0</sub> is unlikely.
- Bayesian solutions can better quantify likelihood of H<sub>0</sub> / H<sub>1</sub>.
- Solution: Compute both global p-value and Bayes Factor.

## But be Careful...

- quantification of p-values in non-standard problems
- 2 choice and validation of prior distributions

remain challenging!