Statistician's (Personal) Summary

Richard Lockhart

Simon Fraser U
Phystat- $\nu 2016$ Fermilab

September 21, 2016

Outline

- This has been a lot of fun for me.
- What issues did we see?
- What kinds of things do I like?
- Random remarks on specific talks.
- Calibrated Bayes.

Wilk's theorem

- Wilk's theorem came up many times.
- The theoretical framework is this.

1. Log-likelihood is a sum of a 'large' number of terms.
2. Some local maximum of log-likelihood is 'close' to true parameter value.
3. Gradient vanishes at that local maximum.
4. Two term Taylor expansion of log-likelihood.
5. Quadratic in ball surrounding true value, max over ball at MLE.
6. Dimension of parameter vector fixed, not big compared to say n.

- For parameters on boundary $\left(\sin ^{2}(\theta)=0\right)$ points 2,3 , and 5 likely to fail.

Example 1 of 2: many nuisance parameters; Neyman-Scott

- X_{i}, Y_{i} pair of measurements of θ_{i}; total of n pairs.
- Gaussian errors, common SD σ.
- Test famous theory that $\sigma=1$.
- Log-likelihood is

$$
\ell\left(\mu_{1}, \ldots, \mu_{n} ; \sigma\right)=-\frac{\sum_{i}\left[\left(X_{i}-\theta_{i}\right)^{2}+\left(Y_{i}-\theta_{i}\right)^{2}\right]}{2 \sigma^{2}}-2 n \log (\sigma)
$$

- MLEs: $\hat{\theta_{i}}=\left(X_{i}+Y_{i}\right) / 2$ and $\hat{\sigma^{2}}=T /(2 n)$ where

$$
T=\sum_{i}\left[\left(X_{i}-\hat{\theta}_{i}\right)^{2}+\left(Y_{i}-\hat{\theta}_{i}\right)^{2}\right]=\frac{1}{2} \sum_{i}\left(X_{i}-Y_{i}\right)^{2}
$$

- Log-likelihood ratio test statistic simplifies to

$$
\Lambda \equiv 2\left[\ell\left(\hat{\mu}_{1}, \ldots, \hat{\mu}_{n} ; \hat{\sigma}\right)-\ell\left(\hat{\mu}_{1}, \ldots, \hat{\mu}_{n} ; 1\right)\right]=\frac{T}{2}-n-2 n \log (T /(2 n))
$$

- When $\sigma=1$, null is right, $\Lambda \rightarrow \infty$, not χ^{2} as $n \rightarrow \infty$.

Example 2 of 2: Mixture models

- Observations X_{1}, \ldots, X_{n} from density

$$
\frac{\theta}{\sigma_{1} \sqrt{2 \pi}} \exp \left\{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right\}+\frac{1-\theta}{\sigma_{2} \sqrt{2 \pi}} \exp \left\{-\frac{\left(x-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right\}
$$

- Five parameters. Not identifiable (I forget who already said this).
- Log-likelihood has n places where it is infinite.
- But: if true π not 0,1 and two normal distributions not equal then there is local maximum where theory applies.
- Quality of quadratic approximation not uniform.
- Wilks theorem valid for some hypotheses; not for $\pi=0$.

Mean parameters in variance: Bob Cousins

- Thermoluminescence dating of sand dunes.
- Photon count N_{i} when sample from sand dune core heated.
- Sand core irradiated with dose D_{i}. Modelled as

$$
\begin{aligned}
N_{i} & =f\left(D_{i}+D_{0}, \theta\right)\left(1+\sigma \epsilon_{i}\right) \\
& =f\left(D_{i}+D_{0}, \theta\right)+\sigma f\left(D_{i}+D_{0}, \theta\right) \epsilon_{i}
\end{aligned}
$$

with independent mean 0 standard deviation 1 noise ϵ_{i}.

- Variability proportional to mean.
- D_{0} proportional to burial duration of sample.

Three estimation schemes

- Least squares: Minimize

$$
\sum_{i} \frac{\left(N_{i}-f\left(D_{i}+D_{0}, \theta\right)\right)^{2}}{f^{2}\left(D_{i}+D_{0}, \theta\right)}
$$

- Weird Least squares: Minimize

$$
\sum_{i} \frac{\left(N_{i}-f\left(D_{i}+D_{0}, \theta\right)\right)^{2}}{N_{i}^{2}}
$$

- Iteratively reweighted least squares. Start with $\sigma_{(0)}=1$.

Minimize

$$
\sum_{i}\left(N_{i}-f\left(D_{i}+D_{0}, \theta\right)\right)^{2}
$$

to get initial values of $D_{0,0}$ and θ_{0}.

- Get $k+1$ st set of parameters from k th by minimizing

$$
\sum_{i} \frac{\left(N_{i}-f\left(D_{i}+D_{0}, \theta\right)\right)^{2}}{f^{2}\left(D_{i}+D_{0, k}, \theta_{k}\right)}
$$

Lessons from the project

- All three methods different even in large samples.
- Only third method is 'right'.
- Equations solved by estimates are the objects to study mathematically.
- Can also do low-noise asymptotics with n fixed.
- Glenn Berger, Jen-ni Kuo and L in Nuclear Tracks etc.

Example 3 of 2: von Mises

- X_{1}, \ldots, X_{n} random angles in $[0,2 \pi)$.
- von Mises density:

$$
\frac{1}{2 \pi I_{0}(\kappa)} e^{k \cos (x-\theta)}
$$

- Two parameters: κ and θ.
- Test null $\kappa=0$; uniform density on circle.
- Wilk's theorem applies. 2 degrees of freedom.
- Problem is that polar co-ordinate transformation is singular at origin.
- Rewrite density in form

$$
\frac{1}{2 \pi I_{0}\left(\sqrt{\tau_{1}^{2}+\tau_{0}^{2}}\right)} e^{\tau_{1} \cos (x)+\tau_{2} \sin (x)}
$$

with $\tau_{1}=\kappa \cos (\theta)$ and $\tau=\kappa \sin (\theta)$.

- Null is $\tau_{1}=\tau_{2}=0$ in interior of parameter space - the plane.
- Same thing happened in Scott Oser's talk.

Unfolding

- Very useful for presentation, for evaluation of images by eye.
- Natural to provide estimate of interpretable quantity.
- So unfolding is clearly worthy of study.
- Less clear to me that you should unfold before analysis.
- Historically statisticians favoured transforming data so that assumptions like Gaussian, linear models, constant errors were nearly met.
- We have moved to modelling just writing down likelihoods.
- The folding matrix is there in the likelihood of course.
- Is my transformation analogy relevant?

Decision Theory, Likelihood Ratios

- Data Y.
- Two possible densities, f (null) and g (alternative).
- Test function T; notation $\mathbf{T}=T(\mathbf{Y})$.
- Level is $\mathrm{E}_{f}(\mathbf{T})$.
- Power is

$$
\mathrm{E}_{g}(\mathbf{T})=\mathrm{E}_{f}\left[\mathbf{T} \frac{g(\mathbf{Y})}{f(\mathbf{Y})}\right]=\text { Level }+\operatorname{Cov}_{f}(\mathbf{T}, L R)
$$

where

$$
\mathrm{LR}=\text { Likelihood Ratio }=\frac{g(\mathbf{Y})}{f(\mathbf{Y})}
$$

Primitive Frequency Theory Ideas

- Neyman and Pearson were advocates of worst case analysis.
- Real Bayes is average case analysis.
- Calibrated Bayes is sort of in between perhaps.
- Hypothesis testing and confidence sets can certainly be combined.

Separate hypotheses

- Example 1. Sample X_{1}, \ldots, X_{n} either from $\operatorname{Normal}(-1,1)$ or from $\mathrm{N}(1,1)$.
- Example 2. Sample from f or g.
- Example 3. Sample either from Gamma distribution or from Weibull distribution.
- Example 4. X, Y independent normals, means μ_{x}, μ_{y}. Hypothesis A: $\mu_{x} \leq 0, \mu_{y} \leq 0$; Hypothesis B $\mu_{x} \geq 0, \mu_{y} \geq 0$.

Two simple hypotheses $\mu=-1$ or $\mu=1$

- Total error rate minimized by: pick $\mu=-1$ iff sample mean negative.
- Total error rate is

$$
2 P(\text { Normal }>\sqrt{n}) \sim 2 \frac{\exp -n / 2}{\sqrt{2 \pi n}}
$$

which goes to 0 pretty fast.

- For non-normal models details of tails of law of \bar{X} matter.
- Called large deviations regime.
- Rates specific to distributions, total error rate stunningly low.
- Generally not a good approximation.

Two simple hypotheses f or g

- Log-likelihood ratio is

$$
\Lambda=\sum \log \left\{f\left(X_{i}\right) / g\left(X_{i}\right)\right\}
$$

- Study when g is true density. Maybe CLT applies?
- If so $\Lambda \sim N\left(\mu, \sigma^{2}\right)$ approximately. But

$$
\mathrm{E}_{g}\left[\frac{f(X)}{g(X)}\right]=\int \frac{f(x)}{g(x)} g(x) d x=\int f(x) d x=1
$$

so

$$
\mu=-\sigma^{2} / 2
$$

- AND if f is true density then

$$
\Lambda \sim N\left(\sigma / 2, \sigma^{2}\right)
$$

- Notice symmetry about 0 ; equal variances, means $\pm \sigma^{2} / 2$.
- Basic ingredient in version of large sample theory called contiguity.

Asymptotic methods in statistics

- For fixed f, g stuff on previous slide is nonsense.
- Can be real if at least one of f or g varies with n so that f, g get closer together.
- Neyman made calculations that way.
- Usually in parametric models; null θ_{0}, alternative $\theta_{0}+\gamma / \sqrt{n}$.
- Has impact in Wilks Theorem failures.

Separate Hypotheses, example 4

- Test lower left quadrant against upper right quadrant of plane.
- Log-likelihood ratio 0 in lower left quadrant.
- Compares X, Y to 0,0 when (X, Y) in first quadrant.
- When $X>0, Y<0$ compare X, Y to $0, Y$.
- But what is the distribution when $\mu_{x} \leq 0, \mu_{y} \leq 0$?
- Worst case analysis: $\mu_{x}=\mu_{y}=0$; mixture of χ^{2}.
- But when you see $Y \ll 0$ should you say corner wrong?

Parametric Bootstrapping

- Most commonly statisticians seem to favour parametric bootstrap to attach P-value to statistic.
- If you have to do parametric bootstrapping to compute the P-value for a test statistic T then the real test statistic is the P-value.
- Neyman and Pearson say: pick a test statistic and a critical value and reject if the statistic is larger than the critical value.
- The critical value doesn't get to change depending on the data.
- But lots of statistical procedures don't work that way!
- Different way to say this: it is the critical region which matters. Which data sets lead to rejection? How uniform is P for different parameter values.

Why asymptotic (large sample) methods?

- Statistic T_{n}. Distribution depends on θ.
- Compute things like $P\left(T_{n}>t \mid \theta\right)$.
- Make approximation

$$
P\left(T_{n}>t \mid \theta\right) \approx \lim _{n \rightarrow \infty} P\left(T_{n}>t \mid \theta\right)
$$

- Sometimes limit is discontinuous in θ.
- But the thing being approximated is not, for any finite n.
- Cries out for different analysis in neighbourhood of discontinuity.
- I have some examples in my work.
- Example 4 above is like that.
- Aixin Tan's work like this, I believe.

LEE, 5σ, error rate control

- Plots of local P-values dipping below 3×10^{-7} are not 5σ effects in a statistician's mind.
- A global P-value like that would be.
- Era of automated searches magnifies LEE.
- False Discovery Rate work relevant.
- loannidas (2005) PLoS Medicine. Why Most Published Research Findings Are False
- Much attention in statistical community to error rates in published work.
- Much attention (Kuffner) to adjusting inference to account for process of tuning analysis.
- Schizophrenia in statistical community.
- Blind analysis methods relevant.

Some remarks

- In goodness-of-fit there is an alternative hypothesis.
- It is vague - described by the test statistic, essentially.
- 'Which one is the correct one?' No statistician ever answers this question credibly.
- Most of us don't think the question has an answer.
- Questions like: what are the weaknesses of this method? Is there a clearly better method than this?

On off calibrated Bayes example

- Y is a measurement of background plus signal, $b+s$.
- Formal: X is a measurement of a background b
- Take $X \sim \operatorname{Poisson}(b)$, and $Y \sim \operatorname{Poisson}(b+s)$.
- Null hypothesis $H_{o}: s=0$ is 'composite' unless background b is known so that X is useless.
- Log-likelihood is

$$
\ell(b, s)=X \log (b)+Y \log (b+s)-2 b-s
$$

Neyman Pearson lemma

- So now suppose $b=20$ is known without error.
- And suppose the signal is either $s=0$ or $s=5$.
- Neyman says we need a rule for discovery.
- A rule is like declare discovery if $Y \in D$ for a set D (Discovery set or Critical Region or Rejection Region.
- Neyman Pearson approach minimize

$$
\beta=P(Y \notin D \mid s=5)
$$

subject to constraint

$$
\alpha=P(Y \in D \mid s=0)=\alpha_{0}
$$

Decision Theory

- Neyman and Pearson used Lagrange multipliers; minimize

$$
\beta+\lambda \alpha
$$

then adjust α so solution also satisfies constraint.

- This is the same as minimizing

$$
\frac{1}{1+\lambda} \beta+\frac{\lambda}{1+\lambda} \alpha \equiv(1-\pi) \beta+\pi \alpha
$$

- So Neyman and Pearson's solution is Bayesian but with the prior adjusted to satisfy constraints.
- Sweeping discreteness under the rug.
- For $b=20$ find, for 5σ stringency, $D=\{y \geq 47\}$.
- So if we see 47 or more events we declare discovery.

Unknown background

- But if b is unknown then the Neyman Pearson lemma doesn't help.
- A likelihood ratio test is the ancient suggestion; it has, usually, no totally compelling justification
- Compare $b, s=0$ to b, s for 'most likely' values under each possible assumption.
- If $s=0$ guess $b=\hat{b}_{0}=(X+Y) / 2$; most likely value in null hypothesis.
- Alternative: if $Y<X$ then $\ell(b, s)$ is maximized at $\hat{s}_{1}=0$ and $\hat{b}_{1}=(X+Y) / 2$ while for $Y \geq X$ the maximum is at $\hat{s}=Y-X$ and $\hat{b}=X$.
- So the likelihood ratio is

$$
\text { Deviance drop }=2\left[\ell\left(\hat{b}_{1}, \hat{s}_{1}\right)-\ell\left(\hat{b}_{0}, 0\right)\right]
$$

- Algebra skipped. In limit $b \rightarrow \infty$ statistic has a χ_{1}^{2} distribution.

Calibrated Bayes, decision theory

- Recast problem from Hypothesis Testing and Confidence Interval to variable level confidence set.
- Output of inference is set S of possible values for s.
- Loss is sum of penalties for errors:

$$
\begin{array}{rlr}
L(s, S)= & \ell_{0} 1(s=0) 1(0 \notin S) & \text { null incorrectly rejected } \\
& +C_{0} 1(s \neq 0) 1(0 \in S) & \text { null incorrectly accepted } \\
& +\ell_{s} 1(s \neq 0) 1(s \notin S) & \text { alternative not covered } \\
& +\int_{t>0} C_{t} 1(t \in S) d t . & \text { overcoverage on alternative }
\end{array}
$$

Prior distributions

- Idea is to choose a proper prior on s :

$$
\pi(0) \delta(s)+\pi(s) \text { continuous prior on } s>0
$$

- Imagine theory suggests order of 50 events expected.
- Perhaps continuous part exponential distribution prior

$$
\pi(s)=\exp \{-s / 50\} / 50
$$

- Posterior Bayes risk of set S is

$$
\begin{aligned}
r_{\pi}(S \mid X, Y) & =\pi(0 \mid X, Y) \ell_{0} 1(0 \notin S)+(1-\pi(0 \mid X, Y)) C_{0} 1(0 \in S) \\
& +\int_{S^{c}} \pi(s \mid X, Y) \ell_{s} d s+\int_{S} C_{s} d s
\end{aligned}
$$

- For positive s put $s \in S$ if

$$
\pi(s \mid X, Y) \ell_{s}>C(s) \equiv \pi(s \mid X, Y) \frac{\ell_{s}}{C_{s}}>1
$$

- Put $0 \in S$ if

$$
\frac{\pi(0 \mid X, Y)}{1-\pi(0 \mid X, Y)} \frac{\ell_{0}}{C_{0}}>1
$$

Calibration

- Wiggle ℓ_{s} and C_{s} or $\pi(s)$ to control coverage probabilities.
- Can insist

$$
P(0 \in S \mid s=0)=1-P(\operatorname{Normal}(0,1)>5)
$$

and

$$
P(s \in S \mid s)=0.95 \text { for } s>0
$$

- Like Feldman-Cousins - points added in order determined by posterior.
- So have 5σ for discovery, 95% for confidence.
- Calibration removes the bulk of the influence of the prior.
- Have done this for Higg's discovery on Monte Carlo data with much more complex Bayesian model for background.
- Calibration by importance sampling down to global $\alpha=10^{-4}$.
- Use Integrated Nested Laplace Approximations (INLA); Rue and Martino.
- All laptop stuff. Only one channel, 5 production modes summed. Could do much better with a computer.

Our interval for $X=100$, varying $Y ; 3 \sigma, 95 \%$

