
Statistician’s (Personal) Summary

Richard Lockhart

Simon Fraser U

Phystat-ν 2016 Fermilab

September 21, 2016

1 / 28



Outline

I This has been a lot of fun for me.

I What issues did we see?

I What kinds of things do I like?

I Random remarks on specific talks.

I Calibrated Bayes.
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Wilk’s theorem

I Wilk’s theorem came up many times.

I The theoretical framework is this.

1. Log-likelihood is a sum of a ‘large’ number of terms.
2. Some local maximum of log-likelihood is ‘close’ to true

parameter value.
3. Gradient vanishes at that local maximum.
4. Two term Taylor expansion of log-likelihood.
5. Quadratic in ball surrounding true value, max over ball at

MLE.
6. Dimension of parameter vector fixed, not big compared to say

n.

I For parameters on boundary (sin2(θ) = 0) points 2, 3, and 5
likely to fail.
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Example 1 of 2: many nuisance parameters; Neyman-Scott
I Xi ,Yi pair of measurements of θi ; total of n pairs.
I Gaussian errors, common SD σ.
I Test famous theory that σ = 1.
I Log-likelihood is

`(µ1, . . . , µn;σ) = −
∑

i

[
(Xi − θi )2 + (Yi − θi )2

]
2σ2

− 2n log(σ)

I MLEs: θ̂i = (Xi + Yi )/2 and σ̂2 = T/(2n) where

T =
∑
i

[
(Xi − θ̂i )2 + (Yi − θ̂i )2

]
=

1

2

∑
i

(Xi − Yi )
2

I Log-likelihood ratio test statistic simplifies to

Λ ≡ 2 [`(µ̂1, . . . , µ̂n; σ̂)− `(µ̂1, . . . , µ̂n; 1)] =
T

2
−n−2n log(T/(2n))

I When σ = 1, null is right, Λ→∞, not χ2 as n→∞.
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Example 2 of 2: Mixture models

I Observations X1, . . . ,Xn from density

θ

σ1
√

2π
exp

{
−(x − µ1)2

2σ21

}
+

1− θ
σ2
√

2π
exp

{
−(x − µ2)2

2σ22

}
I Five parameters. Not identifiable (I forget who already said

this).

I Log-likelihood has n places where it is infinite.

I But: if true π not 0, 1 and two normal distributions not equal
then there is local maximum where theory applies.

I Quality of quadratic approximation not uniform.

I Wilks theorem valid for some hypotheses; not for π = 0.
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Mean parameters in variance: Bob Cousins

I Thermoluminescence dating of sand dunes.

I Photon count Ni when sample from sand dune core heated.

I Sand core irradiated with dose Di . Modelled as

Ni = f (Di + D0, θ)(1 + σεi )

= f (Di + D0, θ) + σf (Di + D0, θ)εi

with independent mean 0 standard deviation 1 noise εi .

I Variability proportional to mean.

I D0 proportional to burial duration of sample.
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Three estimation schemes
I Least squares: Minimize∑

i

(Ni − f (Di + D0, θ))2

f 2(Di + D0, θ)

I Weird Least squares: Minimize∑
i

(Ni − f (Di + D0, θ))2

N2
i

I Iteratively reweighted least squares. Start with σ(0) = 1.
Minimize ∑

i

(Ni − f (Di + D0, θ))2

to get initial values of D0,0 and θ0.
I Get k + 1st set of parameters from kth by minimizing∑

i

(Ni − f (Di + D0, θ))2

f 2(Di + D0,k , θk)
.
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Lessons from the project

I All three methods different even in large samples.

I Only third method is ‘right’.

I Equations solved by estimates are the objects to study
mathematically.

I Can also do low-noise asymptotics with n fixed.

I Glenn Berger, Jen-ni Kuo and L in Nuclear Tracks etc.
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Example 3 of 2: von Mises
I X1, . . . ,Xn random angles in [0, 2π).
I von Mises density:

1

2πI0(κ)
ek cos(x−θ).

I Two parameters: κ and θ.
I Test null κ = 0; uniform density on circle.
I Wilk’s theorem applies. 2 degrees of freedom.
I Problem is that polar co-ordinate transformation is singular at

origin.
I Rewrite density in form

1

2πI0(
√
τ21 + τ20 )

eτ1 cos(x)+τ2 sin(x)

with τ1 = κ cos(θ) and τ = κ sin(θ).
I Null is τ1 = τ2 = 0 in interior of parameter space – the plane.
I Same thing happened in Scott Oser’s talk.

9 / 28



Unfolding

I Very useful for presentation, for evaluation of images by eye.

I Natural to provide estimate of interpretable quantity.

I So unfolding is clearly worthy of study.

I Less clear to me that you should unfold before analysis.

I Historically statisticians favoured transforming data so that
assumptions like Gaussian, linear models, constant errors were
nearly met.

I We have moved to modelling just writing down likelihoods.

I The folding matrix is there in the likelihood of course.

I Is my transformation analogy relevant?
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Decision Theory, Likelihood Ratios

I Data Y.

I Two possible densities, f (null) and g (alternative).

I Test function T ; notation T = T (Y).

I Level is Ef (T).

I Power is

Eg (T) = Ef

[
T
g(Y)

f (Y)

]
= Level + Covf (T, LR).

where

LR = Likelihood Ratio =
g(Y)

f (Y)
.
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Primitive Frequency Theory Ideas

I Neyman and Pearson were advocates of worst case analysis.

I Real Bayes is average case analysis.

I Calibrated Bayes is sort of in between perhaps.

I Hypothesis testing and confidence sets can certainly be
combined.
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Separate hypotheses

I Example 1. Sample X1, . . . ,Xn either from Normal(−1, 1) or
from N(1, 1).

I Example 2. Sample from f or g .

I Example 3. Sample either from Gamma distribution or from
Weibull distribution.

I Example 4. X ,Y independent normals, means µx , µy .
Hypothesis A: µx ≤ 0, µy ≤ 0; Hypothesis B µx ≥ 0, µy ≥ 0.
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Two simple hypotheses µ = −1 or µ = 1

I Total error rate minimized by: pick µ = −1 iff sample mean
negative.

I Total error rate is

2P(Normal >
√
n) ∼ 2

exp−n/2√
2πn

which goes to 0 pretty fast.

I For non-normal models details of tails of law of X̄ matter.

I Called large deviations regime.

I Rates specific to distributions, total error rate stunningly low.

I Generally not a good approximation.
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Two simple hypotheses f or g
I Log-likelihood ratio is

Λ =
∑

log {f (Xi )/g(Xi )}

I Study when g is true density. Maybe CLT applies?
I If so Λ ∼ N(µ, σ2) approximately. But

Eg

[
f (X )

g(X )

]
=

∫
f (x)

g(x)
g(x) dx =

∫
f (x) dx = 1

so
µ = −σ2/2

I AND if f is true density then

Λ ∼ N(σ/2, σ2).

I Notice symmetry about 0; equal variances, means ±σ2/2.
I Basic ingredient in version of large sample theory called

contiguity.
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Asymptotic methods in statistics

I For fixed f , g stuff on previous slide is nonsense.

I Can be real if at least one of f or g varies with n so that f , g
get closer together.

I Neyman made calculations that way.

I Usually in parametric models; null θ0, alternative θ0 + γ/
√
n.

I Has impact in Wilks Theorem failures.
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Separate Hypotheses, example 4

I Test lower left quadrant against upper right quadrant of plane.

I Log-likelihood ratio 0 in lower left quadrant.

I Compares X ,Y to 0, 0 when (X ,Y ) in first quadrant.

I When X > 0, Y < 0 compare X ,Y to 0,Y .

I But what is the distribution when µx ≤ 0, µy ≤ 0?

I Worst case analysis: µx = µy = 0; mixture of χ2.

I But when you see Y << 0 should you say corner wrong?
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Parametric Bootstrapping

I Most commonly statisticians seem to favour parametric
bootstrap to attach P-value to statistic.

I If you have to do parametric bootstrapping to compute the
P-value for a test statistic T then the real test statistic is the
P-value.

I Neyman and Pearson say: pick a test statistic and a critical
value and reject if the statistic is larger than the critical value.

I The critical value doesn’t get to change depending on the
data.

I But lots of statistical procedures don’t work that way!

I Different way to say this: it is the critical region which
matters. Which data sets lead to rejection? How uniform is P
for different parameter values.
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Why asymptotic (large sample) methods?

I Statistic Tn. Distribution depends on θ.

I Compute things like P(Tn > t|θ).

I Make approximation

P(Tn > t|θ) ≈ lim
n→∞

P(Tn > t|θ).

I Sometimes limit is discontinuous in θ.

I But the thing being approximated is not, for any finite n.

I Cries out for different analysis in neighbourhood of
discontinuity.

I I have some examples in my work.

I Example 4 above is like that.

I Aixin Tan’s work like this, I believe.

19 / 28



LEE, 5σ, error rate control

I Plots of local P-values dipping below 3× 10−7 are not 5σ
effects in a statistician’s mind.

I A global P-value like that would be.

I Era of automated searches magnifies LEE.

I False Discovery Rate work relevant.

I Ioannidas (2005) PLoS Medicine. Why Most Published
Research Findings Are False

I Much attention in statistical community to error rates in
published work.

I Much attention (Kuffner) to adjusting inference to account
for process of tuning analysis.

I Schizophrenia in statistical community.

I Blind analysis methods relevant.
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Some remarks

I In goodness-of-fit there is an alternative hypothesis.

I It is vague – described by the test statistic, essentially.

I ‘Which one is the correct one?’ No statistician ever answers
this question credibly.

I Most of us don’t think the question has an answer.

I Questions like: what are the weaknesses of this method? Is
there a clearly better method than this?
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On off calibrated Bayes example

I Y is a measurement of background plus signal, b + s.

I Formal: X is a measurement of a background b

I Take X ∼Poisson(b), and Y ∼Poisson(b + s).

I Null hypothesis Ho : s = 0 is ‘composite’ unless background b
is known so that X is useless.

I Log-likelihood is

`(b, s) = X log(b) + Y log(b + s)− 2b − s
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Neyman Pearson lemma

I So now suppose b = 20 is known without error.

I And suppose the signal is either s = 0 or s = 5.

I Neyman says we need a rule for discovery.

I A rule is like declare discovery if Y ∈ D for a set D (Discovery
set or Critical Region or Rejection Region.

I Neyman Pearson approach minimize

β = P(Y 6∈ D|s = 5)

subject to constraint

α = P(Y ∈ D|s = 0) = α0
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Decision Theory

I Neyman and Pearson used Lagrange multipliers; minimize

β + λα

then adjust α so solution also satisfies constraint.

I This is the same as minimizing

1

1 + λ
β +

λ

1 + λ
α ≡ (1− π)β + πα

I So Neyman and Pearson’s solution is Bayesian but with the
prior adjusted to satisfy constraints.

I Sweeping discreteness under the rug.

I For b = 20 find, for 5σ stringency, D = {y ≥ 47}.
I So if we see 47 or more events we declare discovery.
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Unknown background
I But if b is unknown then the Neyman Pearson lemma doesn’t

help.
I A likelihood ratio test is the ancient suggestion; it has,

usually, no totally compelling justification
I Compare b, s = 0 to b, s for ‘most likely’ values under each

possible assumption.
I If s = 0 guess b = b̂0 = (X + Y )/2; most likely value in null

hypothesis.
I Alternative: if Y < X then `(b, s) is maximized at ŝ1 = 0 and

b̂1 = (X + Y )/2 while for Y ≥ X the maximum is at
ŝ = Y − X and b̂ = X .

I So the likelihood ratio is

Deviance drop = 2
[
`(b̂1, ŝ1)− `(b̂0, 0)

]
I Algebra skipped. In limit b →∞ statistic has a χ2

1

distribution.
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Calibrated Bayes, decision theory

I Recast problem from Hypothesis Testing and Confidence
Interval to variable level confidence set.

I Output of inference is set S of possible values for s.

I Loss is sum of penalties for errors:

L(s, S) =`01(s = 0)1(0 6∈ S) null incorrectly rejected

+ C01(s 6= 0)1(0 ∈ S) null incorrectly accepted

+ `s1(s 6= 0)1(s 6∈ S) alternative not covered

+

∫
t>0

Ct1(t ∈ S) dt. overcoverage on alternative
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Prior distributions
I Idea is to choose a proper prior on s:

π(0)δ(s) + π(s) continuous prior on s > 0.

I Imagine theory suggests order of 50 events expected.
I Perhaps continuous part exponential distribution prior

π(s) = exp{−s/50}/50

I Posterior Bayes risk of set S is

rπ(S |X ,Y ) = π(0|X ,Y )`01(0 6∈ S) + (1− π(0|X ,Y ))C01(0 ∈ S)

+

∫
Sc

π(s|X ,Y )`s ds +

∫
S
Cs ds

I For positive s put s ∈ S if

π(s|X ,Y )`s > C (s) ≡ π(s|X ,Y )
`s
Cs

> 1

I Put 0 ∈ S if
π(0|X ,Y )

1− π(0|X ,Y )

`0
C0

> 1.
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Calibration
I Wiggle `s and Cs or π(s) to control coverage probabilities.
I Can insist

P(0 ∈ S |s = 0) = 1− P(Normal(0, 1) > 5)

and
P(s ∈ S |s) = 0.95 for s > 0.

I Like Feldman-Cousins – points added in order determined by
posterior.

I So have 5σ for discovery, 95% for confidence.
I Calibration removes the bulk of the influence of the prior.
I Have done this for Higg’s discovery on Monte Carlo data with

much more complex Bayesian model for background.
I Calibration by importance sampling down to global α = 10−4.
I Use Integrated Nested Laplace Approximations (INLA); Rue

and Martino.
I All laptop stuff. Only one channel, 5 production modes

summed. Could do much better with a computer.
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Our interval for X = 100, varying Y ; 3σ, 95%
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