Long-Baseline Neutrino Experiment Analysis Techniques

PhysStat- ν

Christopher Backhouse

California Institute of Technology

September 19, 2016

Overview

- LBL oscillation physics
- T2K analysis techniques
- NOvA analysis techniques
- Can we form 1D frequentist intervals
 for $\delta_{C P}$ with good coverage?

Apologies to KamLAND, MINOS, OPERA, DUNE, HyperK...

All opinions are my own, and do not reflect the views of either collaboration

LBL oscillation physics

$\boldsymbol{\nu}_{\boldsymbol{\mu}}$ survival probability

- Two flavor approx. works well here
- $P_{\mu \mu} \approx 1-\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)$
- $\theta_{23} \approx 45^{\circ} \rightarrow$ almost all ν_{μ} expected to disappear at oscillation max.

$\nu_{\mu} \rightarrow \nu_{e}$ transition probability
- $P_{\mu e} \approx \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)+f\left(\operatorname{sign}\left(\Delta m_{32}^{2}\right)\right)+f\left(\delta_{C P}\right)$
- θ_{13} only 8.5° degrees, most ν_{μ} go to ν_{τ} instead
- Look for deviations due to hierarchy (matter effects) and CP-violation
$\times 2$ for antineutrinos

Principle of the ν_{e} measurement

- To first order, NOvA measures $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ and $P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)$ evaluated at 2 GeV
- These depend differently on $\operatorname{sign}\left(\Delta m_{32}^{2}\right)$ and $\delta_{C P}$

Principle of the ν_{e} measurement

- To first order, NOvA measures $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ and $P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)$ evaluated at 2 GeV
- These depend differently on $\operatorname{sign}\left(\Delta m_{32}^{2}\right)$ and $\delta_{C P}$
- Ultimately constrain to some region of this space

Principle of the ν_{e} measurement

- To first order, NOvA measures $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ and $P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)$ evaluated at 2 GeV
- These depend differently on $\operatorname{sign}\left(\Delta m_{32}^{2}\right)$ and $\delta_{C P}$
- Ultimately constrain to some region of this space
- P also $\propto \sin ^{2} \theta_{23}$
< 0.5: "lower octant"
>0.5 : "upper octant"

T2K overview

Super-Kamiokande
J-PARC
$\rightarrow \nu_{\mu} \rightarrow \nu_{e} \quad \nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

- Cross-section and flux constraints from Near Detector (ND280) and external experiments (NA61/SHINE)

T2K analysis

Credit Asher Kaboth

- Constrain parameters in xsec/flux model using ND280 and external data
- Appropriate if model knobs fully cover possibilities in reality

Error matrix

- Correlation matrix constrained by fit to ND data
- See upcoming VALOR talks

- Use of a correlation matrix appropriate if parameter measurements are gaussian

T2K FD data

T2K Run1-7b PRELIMINARY

T2K Run1-7b PRELIMINARY

T2K Run1-7b PRELIMINARY

Multiple analysis approaches

- Frequentist $\Delta \chi^{2}$ fit
- Profile over systematics
- Bayesian Ihood fit
- Bayesian MCMC, simultaneous with ND

T2K results

- This parameter pairing dominated by ν_{μ} survival
- Bread-and-butter contour in frequentist stats, gaussian limit

T2K results

- Fixed gaussian $\Delta \chi_{\text {crit }}^{2}$ ("up value")
- Analyze each hierarchy independently
- Some gain from including external reactor θ_{13} constraint

T2K $\delta_{C P}$ ranges

FC 90\% C.L. crit. values

Bayes, prior flat in δ

Bayes, priors compared

- Results from different approaches similar, not identical
- Maximal θ_{23} and minimal sensitivity to hierarchy help consistency?

NOvA overview

- $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{e}$ channels
- $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ soon
- ND and FD are functionally identical

NOvA FD prediction

- "Extrapolate" ND data to FD prediction (via plenty of Monte Carlo)
- Assess systematics by varying MC and pushing through the whole chain
- Still some hand tweaking of parameters based on ND observations
- Should be more robust against unknown unknowns

NOvA data

Reconstructed neutrino energy (GeV)

- Log-likehood fit

$$
\begin{aligned}
& \mathcal{L}(N \mid \lambda)=\frac{\lambda^{N} e^{-\lambda}}{N!} \\
& \begin{aligned}
\Delta \chi^{2} & =-2 \ln \frac{\mathcal{L}(N \mid \lambda)}{\mathcal{L}(N \mid N)} \\
& =2\left(\lambda-N+N \ln \frac{N}{\lambda}\right)
\end{aligned}
\end{aligned}
$$

NOvA ν_{μ} results

NOvA Preliminary

- Constant $\Delta \chi_{\text {crit }}^{2}$ shown here
- Systematic parameters profiled over
- FC corrections have minimal impact
- Prefer non-maximal mixing, at what sig. exactly do we reject maximal?
- Evaluate FC experiments at $\sin ^{2} \theta_{23}=0.5$, best fit Δm^{2} given this θ_{23}
- Slightly increase rejection power

NOvA ν_{e} results

NOvA ν_{e} results

NOvA ν_{e} results

- Lots of interesting parameter correlations
- Extracted $\delta_{C P}$ conclusions depend on what you do with the other parameters

An interesting case study

Coverage

- Frequentist coverage means: "if the true value of parameter x is $A, 68 \%$ of experiments will include A in their confidence interval for x "
- FC procedure achieves this almost tautologously by throwing mock experiments at each A and finding the $\Delta \chi_{\text {crit }}^{2}$ that would have included that A in 68% of the experiments
- In the presence of a parameter y not displayed on the plot (a "nuisance parameter")
- Want correct coverage no matter the true value of that parameter
- Obviously impossible in general, infinite array of possible values for y, all requiring different critical values in principle
- But e.g. for two gaussian variables profiling over y gives correct coverage, even without invoking FC corrections
- So how does it work out in practice for our experiment?

The toy

- Model $\delta_{C P}$ behaviour, neglect hierarchy and octant
- Expected number of events $=33-6 \sin \delta$
- Throw experiments as gaussian numbers $N \pm \sqrt{N}$
- Eliminates complications from discontinuous event counts
- Can run full set of experiments in seconds

Results

- Construct confidence intervals for many mock expts, evaluate coverage
- "Gaus" $\left(\Delta \chi_{\text {crit }}^{2}=1\right)$ works far from extremes
- i.e. when $\chi_{\text {best }}^{2}$ will be zero
- Signficantly overcovers elsewhere

Results

- Construct confidence intervals for many mock expts, evaluate coverage
- "Gaus" $\left(\Delta \chi_{\text {crit }}^{2}=1\right)$ works far from extremes
- i.e. when $\chi_{\text {best }}^{2}$ will be zero
- Signficantly overcovers elsewhere, big FC correction required
- Correct FC coverage, as expected

Upgraded toy

- Number expected $=(0.8$ or 1.2$)(33-6 \sin \delta)$
- Modelled after octant
- People are more willing to separate results by hierarchy, but want θ_{23} to be "profiled out"
- Goal is to make correct intervals in δ independent of true octant
- Red line shows one example experiment

Critical value strategies

- "Gaus" $\left(\Delta \chi_{\text {crit }}^{2}=1\right)$ heavily overcovers in all cases

Critical value strategies

- "Gaus" $\left(\Delta \chi_{\text {crit }}^{2}=1\right)$ heavily overcovers in all cases
- "Up" throws all FC experiments from the upper octant
- Obviously perfect for upper octant, still very bad for lower

Critical value strategies

- "Lo" throws all experiments from the lower octant
- See how the necessary $\Delta \chi_{\text {crit }}^{2}$ differs from "Up"

"Profile" method

- How can we possibly satisfy the needs of both true octants?
- A possible loophole: allow $\Delta \chi_{\text {crit }}^{2}$ to depend on the observed data
- For each δ throw experiments in the octant the data favour
- Still will sometimes use $\Delta \chi_{\text {crit }}^{2}$ for the wrong octant, but may be rare enough?
- Call this method "Prof"

Critical value strategies

- Coverage properties are better, still not good enough to make people comfortable

Crazy ideas

- One can of course always guarantee no undercoverage by using the largest $\Delta \chi_{\text {crit }}^{2}$ for any true value of the suppressed variable
- Substantially understating the power of the experiment is not popular

Crazy ideas

- One can of course always guarantee no undercoverage by using the largest $\Delta \chi_{\text {crit }}^{2}$ for any true value of the suppressed variable
- Substantially understating the power of the experiment is not popular
- In this very specific case one could balance the competing needs of lower and upper octant by carefully picking the two ends of a range in N that you'll accept for each δ
- Not generic
- Gives up all of the benefits of using $\Delta \chi^{2}$ as the ordering criterion

Pragmatism

- No satisfactory way to "integrate out" hierarchy or octant possible
- Continue to plot four curves
- Problem really stems from large impact and bimodality of θ_{23}
- Studies beyond the scope of this toy show profiling over θ_{23} but constrained within a particular octant works much better
- For other parameters approximation that $\Delta \chi_{\text {crit }}^{2}$ does not depend on them is far better
- ν_{μ} contours much better behaved
- θ_{23} bimodal, but so degenerate it doesn't matter

Conclusion

- Variety of ways to incorporate ND / external constraints
- Mix of Bayesian and frequentist approaches to set limits
- Starting to want to accept/reject specific points as well as provide a range
- Convolutions of oscillation formulae can provide interesting torture tests

