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Overview

I LBL oscillation physics

I T2K analysis techniques

I NOvA analysis techniques

I Can we form 1D frequentist intervals
for δCP with good coverage?

Apologies to KamLAND, MINOS, OPERA, DUNE, HyperK. . .

All opinions are my own, and do not reflect the views of either collaboration
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LBL oscillation physics

νµ survival probability
I Two flavor approx. works well here

I Pµµ ≈ 1− sin2 2θ23 sin2
(

∆m2
32L

4E

)
I θ23 ≈ 45◦ → almost all νµ expected

to disappear at oscillation max.
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νµ → νe transition probability

I Pµe ≈ sin2 2θ13 sin2 θ23 sin2
(

∆m2
32L

4E

)
+ f (sign(∆m2

32)) + f (δCP)

I θ13 only 8.5◦ degrees, most νµ go to ντ instead
I Look for deviations due to hierarchy (matter effects) and CP-violation

×2 for antineutrinos
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Principle of the νe measurement

I To first order, NOvA
measures P(νµ → νe)
and P(ν̄µ → ν̄e)
evaluated at 2GeV

I These depend differently
on sign(∆m2

32) and δCP

I Ultimately constrain to
some region of this space

I P also ∝ sin2 θ23

< 0.5: “lower octant”
> 0.5: “upper octant”
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T2K overview

I νµ → νe νµ → νe ν̄µ → ν̄µ and ν̄µ → ν̄e

I Cross-section and flux constraints from Near Detector (ND280) and
external experiments (NA61/SHINE)
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T2K analysis

Credit Asher Kaboth

I Constrain parameters in xsec/flux model using ND280 and external data
I Appropriate if model knobs fully cover possibilities in reality
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Error matrix

I Correlation matrix constrained by fit to ND data

I See upcoming VALOR talks

I Use of a correlation matrix appropriate if parameter measurements are
gaussian

C. Backhouse (Caltech) LBL analysis September 19, 2016 8 / 30



T2K FD data

Multiple analysis
approaches

I Frequentist ∆χ2 fit
I Profile over

systematics

I Bayesian lhood fit

I Bayesian MCMC,
simultaneous with
ND
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T2K results

I This parameter pairing dominated by νµ survival

I Bread-and-butter contour in frequentist stats, gaussian limit
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T2K results

I Fixed gaussian ∆χ2
crit (“up value”)

I Analyze each hierarchy
independently

I Some gain from including external
reactor θ13 constraint
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T2K δCP ranges

FC 90% C.L. crit. values Bayes, prior flat in δ Bayes, priors compared

I Results from different approaches similar, not identical

I Maximal θ23 and minimal sensitivity to hierarchy help consistency?
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NOvA overview

I νµ → νµ and νµ → νe channels

I ν̄µ → ν̄µ and ν̄µ → ν̄e soon

I ND and FD are functionally
identical
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NOvA FD prediction

I “Extrapolate” ND data to FD prediction (via plenty of Monte Carlo)

I Assess systematics by varying MC and pushing through the whole chain

I Still some hand tweaking of parameters based on ND observations

I Should be more robust against unknown unknowns
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NOvA data

Reconstructed neutrino energy (GeV)
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I Log-likehood fit

L(N|λ) = λN e−λ

N!

∆χ2 = −2 ln L(N|λ)
L(N|N)

= 2
(
λ− N + N ln N

λ

)
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NOvA νµ results
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I Constant ∆χ2
crit shown here

I Systematic parameters profiled over
I FC corrections have minimal impact

I Prefer non-maximal mixing, at what sig. exactly do we reject maximal?
I Evaluate FC experiments at sin2 θ23 = 0.5, best fit ∆m2 given this θ23

I Slightly increase rejection power
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NOvA νe results

CPδ
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I Lots of interesting parameter
correlations

I Extracted δCP conclusions
depend on what you do with the
other parameters
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An interesting case study
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Coverage
I Frequentist coverage means: “if the true value of parameter x is A, 68%

of experiments will include A in their confidence interval for x”
I FC procedure achieves this almost tautologously by throwing mock

experiments at each A and finding the ∆χ2
crit that would have included

that A in 68% of the experiments

I In the presence of a parameter y not displayed on the plot (a “nuisance
parameter”)

I Want correct coverage no matter the true value of that parameter

I Obviously impossible in general, infinite array of possible values for y , all
requiring different critical values in principle

I But e.g. for two gaussian variables profiling over y gives correct
coverage, even without invoking FC corrections

I So how does it work out in practice for our experiment?
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The toy
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I Model δCP behaviour, neglect hierarchy and octant

I Expected number of events = 33− 6 sin δ

I Throw experiments as gaussian numbers N ±
√

N

I Eliminates complications from discontinuous event counts

I Can run full set of experiments in seconds
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Results
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I Construct confidence intervals for many mock expts, evaluate coverage

I “Gaus” (∆χ2
crit = 1) works far from extremes

I i.e. when χ2
best will be zero

I Signficantly overcovers elsewhere

, big FC correction required

I Correct FC coverage, as expected
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Upgraded toy
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I Number expected = (0.8 or 1.2)(33− 6 sin δ)

I Modelled after octant

I People are more willing to separate results by hierarchy, but want θ23 to
be “profiled out”

I Goal is to make correct intervals in δ independent of true octant

I Red line shows one example experiment
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Critical value strategies
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I “Gaus” (∆χ2
crit = 1) heavily overcovers in all cases

I “Up” throws all FC experiments from the upper octant

I Obviously perfect for upper octant, still very bad for lower ∆χ2
crit
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Critical value strategies
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I “Lo” throws all experiments from the lower octant

I See how the necessary ∆χ2
crit differs from “Up”
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“Profile” method

I How can we possibly satisfy the needs of both true octants?

I A possible loophole: allow ∆χ2
crit to depend on the observed data

I For each δ throw experiments in the octant the data favour

I Still will sometimes use ∆χ2
crit for the wrong octant, but may be rare

enough?

I Call this method “Prof”
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Critical value strategies
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I Coverage properties are better, still not good enough to make people
comfortable
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Crazy ideas

I One can of course always guarantee no undercoverage by using the
largest ∆χ2

crit for any true value of the suppressed variable

I Substantially understating the power of the experiment is not popular

I In this very specific case one could balance the competing needs of lower
and upper octant by carefully picking the two ends of a range in N that
you’ll accept for each δ

I Not generic

I Gives up all of the benefits of using ∆χ2 as the ordering criterion
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Pragmatism

I No satisfactory way to “integrate out” hierarchy or octant possible

I Continue to plot four curves

I Problem really stems from large impact and bimodality of θ23

I Studies beyond the scope of this toy show profiling over θ23 but
constrained within a particular octant works much better

I For other parameters approximation that ∆χ2
crit does not depend on them

is far better

I νµ contours much better behaved

I θ23 bimodal, but so degenerate it doesn’t matter
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Conclusion

I Variety of ways to incorporate ND / external constraints

I Mix of Bayesian and frequentist approaches to set limits

I Starting to want to accept/reject specific points as well as provide a range

I Convolutions of oscillation formulae can provide interesting torture tests
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