Long-Baseline Neutrino Experiment Analysis Techniques

PhysStat- ν

Christopher Backhouse

California Institute of Technology

September 19, 2016

C. Backhouse (Caltech)

LBL analysis

Overview

- LBL oscillation physics
- T2K analysis techniques
- NOvA analysis techniques
- Can we form 1D frequentist intervals for δ_{CP} with good coverage?

Apologies to KamLAND, MINOS, OPERA, DUNE, HyperK...

All opinions are my own, and do not reflect the views of either collaboration

C. Backhouse (Caltech)

LBL analysis

LBL oscillation physics

u_{μ} survival probability

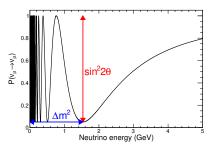
- Two flavor approx. works well here
- $P_{\mu\mu} \approx 1 \sin^2 \frac{2\theta_{23}}{2\theta_{23}} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right)$
- θ₂₃ ≈ 45° → almost all ν_µ expected to disappear at oscillation max.

$u_{\mu} ightarrow u_{e}$ transition probability

- $\blacktriangleright P_{\mu e} \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right) + f(\operatorname{sign}(\Delta m_{32}^2)) + f(\delta_{CP})$
- θ_{13} only 8.5° degrees, most ν_{μ} go to ν_{τ} instead
- Look for deviations due to hierarchy (matter effects) and CP-violation

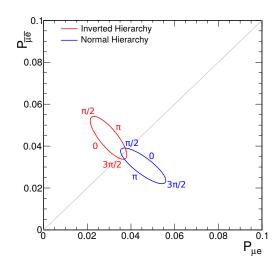
$\times 2$ for antineutrinos

C. Backhouse (Caltech)



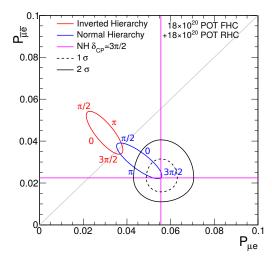
Principle of the ν_e measurement

- ► To first order, NOvA measures $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ evaluated at 2GeV
- ► These depend differently on sign(∆m²₃₂) and δ_{CP}



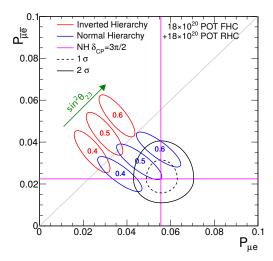
Principle of the ν_e measurement

- ► To first order, NOvA measures $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ evaluated at 2GeV
- ► These depend differently on sign(∆m²₃₂) and δ_{CP}
- Ultimately constrain to some region of this space

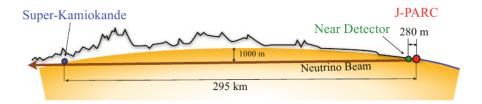


Principle of the ν_e measurement

- ► To first order, NOvA measures $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ evaluated at 2GeV
- ► These depend differently on sign(∆m²₃₂) and δ_{CP}
- Ultimately constrain to some region of this space
- *P* also ∝ sin² θ₂₃
 < 0.5: "lower octant"
 > 0.5: "upper octant"



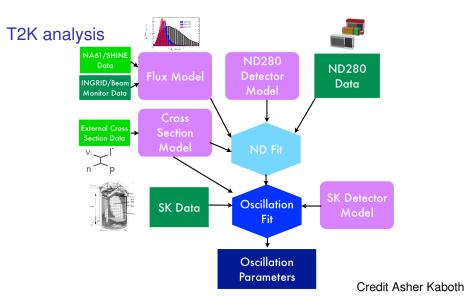
T2K overview



$$\blacktriangleright \ \nu_{\mu} \rightarrow \nu_{e} \quad \nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \quad \text{and} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$$

 Cross-section and flux constraints from Near Detector (ND280) and external experiments (NA61/SHINE)

C. Backhouse (Caltech)



Constrain parameters in xsec/flux model using ND280 and external data

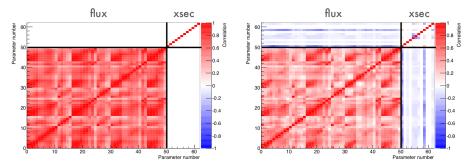
Appropriate if model knobs fully cover possibilities in reality

C. Backhouse (Caltech)

LBL analysis

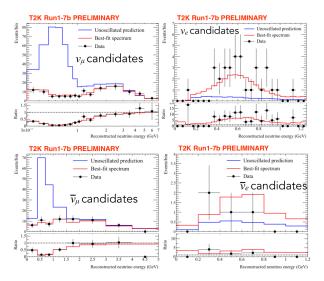
Error matrix

- Correlation matrix constrained by fit to ND data
- See upcoming VALOR talks



 Use of a correlation matrix appropriate if parameter measurements are gaussian

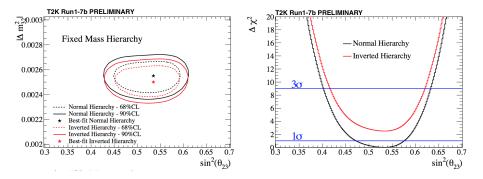
T2K FD data



Multiple analysis approaches

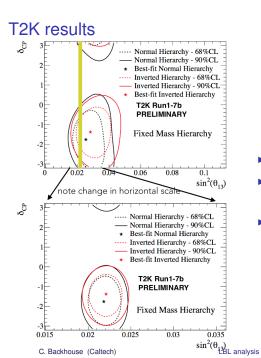
- Frequentist $\Delta \chi^2$ fit
 - Profile over systematics
- Bayesian lhood fit
- Bayesian MCMC, simultaneous with ND

T2K results



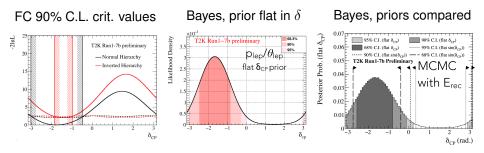
This parameter pairing dominated by ν_μ survival

Bread-and-butter contour in frequentist stats, gaussian limit



- Fixed gaussian $\Delta \chi^2_{\rm crit}$ ("up value")
- Analyze each hierarchy independently
- Some gain from including external reactor θ₁₃ constraint

T2K δ_{CP} ranges

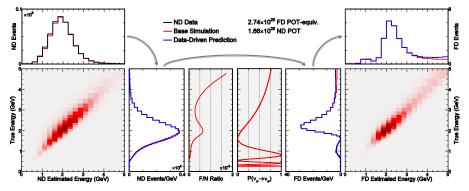


- Results from different approaches similar, not identical
- Maximal θ₂₃ and minimal sensitivity to hierarchy help consistency?

NOvA overview

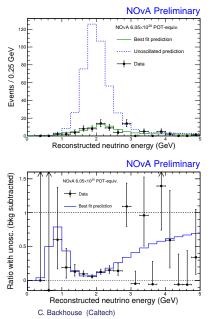
- $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{e}$ channels • $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ soon
- ND and FD are functionally identical

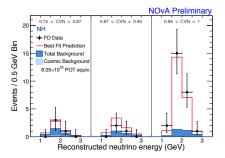
NOvA FD prediction



- "Extrapolate" ND data to FD prediction (via plenty of Monte Carlo)
- Assess systematics by varying MC and pushing through the whole chain
- Still some hand tweaking of parameters based on ND observations
- Should be more robust against unknown unknowns

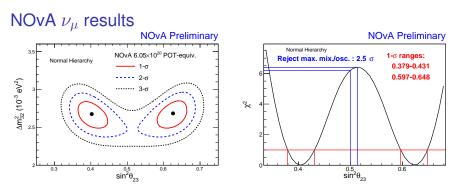
NOvA data





► Log-likehood fit $\mathcal{L}(N|\lambda) = \frac{\lambda^{N}e^{-\lambda}}{N!}$ $\Delta \chi^{2} = -2 \ln \frac{\mathcal{L}(N|\lambda)}{\mathcal{L}(N|N)}$ $= 2 \left(\lambda - N + N \ln \frac{N}{\lambda}\right)$

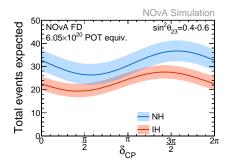
LBL analysis



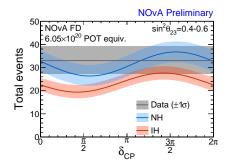
- Constant $\Delta \chi^2_{crit}$ shown here
- Systematic parameters profiled over
- FC corrections have minimal impact
- Prefer non-maximal mixing, at what sig. exactly do we reject maximal?
- Evaluate FC experiments at $\sin^2 \theta_{23} = 0.5$, best fit Δm^2 given this θ_{23}
- Slightly increase rejection power

C. Backhouse (Caltech)

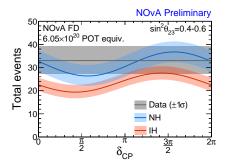
NOvA ν_e results



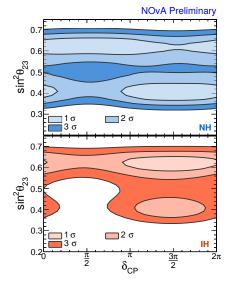
NOvA ν_e results



NOvA ν_e results



- Lots of interesting parameter correlations
- Extracted \(\delta_{CP}\) conclusions depend on what you do with the other parameters



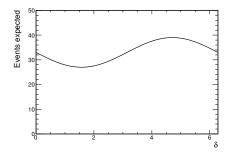
An interesting case study

Coverage

- Frequentist coverage means: "if the true value of parameter x is A, 68% of experiments will include A in their confidence interval for x"
- FC procedure achieves this almost tautologously by throwing mock experiments at each *A* and finding the $\Delta \chi^2_{crit}$ that would have included that *A* in 68% of the experiments
- In the presence of a parameter y not displayed on the plot (a "nuisance parameter")
- ► Want correct coverage *no matter the true value of that parameter*
- Obviously impossible in general, infinite array of possible values for y, all requiring different critical values in principle
- But e.g. for two gaussian variables profiling over y gives correct coverage, even without invoking FC corrections
- So how does it work out in practice for our experiment?

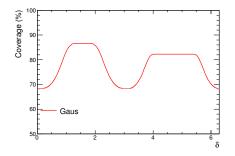
C. Backhouse (Caltech)

The toy



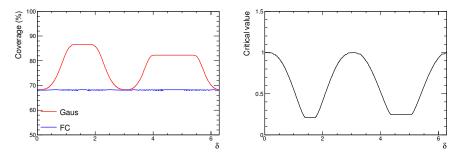
- Model \u03c6_{CP} behaviour, neglect hierarchy and octant
- Expected number of events = $33 6 \sin \delta$
- Throw experiments as gaussian numbers $N \pm \sqrt{N}$
- Eliminates complications from discontinuous event counts
- Can run full set of experiments in seconds

Results



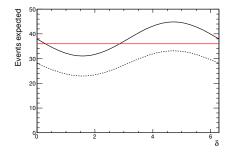
- Construct confidence intervals for many mock expts, evaluate coverage
- "Gaus" ($\Delta \chi^2_{crit} = 1$) works far from extremes
- *i.e.* when χ^2_{best} will be zero
- Significantly overcovers elsewhere

Results



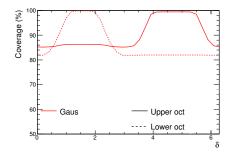
- Construct confidence intervals for many mock expts, evaluate coverage
- "Gaus" ($\Delta \chi^2_{crit} = 1$) works far from extremes
- *i.e.* when χ^2_{best} will be zero
- Significantly overcovers elsewhere, big FC correction required
- Correct FC coverage, as expected

Upgraded toy

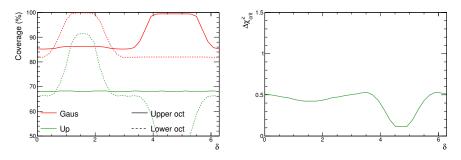


- Number expected = $(0.8 \text{ or } 1.2)(33 6 \sin \delta)$
- Modelled after octant
- People are more willing to separate results by hierarchy, but want \u03c8₂₃ to be "profiled out"
- Goal is to make correct intervals in δ independent of true octant
- Red line shows one example experiment

C. Backhouse (Caltech)

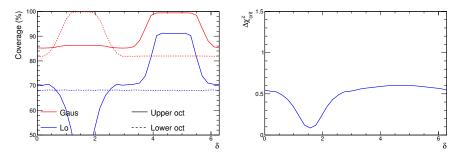


• "Gaus" ($\Delta \chi^2_{crit} = 1$) heavily overcovers in all cases



• "Gaus" ($\Delta \chi^2_{crit} = 1$) heavily overcovers in all cases

- "Up" throws all FC experiments from the upper octant
- Obviously perfect for upper octant, still very bad for lower



"Lo" throws all experiments from the lower octant

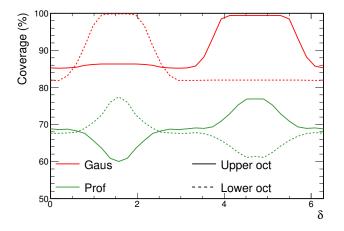
• See how the necessary $\Delta \chi^2_{\rm crit}$ differs from "Up"

C. Backhouse (Caltech)

LBL analysis

"Profile" method

- How can we possibly satisfy the needs of both true octants?
- \blacktriangleright A possible loophole: allow $\Delta\chi^{\rm 2}_{\rm crit}$ to depend on the observed data
- For each δ throw experiments in the octant the data favour
- Still will sometimes use ∆ \(\chi_{crit}^2\) for the wrong octant, but may be rare enough?
- Call this method "Prof"



 Coverage properties are better, still not good enough to make people comfortable

Crazy ideas

- One can of course always guarantee no undercoverage by using the largest Δχ²_{crit} for any true value of the suppressed variable
- Substantially understating the power of the experiment is not popular

Crazy ideas

- One can of course always guarantee no undercoverage by using the largest Δχ²_{crit} for any true value of the suppressed variable
- Substantially understating the power of the experiment is not popular
- In this very specific case one could balance the competing needs of lower and upper octant by carefully picking the two ends of a range in *N* that you'll accept for each δ
- Not generic
- Gives up all of the benefits of using $\Delta \chi^2$ as the ordering criterion

Pragmatism

- No satisfactory way to "integrate out" hierarchy or octant possible
- Continue to plot four curves
- Problem really stems from large impact and bimodality of θ₂₃
- Studies beyond the scope of this toy show profiling over θ₂₃ but constrained within a particular octant works much better
- For other parameters approximation that Δχ²_{crit} does not depend on them is far better
- ν_{μ} contours much better behaved
- θ₂₃ bimodal, but so degenerate it doesn't matter

Conclusion

- Variety of ways to incorporate ND / external constraints
- Mix of Bayesian and frequentist approaches to set limits
- Starting to want to accept/reject specific points as well as provide a range
- Convolutions of oscillation formulae can provide interesting torture tests