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VALOR Oscillation Fit

- Joint measurement of oscillation parameters

- In a 3-flavour framework (with 3+1, 3+2, 1+3+1 extensions)
including matter effects

- For multiple samples (selections based on topologies), detectors
and beam configurations

* Including correlated systematic uncertainties

- Historically, performs an indirect extrapolation near-to-far
detector for long baseline neutrino experiments

- Extended to perform neutrino oscillation fits with multiple
detectors, and multiple experiments

- Uses a binned likelihood-ratio method
» Minimisation using profiling or a mixed method combining
profiling+marginalization
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VALOR: ND+FD

Historically developed for T2K long baseline neutrino oscillation fits
Schematic for DUNE, including near and far detector samples

Simulation A

Simulation + External v/e/h reaction d‘lt‘l o

+ Beam monitors \-_—7- - Ve
+ Data on 7 and K yields Pl -. Neutrino "
- Cross-Section
Model
Simulation
+ Calibration data Neutrino /’
+ Test Beam data 7 Flux d
'\\ Model '-- - --——-———-—————-=- ==,
Detector | — e e
‘ [ND Predlctlons] NDData“} .
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i Fluxes and Cross-Sections i
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Oscillation Physics! intermediate Step

(see talk by Steve Dennis)
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VALOR: Multiple Detectors

Adapted and extended to perform neutrino oscillation fits for
multiple detectors and multiple experiments

Simulation(s) . '
+ beam monitors Simulation
Simulation(s) + mand K data + exterpal v/e/h
+ calibration data reaction data
+ testbeamdata o N N Prior constraints
...................... \Null Model (optional)
Detector N AR R T \
Neutrino
v Flux Cross-Section Oscillation Model
Detector Model Model (3,3+1,3+2,1+3+1)

Model

(X L4 v ¥ Ay &)
Predictions CDetector £1 Detector %2 . G)etector N
samplel sample2 sampleA sampleB samplel samplell . .
sample3... sampleC... samplelll... J Oscillation

~ ™) / physics
Observations (Detector # 1) G)etector # 9 G)etector # I\D

— — — — Joint Oscillation and
samplel sample sampleA sample samplel samplell . . .
L sample3... sampleC... Is)ampleHI.}?. J Systematlcs Constraint Fit
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Spectra Prediction

The VALOR framework can fit together an arbitrary number of samples
to determine the parameters of a In the presence of

r )
Each sample corresponds to a given:

« d - detector or subdetector

* b - beam configuration (FHC, RHC)
* s - selection, i.e. final state topology
* 1,t - multi dimensional kinematical

reconstructed and true phase space
" y

dem(t 0) Rdbsm ’I" t; f‘> Tdbsm('r t)

Predicted Oscillation  Systematic Nominal
number of probabilities parameters unoscillated
events variations number of events
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Oscillation Probabilities

VALOR incorporates its own library for the calculation of oscillation probabilities:

fast, no need to calculate and load tables from other libraries
extensively checked against other available libraries (Prob3++,GLoBES)
allows calculations including matter effects in a 3-flavour framework
and extensions: 3+1, 3+2, 1+3+1

[a——y
L

[ ]
©
%

addition of phenomenological-based NC NSI effects
studied, approximated by the addition of one real free
parameter that would affect the vy, survival probability

Survival probability
e
=)

o
'S

0.2

- allows usage of different conventions: of
 Ocp, Sin(Ocp)
- double and single mixing angles (sin®023 vs sin%20623
for octant studies)
- atmospheric mass splitting can be input as Am?2s2, Am?2s;

or as Fogli and Lisi convention: o o m3+mj
Ampy =m3 — 5 3 v, s

: : , : Am? v,
useful since its absolute value is the same in both - -
mass hierarchies, while the usual |Am?s;| is the largest I e 0
splitting in IH but the second largest in NH — ) (o, e

normal hierarchy inverted hierarchy
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Likelihood Construction

VALOR analyses obtain measurements of the parameters of interest by comparing
prediction and observation typically using a binned likelihood-ratio method:

The log-likelihood function is constructed for each sample s, detector d, beam

configuration b s o uehe ()
In Aapss (05 F) = = { (P 6: 1) = nlia(r)) + nili(r) - ln— 2% }

red - —
ngrbe,s(ra 97 f)

r

This statistic iIs summed over ; ) .
’\(O’f) = ( A ; :s(&f)) ' ’\prior(o; f-)
all datasets EHZIH 0

adding a penalty term for those parameters with prior constraints, where C are

covariance matrices R 1(,= = pi1,7 = T
In )\prior(ﬁ; f) - —5{(9 — OO)TCQ 1(9 — 90) T (f T fO)TCf l(f o fO)}

Notice that the sum over all datasets (for different detectors d, etc) can include

datasets from different experiments in a multi-experiment analysis

Finally, besi—flt values of the parameters of interest are obtained by maximising
A(#; f) or minimising —2in\(6; f) (usually denoted as x2)

— S ——
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External Constraints

External constraints can be included in the analysis by adding the appropriate

penalty term to the log-likelihood.

For example, the constrain on 013 based on the 2 B (Si112913 — (sin® 013)reactor )2
. . . Areactor —
reactor values is included with the penalty term: Oreactor
T2K joint v, disappearance and ve appearance analysis [3]
12_'"I""I""I"''I""I"''IIIII 7_"'I"'I"'I"'|I"'I"'I_
B Only T2K data : Only T2K data .
10 _— T2K data + reactor constraint . 6 :_ T2K data + reactor constraint
3 sk .
8 - - T T . ]
4 ¢ —

Number of 1R, events per bin
Number of 1R, events per bin

[

1 l I,I lJ'l I-I ().' 1 1 1 1 I ,l I-l I 1 1 Illul-i_l"_lu—
0 1 2 3 4 5 6 7 ) 0.2 0.4 0.6 0.8 1 1.2
. . 2 .2 .2 1Rup 1Re 2
WhICh aﬁeCtS the best_flt Reactor MH |A|ZZ:;22| (|l\g-ll_i)or sin“fo3 sin“26013 dcp Neap Neap x“/ndf
13
—3 2 4
values of the other 107 eV /e
i i NO NH 2.512 0.524 0.162 1.909  119.915 27.999  84.5395/94
oscillation parameters and YES NH 2,509 0.527 0.0967  -1.554 120383  25.870  85.067/94
NO H 2.488 0.523 0.187 1.005  119.948  27.998  84.529/94
the best f|-|: Spectra YES H 2.481 0.533 0.0984 21556 121.204 23571  85.931/94
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Parameter Elimination

The VALOR group use both profiling and marginalisation. Now we have a mixed
scheme Bayesian-frequentist, obtaining the parameters of interest by maximising
the likelihood while marginalising the nuisance parameters

Profiling

Profiling methods like MIGRAD algorithm in MINUIT can be used to minimise .
VALOR framework is adapted to use also other minimisers from GSL libraries

Marginalisation

The marginal likelihood with prior distributions tt: S S s
can be numerically approximated by generating (?") / (0% f)m(f')df

toy MC experiments (see backup). Many toys are ~ (=
needed to sample the nuisance parameters phase ~Amarg(?') ~ — > M@ 1)
space. 1=0

During the marginalisation process, random values of the nuisance
parameters are drawn from the 1t distribution containing the prior knowledge.
Thus, the penalty term for those parameters is not necessary.

The MH and 623 octant use discrete priors, minimizing for each choice independently

VALOR, September 2016
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Parameter Elimination

Example of usage of both methods for parameter elimination T2 /Kj

- profiling: using MIGRAD algorithm in MINUIT
- marginalisation: integrating summing over a large sample of toy
experiments generated with prior Tt:
- for each systematic parameter, this example uses a Gaussian
prior 11, with mean/rms as the nominal value/1c error
« Cholesky method used for correlated systematics (see backup)

Muon antineutrino disappearance analysis from [5]

%90'0045:' T T T T e 3 Inthis example, only a small
£ oo NH - weamanenen - dlifference is observed in the
0.0035F- 7 contours and best-fit values.
0.003 —
0.0025 - 3 How to choose?
0002 3 - How well we know the priors
00015~ 3 - Coverage studies
o0l ¢ oy —
0 0.2 0.4 0.6 08 1
sin*(B,,)

—— R — = = = == —— ___ ___— — __________ — = = e
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Fit Validation

Extensive tests of the fitter performance have been performed (see [1,3,5,7]).
In addition to the ones described here, studies with fake datasets were also performed.

Systematic uncertainties

For the systematic uncertainties, the pulls are calculated as: Foestiit — fnominal}
ag

Any pathologies were studied in detail:
* bias may appear due to unphysical values limiting parameters range
* bias may appear due to low statistics

- Gaussian not expected for Energy scale S - -

0.03 Mean -0.203607 + 1.161156

1.14646 + 0.92766

Y eEENEEEEEEEEEEEEEEEEEEEEEERENEEEEEEEEEEEEEERE 0.025
0.02

0.015
0.01
0.005

f -lessA L
Mean 0206
...............................

0‘04 Rns o-m2
22 I ndf 0.0126866 / 64

0.035 Constant 0.0402662 + 00404205
0.03 Mean -0.210466 + 1.000750
Sigma 0.08023 + 0.60499

0.025

0.02
0.015
0.01
a aoa ¥ s 2 e & 3 0.005
_E_E. . ) )
& EFEEEAEFEZSEURYLSEREEN 5 £ 7 g ¢ O#¥iHG¥l :
¢ Kurtosis -2 -t s s s s s A il [}] R R, (PN ITET EATEIE APAT AN IR

R
(- St plt

) 1 0 1 2 3
SK+FSI
% Skewness .

I . £
___Summary and examples of systematic parameters pulls from the T2K v, disappeararice [1]
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Fit Validation

Oscillation parameters

For the oscillation parameters, we studied their distribution of residuals and
understood them taking into account the effects of:
 Physical boundaries of the oscillation parameters

- Degeneracies and correlations between them

« Statistical fluctuations

Non-maximal values explained with
statistical fluctuations of the number
of 1Rp events at the oscillation dip

Asymmetry in sin?613 and &cp residuals
due to the convolution of the energy

spectrum and oscillation probability
Neutrino true energy PVpVe From [3]
00000 ;7 1 008 35_ \ 2.5
00000 ;7 2:— 4
00000 i— E 35
ooooo i— 13 3
ooooo - 0 2.5
00000 i— E_ 2
00000 i— lz L5
ooooo N 2 I
3 0.5
-307 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0

6 18 II2II 9
Ene (GeV) sin0 5
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T2K v, dis
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Mean 0.003402|
RMS 0.01
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Mean 3.545e-06
RMS  0.0001048

Loverleniilinl Ix1

111 l L ke l 11 11 1 11 1 1111 1111 l 111 ll 1 11
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Goodness of fit tests

The advantage of the likelihood ratio method is that, in the large sample limit,
—2In\(6; f) has a x2 distribution and can be used as goodness-of-fit test,
which complement best-fit parameter estimation analysing the agreement
between data and (best-fit) model

When bins are sparsely populated, instead of x? a p-value is calculated to
determine the goodness of fit, with a large number of toy experiments
generated at the best-fit point of the fit to data, fitted in a coarser bin x;.;

p-value = proportion of expts with X..; > (Xiof)data

Example: T2K anti-ve appearance analysis [9,10] :I_ZI’(\ Rate+shape statlstlc

Rate-only statistic: # of veevents A’ =x*(8=0) = x*(8=1)

Posc(Du%De):BPosc(PMNS) @0.245'"'*'_'_'_"w"w"'-"|"'|"'|"'|' <>]<0.07_— ‘_—'193 —Data PVaIue—;

5 0225 s i _Data P-Value 3 oosE . ] p=1 0009 _

P g 02 =1 0216 7 <% =

NuI.I hypothesis: no S o - 5' oty 5 ous 0 p=0 0374 -

anti-ve dppearance, § 0-14;— ) 1 —; S 004l =

l.e. B:O % 03.21: 2 i :E 0.03§— —i

< 008F = E E

Bayes factor also 0065 ililils 5 0% : E

Ve | | = 001 5500 —

calculated (backup) 0-02;|] TR L Hﬂnn _____ E o :
"0 2 4 6 8 10 12 14 16 18 -5 0 5 10 15 20

Number of events A %* = ¥ (B=0) - Xz(f)_l)

—— = - S — = — — == = e ________________ - - = = "
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Goodness of fit tests

T2/K\ Continuation: T2K anti-ve appearance analysis [9,10]

In this analysis, studies were also performed to study the effect of sampling of

the nuisance parameter space to generate the distribution of the test statistic:

* Prior predictive: flat (uniform or gaussian) prior distributions for nuisance params

 Posterior predictive: using likelihood computed with control samples (Total 4 SK
samples: y-like, e-like in v and anti-v modes) to reweight the statistical throws:

N-1

—91n /\(Nobs, Te:rp) —9. Z (n?bs . ln(niobs/t?mp) + (tfmp — nfbs)) Lzm
o Rate-only statistic: # of ve events

W T[T T T rrrrrrr T rrororTT S T Y rTTTY oy Y
6 »—I | I | Prior predictive p = 0.0831 -2 [~ I 1 I 1 w— Prior predictive p = 0.000973
E | [— S 107 MRS — Posterior (3-sample) p = 0,00166
= — — Posterior (3-sample) p « 0.0943 Lf] & - H ﬁ - . ; 2. p=0
—u l()_l :’_ ....... Posterior (4- o) p = 0.0974 = i - : 'H: S,: e | Posterior (&-sample) p = 0.00437
- — At -
- — =25 H ™ :::.‘ O
summer - 102l Hdii.  full POT
l H! H 1 o ;
=2 = 1s T B
| 2015 POT
]0—, E'_ —: b H - § § . -
: : 0 H I E
: E :H:; E
3 H : .
107 H- — 107 B =
] - s -
...... = -
u I Fa L ali i L abi i LR L RAL 1 e | I s | I .J;Lm‘l._LLT 8 L Wl = 4 E - L -
0 | 2 3 4 5 6 7 b 9 10 15 20 25 30 35 40
Number of events Number of events

Small effect with current statistics, significant with larger POT

—— S ——
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Confidence Intervals

Confidence intervals are calculated bv shifting the x? distribution (grid points) wrt
the best-fit value Ax?(6) = x?(6) — x*(6,;) such that Ax2(0) > A2

Two methods, differing in the calculation of Ax?crit, are used in VALOR analyses

Constant Ax? method

Fully frequentist treatment using the Gaussian approximation, and canonical
critical values (e.g. Ax°ciit (68% CL) = 1.00 for 1 parameter)

Feldman-Cousins method

If the gaussian regime is not satisfied, the constant Ax> method is not reliable and
new critical values are calculated by generating many toy MC experiments:

- Produced at the oscillation hypothesis of the grid point 0 (true osc params)

- With statistical fluctuations and systematic parameters randomised

* For each toy, 2 is minimised twice: fixing 8 (X?tue) and fitting 0 (X2uf)

« AX? =X2%ue - X%of is computed for the ensemble of toys and critical values are

found suchthat . . | /_ T A)(AN?) = X%

But, in the Feldman-Cousins method, there are no recommendations for including
systematic uncertainties, or how to reduce the number of dimensions measured

e — e e -
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Parameter Estimation: Confidence Intervals

2D confidence regions T2/K)\

Example comparing constant Ax? and Feldman-Cousins methods

T2K v, disappearance analysis [1]

For the Feldman-Cousins one:

Yo 0.0032f— Y —
T - ----Run 1-4 FC 68% CL NH 1 -
> - — Run 1-4 FC 90% CL 1 (.04 _
= 0003 in 14 constay? 68% CL - 2 f|t§ are done per toy e>.<pt.
) C — Run 1-4 const-Ay2 90% CL ’ - fitting osc+systematic
0.0028 — —
= - : parameters: X2best-fit
0.0026 - - fitting systematics, osc
- - fixed to true: X2rue
0.0024 4 - J
0.0022- = i.e. X2 is independently
- % Run 1-4 best fit - minimised for each toy wrt
0002 v o T nuisance parameters
0.4 0.45 0.5 0.55 0.6 0.65
sin’(6,,)

Feldman-Cousins regions are narrower at maximal disappearance, as the best-
fit values of sin“B23 pile-up at the boundary, resulting in critical Ax2 values
smaller than the canonical ones

—— S — —— ____— — __________ = = — S ——
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Parameter Estimation: Confidence Intervals
1D Feldman-Cousins confidence regions T2/

Toys are generated with true input values of the nuisance oscillation parameters

In proportion to: e—é%; where Ax? is the 2D Ax? surface from the data fit.
In this way we take into account the uncertainty on the nuisance oscillation
parameters, but also its values preferred by the data fit.

T2K v, disappearance analysis [1]

L L T L L L A L
—— Run 1-4 data

¢ MC68%C.L.
» MC 90% C.L.

—— Run 1-4 data

¢ MC68%C.L. ]

MC 90% C.L.

Ay?

8904 o5 08
- 2
SN0,

0_ L N L L Tx107
0.7 2 2.2 2.4 26 2.8 3
Am3,| (eVZc?)

Again, critical Ax? values are smaller for FC, showing that the constant Ax?
method overcovers due to boundary effects at maximal sin%623
VALOR, September 2016 7




Parameter Estimation: Confidence Intervals
1D Feldman-Cousins confidence regions for &cr T 21K\

T2K v, disappearance + ve appearance analysis [3]

oy 7
>2 i . .
< F  —— Normal Hierarchy For the FC confidence regions,
N )
i . :,I‘geg},egj;;;ﬁt,g the toy MC expts are generated
siil —— ;g 5/30 % f?é%é'm " with sin01s, sin°623 and Am?
| & ) o exc u . . .
,F 90 % excluded (IH) marginalised following the 3D
Ax? surface from the data fit
3b
; :§ 60:
2_ "’: 50
E (\gg 40
1 N\ < 30
0=|:- 1 | 1 | 5 s 10
-1 0.5 0 0.5 1
8CP(TI:) 03 035 04 045 05 055 06 0.6;126(;7

For each toy, Ax? = Xrue - X?min iS calculated,
where X*min is the minimum using true MH (two fits: one in |, 116re recent analyses, flat

each sin?B23 octant) and ¥2wue is the minimum fixing Scp  priors considered for nuisance
(four fits: octant+MH combinations) oscillation parameters

S — — o = — — - = = -
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Parameter Estimation: Confidence Intervals

Interplay of 6cp-MH in the calculation of confidence regions

T 2/K\

of e-like events
- Degeneracy between 6cp and Mass
Hierarchy

§ 2200F L —H
;-»*:: 2000 —;
2 Egg; Ay (0CL) = 246 E Joint v + anti-v oscillations [7,8]
JoooE. —Ax, (20)=320 - Coverage studies for simultaneous fits of
3 E dcp and Mass Hierarchy show incorrect
400F- E coverage when using the constant Ax?
3 N method due to different effects:
S - Parameters of interest not Gaussian
. 120 . . . . T distributed, with no linear relation with
= . 0:— —A Xém (90%CL) - NH  — Normal Hierarchy _f likelihood
) :i?fi e TmedRemey 4L wphysical boundaries” for Scp=+11/2,
6_ A, Qo) -TH E values maximizing/minimizing number

—— S ——
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Coverage studies

Studies can be done to analyse the coverage of the constant Ax2 method with a
big number of toy MC experiments, fitting them, fixing the oscillation
parameters under study (in1D or 2D) to their true values, then comparing the
critical Ax2 values to the canonical ones.

~_ 10
=
= L

4 |*==>=| Not official

At least two effects can produce differences between

the critical and canonical values of Ax? [1]:

- Physical boundaries: studied with toy MC
experiments with statistical fluctuations only it

- Effects of systematics: studied with toy MC exits ;
with statistical fluctuations and systematic variations

= —

A

\
©
N
™

Not official | e

Observations:

- Good agreement when away from physical boundaries

- Overcoverage appears due to pile up of events at physical
boundaries when close to them S

- If poor sensitivity to dcp this parameter is not acting as a Ok A e s s b 0
real degree of freedom, affecting critical Ax? values Not an official result, tests

done for my PhD work

— S — — N = — — — - = —_——
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Sensitivity Studies

Example: &cp discovery sensitivity studies

Usually done by generating the special “Asimov

dataset” (see [9]), toy MC spectra with nominal o
systematics without statistical fluctuations

Computing the confidence of rejecting
the sin(6cp) = 0 hypothesis as a function
of true 6cp

With the Asimov dataset we find the median with
which one would reject the hypothesised value
(sinbcp = 0) under the assumption of the nominal
model. But if the actual data will contain statistical “-1 05 0 05 1
fluctuations, and the observed significance is not Ocp/T
in general equal to the median...

0 - | (I | | (- | 1 (- | I |

...Is there more information that we should add in these
discovery sensitivity studies? Error envelopes?
VALOR, September 2016 7 22




Summary/Conclusions

* In the last years VALOR has performed several neutrino
oscillation analyses and extensively studied different options for
« parameter elimination
 construction of confidence levels
« goodness of fit tests

* Now we are starting working on multi-detector, multi-experiment
analysis

* The next steps for multi-detector, multi-experiment analyses will
bring new challenges and studies!

« As well as moving from statistic limited measurements to
systematic limited measurements.

- Feedback and ideas from experts are most welcome!

VALOR, September 2016 23
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Likelihood Construction

VALOR analyses obtain measurements of the parameters of interest by comparing
prediction and observation typically using a binned likelihood-ratio method:

obs

The p.d.f of the total number of events (gl e~ Mot
(following a Poisson distribution) is Jpoisson = 00|

with n°°s(n®P) the number of observed(expected) events

For N kinematical bins, there are N possible

ways to place an event in a bin (with a P nobsv]ﬁl 1 [np]
probability for the bin i given by ngxp/nyexp),  “meiremsl = et m L pabsy |5
following a multinomial p.d.f distribution:

N-1
The joint p.d.f is the product of both: Fomt = € nolbs' Craak

1 =0 (2
and can be divided by a factor independent N1y e
of oscillation parameters: fo=¢e e b nge]

b i=0 "t

o . . . )\ B ntobts_n(:xtp N-1 nfxp n
giving the likelihood ratio: —er " H —abs

1= ¢

E— S —— = = = = =

VALOR, September 2016 25



Toy Experiment Generation

A toy experiment for a given physic hypothesis is generated by calculating
pred

- the predicted spectra n5s(r:0; f)
» drawing random numbers nowiV(r) following a Poisson distribution with mean

L2 S

value equal to n%(r; 0; f)
* if the exposure of the MC samples used in this calculation is not much larger

than the experimental one, a second statistical fluctuation due to finite MC
statistics must be included

A special toy is often used in analyses, called the Asimov dataset,
which is the dataset with all observed quantities equal to the
expected values, and serves as median significance of many toys

The procedure of generating toy experiments must respect the correlations

between the randomised parameters. We do this by using the Cholesky

decomposition, which is a special case of a LU factorisation of a matrix C done

by finding a lower triangular matrix L such that: c¢=rL-L"

Once L is found, a vector of correlated values (x) can  _, S
r=0L-u

be calculated from any vector of uncorrelated vales (u)
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Maximal disappearance VS mixing

The value of maximal
disappearance
(minimum surv. prob)
depends on the
value of sin2013
and it is sin2023 > 0.5
if sin2013 >0

P, ., P, ., 3F matter sin®0,,=0.001 [P, P, ., 3F matter sin®,,=0.001
b P, )V“ 3F matter sinZo. 3_0 01 L P 3F matter sm29 _0 01
n pv v, 3F matter sm29 ,5=0.025 Pv o, " 3F matter sm29 _0 025
0.405} Pv >v, " 3F matter sm2913_0 05  0.425} Pv >V, 3F matter sm29 _0 05
: Pv v, 3F matter sin %0,,=0.1 - P 3F matter sm29 3_0 1
04F 0.421
0.395( -
— 0.415_—
0.39F X
0.385(- 041
0.38F 0.4051
o NH | wIH
0.37*1 1 1 1 1 I 1 1 1 1 I 1 1 1 1 \T-—l—l—. 1 1 I ‘_- I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 l 1 1 1 1 I
04 0.45 0.5 0.55 0.6 0.4 0.45 0.5 0.55
sin’0,
Am?2, L
~ . 9 31 2 .2 .2 .2 2 2 .2 2 2 2 2 .2
Py, = vu) ~1—4sin ( 1E ) C13853 [S1aCo3 + C19513853 + C1aCo3 + S19573523]
Am?2, L
_ . 9 31 2 2 (2 2 2 2 2
Am?2, L
.2 31 2 2 1.2 2 2
= 1 —4sin ( 4E ) C13893 [C23 + 813823]
y~1—4Az(1 — k) [(1 — z) + kx| = 1 — 4Az(1 — k) + 4A7°(1 — k)?
dy - -)2 Trni :; k=s? -sin2(0 )
E = —4A(1 — k) -+ 8AI(1 — Iu) min 2(1 . k) — o3 = 13)-
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Goodness of fit tests

Goodness-of-fit tests complement best-fit parameter estimation, analysing the
agreement between data and (best-fit) model

The advantage of the likelihood ratio method is that, in the large sample limit,
—2In\(#; f) has a x° distribution and can be used as goodness-of-fit test

p-value calculation

Probability to obtain a measurement as or more extreme than the data with the
null hypothesis (e.g. no anti-ve appearance or best-fit to the data tested)

- Generate many toy MC experiments with the null hypothesis (with
statistical fluctuations and systematic variations)

* Defining a coarse binning to have enough statistics in each bin, calculate
test statistic for each toy MC experiment: x2.;

- Calculate test statistic for data: (x;,;)data

- Compare the distribution of test statistic for toys with the one for the data

and find the proportion of experiments for which  X.o; > (Xi0f)data
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VALOR T2K v, disappearance

T2K
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Phys. Rev. Lett. | 12, 181801 (2014) Tom Deatry's PhD work. 2014
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1D Feldman-Cousins confidence regions for dcp
T2K vy disappearance + ve appearance analysis [3]

Parameter Estimation: Confidence Intervals
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m—— T2K Run14+2+3+4 dataset fit (NH)

T2K Run1+2+3+4 sensitivity (NH)
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Profiled Ax2 as a result of
the data fit compared to
the sensitivity as the
averaged profiled Ax2 and
10 error bands calculated
with many toy experiments
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A la Feldman-Cousins and

~_ FC calculation for Ax2 vs OCP

1 (1072 eVZct

Cousins-Highland

2
32

A m

Toy experiments created:
- at each value of OCP

Ax
1 (107 eVZ/c?)

2
32

A m

_ Wlth stat fIUCt 03 035 04 045 05 055 06 065 07

- varying systematics
- varying sin2023-Am2-sin20 13

according to Lconst from 3D AX2 surface

Fit 1:4+N fit, NH, |st octant
Fit 2: 4+N fit, NH, 2nd octant

-

\_

Fit 3: OCP fixed, 3+N, fit NH, |st octant\

Fit 4: OCP fixed, 3+N, fit NH, 2nd octant
Fit 5: OCP fixed, 3+N, fit IH, |st octant

of the 3D surface

Fit 6: OCP fixed, 3+N, fit IH, 2nd octant)

)
sin 923 sin 623

2D slices

| (107 eVZch)

2
32

IA m

03 035 04 045 05 055 06 065 07
sin2623

Calculate
AX2 = X2 true - X2 min
thrue for each toy and
AX2 c with 68% and 90%
> of the toys
with Ax2< Ax2 ¢
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FC calculation for Ax2 vs OCP

———

Example: distribution of values for 4k toys

for point 0 (0=-TT)

with the 3D Ax2 surface
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Goodness of fit tests

T2K anti-ve appearance analysis [9,10] Rate-only statistic: # of ve events
Two test statistics studied: g2 F 14 paa povale -
» 100k toy expts generated: o 7 0 p=1 0.216
0.16 [] p=0 0.410

0.14
0.12
0.1

» for null hypothesis: no anti-ve

appearance, i.e. 3=0 in
Posc(Vy — Ve) = BPosc(PMNS) 008

 with systematic variations 0.04

d(p(#Events))/d(#Event

IlllllllllllllllllllllllIlllllllllllllllll
1

I|IIIIIII|III|IIIIIIIlIIIIIIIIIIIlIIII

oot [ILI11! "-_Hﬂnnnﬁ___

- weighted by T2K data samples R R R A N
- For each toy expt, likelihood calculated e - ‘J‘: e
and used to weight 10k statistical ate+shape stalistic.
. A" =x"(B=0)—x"(8=1)
fluctuations of the toy expt

- Total distribution fully sampling Sl €493 pam Pyl
statistical distribution and systematic 2 06t N 0 p=1 0009
and oscillation space Elzo.os— [ p=0 0374 -

Bayes factor (marginal likelihood ratio): 3 -
B01 = 2.62, =0 weakly preferred 0ot N\ E
P(3=0|D) =(B= O) - w(B=0) 05X A, 00;— 555 E
P(B = 1|D) 71'(,8 — 1) 71-(5 — 1) =5 0 5 10 15 20

A %% = ¥X(B=0) - %’ (B=1)

— S —— = ==
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Goodness of fit tests

P Value: P Value
The probability to make a measurement | | (1) Generate a fake data set T for
as or more extreme than seen in data ‘ null hypothesis
given the null hypothesis is true. " | (20 Compute test statistic S for T From [1 0]
Null Hypothesis: | (3) Fill distribution with
No veBar appearance (B = 0) ensemble of statistics S;
(Posc(vpBar -> veBar) = 8 Posc(PMNS)) (4) Calculate data statistic Sp
(5) Compare Sp with S;
Rate only analysis Statistic: #Events in veBar sample
“Data” = Asimov (MC) data Summer 2015 POT Full POT
(1)Throw expectation Texp from priors ; i ne= ;:"::::“" EL N E : 31‘ . ::“"m:’“m
(nuisance parameter fluctuations) " = .(,-:EZ:'F . S
(2)Likelihood weight L = L(TgatalTexp) B I _
(3)Statistical fluctuation of Texp: Tobs : ; ]
(4)Distribution: 10k Tobs from 100k Texp ™| [ [ {1111 ||] ER ﬂﬂ“ﬂﬂﬂﬂ E
(5)Tobs weighted by L e e e
Rate + shape Statistic: Ay = y*(8-1) - x*(f=0) (marginalised)

T T T

“Data” = Asimov (MC) data

«Test: same as rate-only

« Toy weight from real data

« Marginalisation penalty? =
«“Real data” F
« MC throw data (Tqata)

Entries

T T

Prior predictive p = 0.0830

Entries

Poster| ior (3-sample) p = 0.0881

**** Posterior (4-sample) p = 0.0898 107" H

T

— Prior predictive p = 0.0819
(3-sample) p = 0.0891

......... Posterior (4-sample) p = 0.0916
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