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VALOR

[1,2] T2K νμ disappearance analysis (T. Dealtry thesis and 2014 
PRL) 

[3,4] T2K joint νμ disappearance and νe appearance analysis 
(L. Escudero thesis and PRD 2015)

[5,6] T2K anti-νμ disappearance analysis and NSI (S. Dennis 
thesis and PRL 2016)

[7] T2K joint neutrino and antineutrino oscillations (D. 
Sgalaberna thesis)  

[8] D. Sgalaberna, poster at Phystat-nu Japan

[9] T2K anti-νe appearance, R. Shah, poster at Neutrino 2016

[10] R. Shah, poster at Phystat-nu Japan


…and other ongoing analysis in T2K, HK and DUNE (visit https://valor.pp.rl.ac.uk)

https://inspirehep.net/record/1395576/files/thesis_dealtry.pdf
http://arxiv.org/abs/1403.1532
http://www.t2k.org/docs/thesis/070/thesislorenaescudero
http://arxiv.org/abs/1502.01550
http://www.t2k.org/docs/thesis/069/steve_dennis_thesis
http://arxiv.org/abs/1512.02495
http://e-collection.library.ethz.ch/eserv/eth:49364/eth-49364-02.pdf
https://valor.pp.rl.ac.uk/posters/phystatnu2016a_davide.pdf
https://valor.pp.rl.ac.uk/posters/neutrino2016_raj.pdf
https://valor.pp.rl.ac.uk/posters/phystatnu2016a_raj.pdf
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VALOR Oscillation Fit

• Joint measurement of oscillation parameters                 
• In a 3-flavour framework (with 3+1, 3+2, 1+3+1 extensions) 

including matter effects

• For multiple samples (selections based on topologies), detectors 

and beam configurations

• Including correlated systematic uncertainties 


• Historically, performs an indirect extrapolation near-to-far 
detector for long baseline neutrino experiments


• Extended to perform neutrino oscillation fits with multiple 
detectors, and multiple experiments


• Uses a binned likelihood-ratio method

• Minimisation using profiling or a mixed method combining 

profiling+marginalization
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VALOR: ND+FD

intermediate step 
(see talk by Steve Dennis)

Historically developed for T2K long baseline neutrino oscillation fits 

Schematic for DUNE, including near and far detector samples

Sources of uncertainty
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VALOR: Multiple Detectors
Adapted and extended to perform neutrino oscillation fits for 


multiple detectors and multiple experiments

 ν Flux
Model

Oscillation Model
(3,3+1,3+2,1+3+1)

Simulation(s)
+ calibration data
+ test beam data

Simulation(s)
+ beam monitors
+ π and K data

Simulation
+ external ν/e/h 

reaction data

Detector #1 Detector #2 Detector #N…Predictions

Detector #1 Detector #2 Detector #N…Observations
Joint Oscillation and 

Systematics Constraint Fit

Null Model

Oscillation 
physics

Prior constraints 
(optional)

sample1 sample2
sample3…
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sampleIII…

sample1 sample2
sample3…

sampleA sampleB
sampleC…
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Neutrino
Cross-Section

Model

 ν Flux
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… Detector
Model

…

 ν Flux
Model

Detector
Model

Detector
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Spectra Prediction
The VALOR framework can fit together an arbitrary number of samples    
to determine the parameters of a physics hypothesis in the presence of 
systematic uncertainties.

Predicted 

number of 
events

Nominal 
unoscillated 

number of events


Oscillation 

probabilities

true 
interaction 


mode

true 

kinematics

physics

systematics

Systematic

parameters

variations

reconstructed

kinematics

Each sample corresponds to a given:

•  d - detector or subdetector

•  b - beam configuration (FHC, RHC)

•  s - selection, i.e. final state topology

•  r,t - multi dimensional kinematical 

reconstructed and true phase space  
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Oscillation Probabilities

useful since its absolute value is the same in both 
mass hierarchies, while the usual |Δm232| is the largest 
splitting in IH but the second largest in NH

Δm232
Δm232

VALOR incorporates its own library for the calculation of oscillation probabilities:


• fast, no need to calculate and load tables from other libraries

• extensively checked against other available libraries (Prob3++,GLoBES)

• allows calculations including matter effects in a 3-flavour framework 


and extensions: 3+1, 3+2, 1+3+1


• addition of phenomenological-based NC NSI effects

studied, approximated by the addition of one real free 

parameter that would affect the νμ survival probability


• allows usage of different conventions:

• δCP, sin(δCP)

• double and single mixing angles (sin2θ23 vs sin22θ23 


for octant studies) 

• atmospheric mass splitting can be input as Δm232, Δm231 


or as Fogli and Lisi convention:

NSI

From [5]
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The log-likelihood function is constructed for each sample s, detector d, beam 
configuration b 

Likelihood Construction

adding a penalty term for those parameters with prior constraints, where C are 
covariance matrices

This statistic is summed over 

all datasets

VALOR analyses obtain measurements of the parameters of interest by comparing 
prediction and observation typically using a binned likelihood-ratio method:

Finally, best-fit values of the parameters of interest are obtained by maximising 

                         or minimising                  (usually denoted as χ2) 

Notice that the sum over all datasets (for different detectors d, etc) can include 
datasets from different experiments in a multi-experiment analysis
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External Constraints
External constraints can be included in the analysis by adding the appropriate 
penalty term to the log-likelihood.


 

Which affects the best-fit 
values of the other 
oscillation parameters and 
the best-fit spectra 


T2K joint νμ disappearance and νe appearance analysis [3] 

For example, the constrain on θ13 based on the 
reactor values is included with the penalty term: 
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Parameter Elimination

Profiling

Marginalisation

Profiling methods like MIGRAD algorithm in MINUIT can be used to minimise χ2.

VALOR framework is adapted to use also other minimisers from GSL libraries 

The VALOR group use both profiling and marginalisation. Now we have a mixed 
scheme Bayesian-frequentist, obtaining the parameters of interest by maximising 

the likelihood while marginalising the nuisance parameters

The MH and θ23 octant use discrete priors, minimizing for each choice independently  

The marginal likelihood with prior distributions π:

can be numerically approximated by generating

toy MC experiments (see backup). Many toys are 
needed to sample the nuisance parameters phase 
space.

During the marginalisation process, random values of the nuisance 
parameters are drawn from the π distribution containing the prior knowledge. 
Thus, the penalty term for those parameters is not necessary.  
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Muon antineutrino disappearance analysis from [5]

NH

Example of usage of both methods for parameter elimination 

• profiling: using MIGRAD algorithm in MINUIT 

• marginalisation: integrating summing over a large sample of toy 

experiments generated with prior π:

• for each systematic parameter, this example uses a Gaussian 

prior π, with mean/rms as the nominal value/1σ error

• Cholesky method used for correlated systematics (see backup)

Parameter Elimination

In this example, only a small 
difference is observed in the 
contours and best-fit values.

How to choose? 

- How well we know the priors

- Coverage studies 
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Fit Validation

Systematic uncertainties

Extensive tests of the fitter performance have been performed (see [1,3,5,7]). 

In addition to the ones described here, studies with fake datasets were also performed.

For the systematic uncertainties, the pulls are calculated as:

Summary and examples of systematic parameters pulls from the T2K νμ disappearance [1]

Any pathologies were studied in detail: 

• bias may appear due to unphysical values limiting parameters range

• bias may appear due to low statistics

• Gaussian not expected for Energy scale
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Fit Validation
Oscillation parameters
For the oscillation parameters, we studied their distribution of residuals and 
understood them taking into account the effects of:

• Physical boundaries of the oscillation parameters

• Degeneracies and correlations between them

• Statistical fluctuations

Non-maximal values explained with 
statistical fluctuations of the number 
of 1Rμ events at the oscillation dip

Asymmetry in sin2θ13 and δCP residuals 
due to the convolution of the energy 
spectrum and oscillation probability 

From [3]

T2K νμ disap. + νe app. analysis [3] 
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Goodness of fit tests

�2
gof

�2
gof

> (�2
gof

)
data

The advantage of the likelihood ratio method is that, in the large sample limit, 

                     has a χ2 distribution and can be used as goodness-of-fit test, 
which complement best-fit parameter estimation analysing the agreement 
between data and (best-fit) model
When bins are sparsely populated, instead of χ2  a p-value is calculated to 
determine the goodness of fit, with a large number of toy experiments 
generated at the best-fit point of the fit to data, fitted in a coarser bin

p-value = proportion of expts with

Example: T2K anti-νe appearance analysis [9,10] 
Rate-only statistic: # of νe events

Rate+shape statistic:
��2 = �2(� = 0)� �2(� = 1)

P
osc

(⌫̄
µ

! ⌫̄
e

) = �P
osc

(PMNS)

Null hypothesis: no 
anti-νe appearance, 
i.e. β=0

Bayes factor also 
calculated (backup)
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Goodness of fit tests
Continuation: T2K anti-νe appearance analysis [9,10] 

summer 
2015 POT

full POT

Small effect with current statistics, significant with larger POT 

Rate-only statistic: # of νe events

In this analysis, studies were also performed to study the effect of sampling of 
the nuisance parameter space to generate the distribution of the test statistic:

• Prior predictive: flat (uniform or gaussian) prior distributions for nuisance params

• Posterior predictive: using likelihood computed with control samples (Total 4 SK 

samples: μ-like, e-like in ν and anti-ν modes) to reweight the statistical throws:
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Confidence Intervals

Two methods, differing in the calculation of Δχ2crit, are used in VALOR analyses

Confidence intervals are calculated by shifting the χ2 distribution (grid points) wrt 
the best-fit value                                   such that                  

Constant Δχ2 method
Fully frequentist treatment using the Gaussian approximation, and canonical 
critical values (e.g. Δχ2crit (68% CL) = 1.00 for 1 parameter)

Feldman-Cousins method
If the gaussian regime is not satisfied, the constant Δχ2 method is not reliable and 
new critical values are calculated by generating many toy MC experiments:


• Produced at the oscillation hypothesis of the grid point θ (true osc params)

• With statistical fluctuations and systematic parameters randomised

• For each toy, χ2 is minimised twice: fixing θ (χ2true) and fitting θ (χ2bf)

•  Δχ2 =χ2true - χ2bf   is computed for the ensemble of toys and critical values are 

found such that 

But, in the Feldman-Cousins method, there are no recommendations for including 
systematic uncertainties, or how to reduce the number of dimensions measured 
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Parameter Estimation: Confidence Intervals

NH

T2K νμ disappearance analysis [1] 

2D confidence regions
Example comparing constant Δχ2 and Feldman-Cousins methods

For the Feldman-Cousins one:


• 2 fits are done per toy expt:

•  fitting osc+systematic 

parameters: χ2best-fit 

•  fitting systematics, osc 

fixed to true:  χ2true


i.e. χ2 is independently 
minimised for each toy wrt 
nuisance parameters 

Feldman-Cousins regions are narrower at maximal disappearance, as the best-
fit values of sin2θ23 pile-up at the boundary, resulting in critical Δχ2 values 
smaller than the canonical ones
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1D Feldman-Cousins confidence regions
Toys are generated with true input values of the nuisance oscillation parameters 
in proportion to:                 where Δχ2 is the 2D Δχ2 surface from the data fit. 

In this way we take into account the uncertainty on the nuisance oscillation 
parameters, but also its values preferred by the data fit.

Parameter Estimation: Confidence Intervals

T2K νμ disappearance analysis [1] 

Again, critical Δχ2 values are smaller for FC, showing that the constant Δχ2 
method overcovers due to boundary effects at maximal sin2θ23
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slice of the 3D Δχ2

1D Feldman-Cousins confidence regions for δCP

For each toy, Δχ2 = χ2true - χ2min is calculated,             
where χ2min is the minimum using true MH (two fits: one in 
each sin2θ23  octant) and χ2true is the minimum fixing δCP  
(four fits: octant+MH combinations)

For the FC confidence regions, 
the toy MC expts are generated 
with sin2θ13, sin2θ23 and Δm2 
marginalised following the 3D 
Δχ2 surface from the data fit

Parameter Estimation: Confidence Intervals

T2K νμ disappearance + νe appearance analysis [3] 

In more recent analyses, flat 
priors considered for nuisance 

oscillation parameters
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Interplay of δCP-MH in the calculation of confidence regions

 Joint ν + anti-ν oscillations [7,8] 

Coverage studies for simultaneous fits of 
δCP and Mass Hierarchy show incorrect 
coverage when using the constant Δχ2 

method due to different effects: 

• Parameters of interest not Gaussian 

distributed, with no linear relation with 
likelihood 


• “physical boundaries” for δCP=±π/2, 
values maximizing/minimizing number 
of e-like events


• Degeneracy between δCP and Mass 
Hierarchy

Parameter Estimation: Confidence Intervals
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Coverage studies

Not an official result, tests 
done for my PhD work

Studies can be done to analyse the coverage of the constant Δχ2 method with a  
big number of toy MC experiments, fitting them, fixing the oscillation 
parameters under study (in1D or 2D) to their true values, then comparing the 
critical Δχ2 values to the canonical ones.

At least two effects can produce differences between 
the critical and canonical values of Δχ2 [1]:

- Physical boundaries: studied with toy MC 

experiments with statistical fluctuations only

- Effects of systematics: studied with toy MC exits 

with statistical fluctuations and systematic variations

Observations:

- Good agreement when away from physical boundaries

- Overcoverage appears due to pile up of events at physical 

boundaries when close to them

- If poor sensitivity to δCP, this parameter is not acting as a 

real degree of freedom, affecting critical Δχ2 values

Not official

Not official
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Sensitivity Studies

Example: δCP discovery sensitivity studies
Usually done by generating the special “Asimov 
dataset” (see [9]), toy MC spectra with nominal 
systematics without statistical fluctuations

Computing the confidence of rejecting 
the sin(δCP) = 0 hypothesis as a function 
of true δCP 

…is there more information that we should add in these 
discovery sensitivity studies? Error envelopes? 

With the Asimov dataset we find the median with 
which one would reject the hypothesised value 
(sinδCP = 0) under the assumption of the nominal 
model. But if the actual data will contain statistical 
fluctuations, and the observed significance is not 
in general equal to the median…
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Summary/Conclusions

• In the last years VALOR has performed several neutrino 
oscillation analyses and extensively studied different options for 


•  parameter elimination

•  construction of confidence levels

•  goodness of fit tests


• Now we are starting working on multi-detector, multi-experiment 
analysis 


• The next steps for multi-detector, multi-experiment analyses will 
bring new challenges and studies! 


• As well as moving from statistic limited measurements to 
systematic limited measurements.


• Feedback and ideas from experts are most welcome! 



BACKUP



VALOR, September 2016 25

VALOR analyses obtain measurements of the parameters of interest by comparing 
prediction and observation typically using a binned likelihood-ratio method:

Likelihood Construction

The p.d.f of the total number of events 

(following a Poisson distribution) is


with nobs(nexp) the number of observed(expected) events

For N kinematical bins, there are N possible 
ways to place an event in a bin (with a 

probability for the bin i given by niexp/ntotexp), 
following a multinomial p.d.f distribution:

The joint p.d.f is the product of both:


and can be divided by a factor independent

of oscillation parameters:


giving the likelihood ratio:
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Toy Experiment Generation

A toy experiment for a given physic hypothesis is generated by calculating 

•  the predicted spectra   

• drawing random numbers                 following a Poisson distribution with mean 

value equal to

• if the exposure of the MC samples used in this calculation is not much larger  

than the experimental one,  a second statistical fluctuation due to finite MC 
statistics must be included

A special toy is often used in analyses, called the Asimov dataset,

which is the dataset with all observed quantities equal to the 

expected values, and serves as median significance of many toys

The procedure of generating toy experiments must respect the correlations 
between the randomised parameters. We do this by using the Cholesky 
decomposition, which is a special case of a LU factorisation of a matrix C done 
by finding a lower triangular matrix L such that: 

Once L is found, a vector of correlated values (x) can 

be calculated from any vector of uncorrelated vales (u)



Maximal disappearance vs mixing

NH IH

The value of maximal
disappearance 

(minimum surv. prob)
depends on the
value of sin2θ13

and it is sin2θ23 > 0.5
if sin2θ13 > 0

27
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Goodness of fit tests
Goodness-of-fit tests complement best-fit parameter estimation, analysing the 
agreement between data and (best-fit) model               

• Generate many toy MC experiments with the null hypothesis (with 
statistical fluctuations and systematic variations)


• Defining a coarse binning to have enough statistics in each bin, calculate 
test statistic for each toy MC experiment:  


• Calculate test statistic for data:             

• Compare the distribution of test statistic for toys with the one for the data 

and find the proportion of experiments for which

p-value calculation
Probability to obtain a measurement as or more extreme than the data with the 
null hypothesis (e.g. no anti-νe appearance or best-fit to the data tested) 

�2
gof

(�2
gof

)
data

�2
gof

> (�2
gof

)
data

The advantage of the likelihood ratio method is that, in the large sample limit, 

                     has a χ2 distribution and can be used as goodness-of-fit test
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NH

Phys. Rev. Lett. 112, 181801 (2014)

VALOR T2K νμ disappearance

Tom Dealtry’s PhD work, 2014



VALOR, September 2016 30

1D Feldman-Cousins confidence regions for δCP

Parameter Estimation: Confidence Intervals

T2K νμ disappearance + νe appearance analysis [3] 

Profiled Δχ2 as a result of 
the data fit compared to 

the sensitivity as the 
averaged profiled  Δχ2 and 
1σ error bands calculated 

with many toy experiments



FC calculation for Δχ2 vs δCP
À la Feldman-Cousins and 

Cousins-Highland

!  Fit 1: 4+N fit, NH, 1st octant
!  Fit 2: 4+N fit, NH, 2nd octant

!  Fit 3: δCP fixed, 3+N, fit NH, 1st octant
!  Fit 4: δCP fixed, 3+N, fit NH, 2nd octant
!  Fit 5: δCP fixed, 3+N, fit IH, 1st octant
!  Fit 6: δCP fixed, 3+N, fit IH, 2nd octant

χ2min

χ2true

Toy experiments created:
- at each value of δCP 

- with stat. fluct. 
- varying systematics

- varying sin2θ23-Δm2-sin2θ13 
according to Lconst from 3D Δχ2 surface

Calculate 
Δχ2 = χ2 true - χ2 min

for each toy and 
Δχ2 c with 68% and 90%

of the toys 
with Δχ2< Δχ2 c 

sin22θ13 = 0.064 sin22θ13 = 0.1

sin22θ13 = 0.132
2D slices

of the 3D surface

31



Example: distribution of values for 4k toys 
for point 0 (δ=-π)

with the 3D Δχ2 surface

FC calculation for Δχ2 vs δCP

32
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Two test statistics studied:

• 100k toy expts generated:


•  for null hypothesis: no anti-νe 
appearance, i.e. β=0 in

 


• with systematic variations

• weighted by T2K data samples 


• For each toy expt, likelihood calculated 
and used to weight 10k statistical 
fluctuations of the toy expt


• Total distribution fully sampling 
statistical distribution and systematic 
and oscillation space

Rate-only statistic: # of νe events

Rate+shape statistic:
��2 = �2(� = 0)� �2(� = 1)

P
osc

(⌫̄
µ

! ⌫̄
e

) = �P
osc

(PMNS)

Bayes factor (marginal likelihood ratio): 

B01 = 2.62, β=0 weakly preferred

Goodness of fit tests
 T2K anti-νe appearance analysis [9,10] 
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Goodness of fit tests

From [10] 


