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An Introduction to VALOR

VALOR is an experimental neutrino fitting package:

It was originally designed for T2K oscillation analysis.

We’ve branched out since, to fit arbitrary numbers of samples for
arbitrary groups of detectors.

Today, I’ll be talking about our experience fitting near detector data
to provide systematic constraints for a far detector oscillation fit.

The ND-only fitting work has primarily been applied to the proposed
DUNE near detector designs.
There have also been VALOR simultaneous near-and-far fits for a
proposed T2K Water Cerenkov near detector (TITUS).

We can also fit oscillation parameters using far detector detector data
simultaneously with near detector data.

I’ll be sticking to systematic-only fits today. See Lorena’s talk for
oscillation fits.
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Personnel

We currently have 12 members:
University of Cambridge:

Lorena Escudero - Postdoc (VALOR thesis - T2K joint νe-νµ).
University of Geneva:

Davide Sgalaberna - Postdoc (VALOR thesis - T2K joint ν-ν).
University of Lancaster:

Tom Dealtry - Postdoc (VALOR thesis - T2K νµ disappearance).
University of Liverpool:

Costas Andreopoulos - Group founder and leader.
Christopher Barry - PhD student.
Francis Bench - PhD student.
Steve Dennis - Postdoc (VALOR thesis - T2K νµ disappearance).
Rhiannon Jones - PhD student.
Marco Roda - Postdoc.

University of Oxford:
Raj Shah - PhD student.

University of Warwick:
Andy Chappell - PhD student.
Nick Grant - Postdoc.
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Long Baseline Oscillation Experiments Extremely Briefly

We produce a neutrino beam of definite neutrino flavour.

After a long distance (hundreds of km), we detect these neutrinos at
our far detector, where the flavour composition has changed due to
oscillations.

The event rate we observe at the far detector is a product of
oscillation probabilities Posc , fluxes Φ, interaction cross-sections σ
and detector acceptance ε:

Nfar ∝ Posc ∗ ε ∗ Φ ∗ σ
Critically, uncertainties on the fluxes and the cross-sections limit our
resolution for precision oscillation measurements.
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Objectives of a Neutrino LBL Near Detector Fit

The point of a near detector is to constrain systematic uncertainties
for a far detector (oscillation) fit.
The far detector event rate observed depends on the neutrino flux,
interaction rates and detector uncertainties.
In order to maximise oscillation sensitivity, we use a near detector’s
high statistics and lack of oscillations to obtain accurate
measurements of the parameter values, their uncertainties and their
correlations.
We produce as output a vector of best-fit values and a covariance
matrix with the relevant near detector-only uncertainties marginalised.

For a data fit, it is also important to provide a measure of
goodness-of-fit, indicating the extent to which the data fits the model
and parameterisation used.

The current major use of the VALOR ND fitting machinery is
comparing the effectiveness of different proposed near detector
designs for the DUNE experiment.
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VALOR Analysis Strategy for T2K-style Indirect
Extrapolation
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Next Generation Experiments

In the next generation of
experiments, neutrino physics will
be producing long-baseline statistics
at a level we’ve never seen before.

We need new and better near
detectors to achieve the level of
systematics constraint required to
make the most of these new event
rates.

Future near detectors must
constrain our systematics to
∼ 2− 3%.
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Spectrum Prediction

VALOR, September 2016 1

Spectra Prediction
The VALOR framework can fit together an arbitrary number of samples    
to determine the parameters of a physics hypothesis in the presence of 
systematic uncertainties.

Predicted 
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Each sample corresponds to a given:

•  d - detector or subdetector

•  b - beam configuration (FHC, RHC)

•  s - selection, i.e. final state topology

•  r,t - multi dimensional kinematical 

reconstructed and true phase space  

(slide from L. Escudero)
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The Fit Statistic

We fit N samples simultaneously. For the DUNE ND work, we’re
using 46 samples:

23 selections in each of two beam modes, in a single detector.

We evaluate a negative log-likelihood ratio (NLLR) in a detector d ,
beam b and selection s, as a function of parameter values ~θ and ~f ,
summed over each observable kinematic bin r :

−2 ln λd ;b;s(~θ;~f ) = 2
∑

r

{(
npredd ;b;s(r ; ~θ;~f ) − nobsd ;b;s(r)

)
+ nobsd ;b;s(r) · ln

nobsd ;b;s (r)

n
pred
d ;b;s

(r ;~θ;~f )

}
We sum over an arbitrary number of samples, and can include a
penalty term to reflect our prior knowledge of the parameters:

−2 lnλ(~θ;~f ) =
∑

d

∑
b

∑
s −2 lnλd ;b;s(~θ;~f )− 2 lnλprior

The negative log-likelihood ratio formulated in this way tends to a χ2

distribution

This is useful for constructing a goodness-of-fit test.
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Example Selection Lists

(slide from L. Escudero)
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The Penalty Term

In order to take into account our prior knowledge of the parameter
values, we optionally apply a penalty term to the fit statistic as the
parameters move further from their prior central values (~θ0 and ~f0).
We use ~θ to represent physics parameters of interest and ~f to
represent systematic uncertainties.
Each has a covariance matrix C whose inverse is used to calculate the
penalty term:

−2 ln λprior (~θ;~f ) =
{

(~θ − ~θ0)TC−1
θ (~θ − ~θ0) + (~f − ~f0)TC−1

f (~f − ~f0)
}

For our near detector only fits, these matrices C form both an
important input to the fit, and along with a new central values vector
~f0, the primary output (which can then be used as an input to an
independent far detector fit).
The use of a penalty term in this way assumes a Gaussian prior
distribution.

The alternative is not to use the penalty term, instead using a statistic
integrated over the prior distribution.
This allows non-Gaussian parameters naturally.
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Parameterisation and Prior Uncertainties

The neutrino flux uncertainties are binned according to true neutrino
energy and initial neutrino flavour.

For the current generation of DUNE fits, these use 104 parameters
each for the near and far detectors, and the prior uncertainties and
correlations are provided by the DUNE beam task force (L. Fields).

Our current neutrino interaction uncertainties are parameterised
according to an effective model.

This was developed in-house by the VALOR group, and is an effective
model fitting cross-section normalisations in primary vertex interaction
type and kinematic bins.
As well as the binned normalisations, we apply Final State Interaction
systematics using non-linear responses generated using GENIE.
All of the interaction systematics have their prior ranges calculated
using the GENIE Monte Carlo Generator.

Detector uncertainties are highly dependent on the detector
technology and software, and for now we use a highly generic ad-hoc
model as a very rough substitute for properly evaluated detector
responses.

S. Dennis VALOR September 19 2016 12 / 23



Example of an ND-only Prior Covariance

An example prior covariance matrix, used for a DUNE ND-only fit:
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(showing only ND flux and interaction uncertainties)
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Extremising the Statistic

For any given dataset, we use the MIGRAD gradient descent
algorithm from MINUIT to find the minimum in the parameter space.

Care must be taken to ensure that a global minimum is found.
For the fake-data fits we’re using for simulated detectors at DUNE,
local minima haven’t been an issue... yet.

Initially, we calculated the output uncertainty matrix using the
HESSE routine from MINUIT.

This routine calculates the Hessian matrix:
The inverse of this matrix gives the covariance matrix.

Unfortunately, we hit a bit of a snag with this algorithm:

With sufficiently high sensitivity, HESSE appears to get a little
over-optimistic.
We see a break-down in the routine, giving incorrect results.
For LBL physics, this issue seems to be new to the next-generation
experiments.

We don’t see it occur at (eg) ND280 sensitivity levels.
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Parameter error vs fitted POT (HESSE)

This is my favourite plot to show the error calculation failure state:

You can see a clear break when the error routine breaks down at
∼ 3× 1021 POT.

S. Dennis VALOR September 19 2016 15 / 23



Our Current Approach

First attempted alternative algorithms to calculating the Hessian
matrix.

These did not yield reliably better results.
The method of inverting the Hessian matrix is also somewhat
unsuitable to systematics which have an undefined derivative at the
central value - which we should be able to handle.

This is something we expect to run into soon - my implementation of
binned energy scale systematics looks generally Gaussian, but has a
slight ‘kink’ at 1.

The alternative we decided on:

Use a Markov Chain Monte Carlo to sample the parameter space
according to the fit statistic.
Use the sampled positions to calculate the final covariance matrix.

Given we have to do this anyway, maybe we should abandon the use
of MINUIT to find the minimum and just do the MCMC?
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Example Parameter Distributions from the MCMC

Perfect
(22/156)

Acceptable
(131/156)

Not good
(3/156 - this is

understood)

I’m using the similarity between the Gaussian fitted parameter shapes and
the actual MCMC steps recorded to quantify the sufficiency of the number
of steps and the mixing rate. Suggestions on other quantities to check and
ways to appropriately validate correlations are welcome.
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HESSE vs MCMC Correlations
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MCMC sampler

Note that HESSE believed it could break almost all the correlations
between the parameters. The sampler proves that it can’t.
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An example of some of our bias studies

Fitted pulls for 500 toy experiments with randomised systematic values: Pull =
pbestfit−pnominal√
σ2

prior−σ
2
postfit
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Fitted mean should be 0 or we’re biased.

Fitted RMS should be 1 or our uncertainty estimates are wrong.
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Method for Near to Far Flux Extrapolation

Our near detector data obviously only directly constrains the flux at
the near detector.

but of course our oscillation fits require uncertainties on the flux at the
far detector.

Beam flux groups provide full correlation matrices between the near
and far detector flux parameters.

At the moment, our regime for near-to-far flux extrapolation in the
ND-only fits is:

Fit only the near detector data, but include the far detector flux
parameters in the systematic error matrix.
The near detector data constrains the near detector flux parameters,
and because of the near-far correlations, the fit statistic penalty term
adds a weaker constraint on the far detector fluxes.
This seems to work relatively well - but the validity of indirect
near-then-far fits as opposed to joint near-and-far fits must be checked.
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Near-then-far vs simultaneous near-and-far

Two paradigms:

Fitting near detector data to provide a covariance matrix propagated to
the far detector, followed by an independent far detector fit.
Fitting near detector data simultaneously with far detector data to
produce results solely in the parameters of interest, with the ND
parameters marginalised away.

The joint fits are naturally more justifiable.

but separating the two detector fits allows clearer understanding of the
sources of systematic effects on the final results.

Of course, the only way to judge if the independent fits are sufficient
is to do both methods and compare the results.

If we see significantly asymmetric or otherwise non-Gaussian
parameters in the uncertainty parameterisation, this seriously erodes
the viability of independent fits.
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Future Near Detector Fitting

There are increasing discussions of fits using multiple near detectors:

For example, DUNE may use hybrid or combination near detector
technologies.
The current NuPrism proposal involves the same detector collecting
data at various off-axis angles - acting in the fit as detectors in
separate beam fluxes.

The Short Baseline Neutrino program at Fermilab has a lot of exciting
physics potential.

The search for a sterile neutrino signal requires the sample diversity and
high-statistics robustness that a near detector fit apparatus provides.
It also requires a multiple-detector approach and a robust oscillation
framework
In other words, they need something a lot like VALOR.
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Conclusions

We’ve developed an analysis for generic neutrino experiment fitting.

It’s capable of fitting an arbitrary combination of detectors, beam types
and topology selections.

When using near detectors alone, we have a method for evaluating
the constrained systematic parameter values, uncertainties and
correlations that an effective far-detector only oscillation analysis
requires.

As well as near-detector only fits, we can produce oscillation fits
simultaneously fitting near-and-far detector data.

This work has found a home in the DUNE near-detector evaluation
group, where it will form a key element of the upcoming DUNE TDRs.

We believe that we can be of use to current and near-future
experiments such as the Fermilab SBN program.
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