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Searches for new physics often become parameter estimation
problems. Findings are presented as constraints on some
parameter(s) of interest.

Approaches to set constraints: CI, CLs, Bayesian credible set.

An example: the search for the sterile neutrino.

Parameter of interest: β = (sin2 2θ, |∆m2|).

Here sin2 2θ = 0 stands for no oscillation, and hence no sterile
neutrino.



Example of search of a sterile neutrino: one neutrino source, two
detectors (300km and 1000km away), that measure neutrino energy
Eν at 20 equally spaced bins in [1, 9] GeV.
Disappearance measurements, for i = 1, · · · ,20:

Ni ∼ Pois(µi ) = Pois(m πi )

πi = ai (η) Pi + bi (η)

Pi = 1− sin2 2θ · sin2
(

1.27 ·∆m2 L
Eν

i

)
m: experiment time/size.
ai : detector “efficiency”; bi : background.

θ : the neutrino mixing angle;
|∆m2| : the neutrino mass squared difference;
η : nuisance parameters, such as detector efficiency, neutrino flux
from reactor, target mass...

L : neutrino traveling distance;
Eν

i : reconstructed energy of neutrinos.
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CI obtained by inverting testing procedures

A level-c CI =

{β1 : the hypothesis β = β1 is not rejected at level 1− c}

For eg,

A 95% CI = {β1 : TSβ1(x) has p-value > 0.05}

where TSβ(·) is a test statistic, aka, a rule to order all possible
values of x .

Property of the above procedure:
Generate X 100 times from β1, and construct a 95% CI each
time. Then about 95 of the CIs contain β1.

Remarks:
Property holds if the choice of TS depend on β1.
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Suppose β = (β[1], β[2]), such as β = (sin2 2θ, |∆m2|)

Let χ2(x , β1) denote some measurement of deviation of x from β. For
each β1 in the parameter space,

TS
∆χ2 χ2(x , β1)−minβ χ2(x , β)

∆χ2
RS χ2(x , β1)−minβ[1] χ2(x , (β[1], β1[2]))

∆T χ2(x , β1)− χ2(x , βref)



Suppose β = (β[1], β[2]), such as β = (sin2 2θ, |∆m2|)

Let χ2(x , β1) denote some measurement of deviation of x from β. For
each β1 in the parameter space,

TS
∆χ2 χ2(x , β1)−minβ χ2(x , β)

∆χ2
RS χ2(x , β1)−minβ[1] χ2(x , (β[1], β1[2]))

∆T χ2(x , β1)− χ2(x , βref)

Examples:
•

χ2(x , β) = −2 log p(x |β) + c(x)

Say, in observing x = {Ni}n
i=1 where Ni ∼ Poisson(µi (β)).

χ2(x , β) =
n∑

i=1

2
(
µi (β)− Ni + Ni log

Ni

µi (β)

)
.

The corresponding TS are called likelihood ratio test (LRT) statistics.
In HEP, the unified approach (Feldman and Cousins, 1998) to
construct CIs uses the LRT statistic ∆χ2.



Suppose β = (β[1], β[2]), such as β = (sin2 2θ, |∆m2|)

Let χ2(x , β1) denote some measurement of deviation of x from β. For
each β1 in the parameter space,

TS
∆χ2 χ2(x , β1)−minβ χ2(x , β)

∆χ2
RS χ2(x , β1)−minβ[1] χ2(x , (β[1], β1[2]))

∆T χ2(x , β1)− χ2(x , βref)

Examples:
• Pearson’s Chi-square statistic:

χ2(x , β) =
n∑

i=1

(Ni − µi (β))2

µi (β)



Suppose β = (β[1], β[2]), such as β = (sin2 2θ, |∆m2|)

Let χ2(x , β1) denote some measurement of deviation of x from β. For
each β1 in the parameter space,

TS
∆χ2 χ2(x , β1)−minβ χ2(x , β)

∆χ2
RS χ2(x , β1)−minβ[1] χ2(x , (β[1], β1[2]))

∆T χ2(x , β1)− χ2(x , βref)

With nuisance parameters η and additional constraints:

• χ2(x , β) = min
η

{
n∑

i=1

2
(
µi (β, η)− Ni + Ni log

Ni

µi (β, η)

)
+ χ2

penalty(η)

}
or

• χ2(x , β) = min
η

{
n∑

i=1

(Ni − µi (β, η))2

µi (β, η)
+ χ2

penalty(η)

}

where χ2
penalty(η) = (η − η0)T V−1

η (η − η0)



For each β1 in the parameter space,
TS natural for nested

H0 Ha

∆χ2 χ2(x , β1)−minβ χ2(x , β) β = β1 β 6= β1 yes

∆χ2
RS χ2(x , β1)−minβ[1] χ2 β[1] = β1[1] β[1] 6= β1[1] yes

β[2] = β1[2] β[2] = β1[2]

∆T χ2(x , β1)− χ2(x , βref) β = β1 β = βref no



Recall with a certain choice of TS,

A 95% CI = {β1 : TS(x , β1) has p-value > 0.05}

Hence, need parent/sampling distn. of TS(X , β1) for X ∼ β1.

TS natural for nested Approx Distn
H0 Ha X ∼ β1 X ∼ β2(βref )

∆χ2(X , β1) β = β1 β 6= β1 yes Chisq*

nc Chisq**

∆χ2
RS(X , β1) β[1] = β1[1] β[1] 6= β1[1] yes Chisq*

nc Chisq**

β[2] = β1[2] β[2] = β1[2]

∆T (X , β1) β = β1 β = βref no

Gaus# Gaus#

Requires large data size m, and

* cont. space of (β, η) (or (β[1], η) in RS); likelihood smooth in them;
true para. value not on boundary [Wilks 1938]

** and |π(β1, η
∗
1)− π(β2, η2)| = O(m− 1

2 ) [Wald 1943]. π = µ/m

# cont. space of η; likelihood smooth in η; plus diff kinds of conditions
[Cowan et.al. 2011, Blennow et.al. arXiv1311.1822, Qian et.al. 2016]
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* cont. space of (β, η) (or (β[1], η) in RS); likelihood smooth in
them; true para. value not on boundary [Wilks 1938]

# cont. space of η; likelihood smooth in η.

For a given β1 = (sin2 2θ, |∆m2|):
(1) if sin2 2θ = 0, * does not hold, but # does.

(2) if sin2 2θ is near zero, * holds, but required sample size can
be very large.

(3) if sin2 2θ is further away from 0, * holds.

In case of (1) and (2), no simple approx for computing p-value
associated w. ∆χ2 and ∆χ2

RS in general. But yes to that of
∆T (X , β1), using Gaus(∆T ,4∆T ) [next page].

Using ∆T (X , β1) for CI has some problems [next section], an
alternative is CLs.



[Goal] Approx the distr. of ∆T (X ) = χ2(X , β1)− χ2(X , βref ).

Denote per unit time expected count by π1 and πref (π = µ/m)

• Classical statistics literatures often assume

π∗
1 − πref = O(m− 1

2 )

in order that the limiting distr. of χ2(X , β1) under βref exists
(nc Chi-sq). [Wald 1943]
Also, χ2(X , βref ) under βref follows Chi-sq. [Wilks 1938]

• Qian et. al. (2016) consider the case

π∗
1 − πref = O(1)

Limiting distn of ∆T (X ) under βref does not exist, yet an
approximation at large m (omitting some O(1) terms) is
Gaussian(∆T ,4∆T + ms), where

∆T = min
η

∑
i

(µtrue
ref ,i − µ1,i (η))2

µ1,i (η)
= ∆T (xAsimov

H0
, β1)

s =
∑

i

(πtrue
ref ,i − π∗

1,i )
3

(π∗
1,i )

2



• Qian et. al. (2016) approx distr. of ∆T (X ),
allowing for π1 − πref = O(1).

Conditions: (1) large m, (2) under both β1 and βref , space of nuisance
para. η cont., likelihood func. smooth in η

Approximate the distn of ∆T (X ) under βref with
Gaussian(∆T ,4∆T + ms) where

∆T = min
η

∑
i

(µtrue
ref ,i − µ1,i (η))2

µ1,i (η)
= ∆T (xAsimov

H0
, β1)

s =
∑

i

(πtrue
ref ,i − π∗

1,i )
3

(π∗
1,i )

2

Remarks:

Result was proved for χ2(x , β) = minη
{∑

i
(Ni−µi (β,η))

2

µi (β,η)

}
.

If further assume |π∗
1 − πref | << π∗

1 ∼ πref (often the case in search of
new physics through precision measurements), then,

I ms small compared to ∆T , can omit in practice.
I Approx extends to other versions of χ2(x , β)
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CI and CLs for comparing non-nested hypotheses

∆T (x) = χ2(x , β1)− χ2(x , βref)

can be used to form both CIs and CLs, differ in how p-values
are used. (Note that both are easy to carry out with the
Gaussian approximation for the distribution of ∆T (x).)



H1 H0

Data'x'

p0 1 − p1

∆ T

H1 H0

Data'x'

p0

1 − p1

∆ T

Figure: The distribution of ∆T (X ) = χ2(X , β1)− χ2(X , βref ), where
X ∼ H0 : β = βref (black) and H1 : β = β1 (red), respectively.

Large values of ∆T favors H0 over H1.

• CI excludes β1 if (1− p1) is small.

• CLs excludes β1 if (1− p1) is small relative to (1− p0).
Specifically,

CLs(x) =
1− p1

1− p0
.

• Possible alternative: exclude β1 if (1− p1) < α1 AND (1− p0) > α0,
for some prespecified α1 and α0. [van Dyk, 2014]
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CLs(x) =
1− p1

1− p0
.

In searching for new physics beyond SM, βref = 0,
level (1− α) exclusion set = {β : CLs(x , β) < 1− α}.

Since CLs(x) = 1−p1
1−p0

≥ (1− p1) = the p-value at β1,
the set of para. values not excluded by CLs contains CI of the
same level.
So region retained by a (1− α) level CLs covers true β with
prob. over 1− α.

After all, CI and CLs serve diff. purposes. The CLs value
appears more reasonable when the choice of TS has similar
distr. under H0 and H1. i.e., when available data size is unlikely
to carry enough info to differentiate them.
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Raster-Scan MC CI method



Example of search of a sterile neutrino: one neutrino source, near
and far detectors (300km and 1000km away), that measure neutrino
energy Eν at 20 equally spaced bins in [1, 9] GeV, with mean no. of
neutrino events 10k and .9k per bin without oscillation. Background
assumed linear in Eν , w. 130 events in 1st bin to 73 for 20th bin.

Disappearance measurements, for i = 1, · · · ,20, at j =near, far:

N j
i ∼ Pois(µj

i ) = Pois(m πj
i )

πj
i = aj

i (η) P j
dis,i + bj

i (η)

P j
dis,i = 1− sin2 2θ · sin2

(
1.27 ·∆m2 Lj

Eν
i

)
Appearance measurements are similarly modeled, with
P j

app,i = 1− P j
dis,i .
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Figure: Mean no. of events seen at the near and the far detectors, in
a disappearance (top) and an appearance (bottom) experiment.



Mean count of events in i-th bin of j-th detector,
µj

i (ε, ηj , sin2 2θ, |∆m2|).

Para. of interest, β = (sin2 2θ, |∆m2|)

Nuisance para., η = (ε, ηn, ηf ):
ε: detector efficiency and neutrino flux, w. 5% uncertainty.
ηn, ηf : background normalization factors for the near and the far
detectors, with 2% uncertainty, uncorrelated between the two.

Set

χ2(x , β, η) =
∑
j=n,f

20∑
i=1

2

(
µj

i − N j
i + N j

i log
N j

i

µj
i

)
+

ε2

0.052 +
η2

n

0.022 +
η2

f
0.022 .

Compare different ways to set constraints to β:
T CI CLs
∆χ2 χ2(x , β1)−minβ χ2(x , β) *

∆χ2
RS χ2(x , β1)−minβ[1] χ2(x , (β[1], β1[2])) *

∆T χ2(x , β1)− χ2(x , βref) * *
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Invalid Chi-square approx to ∆χ2 at sin2 2θ = 0

Figure: Distribution of ∆χ2 = χ2(sin2 2θ = 0, |∆m2|)−minβ χ2(β)

based on MCs with true sin2 2θ = 0. Compared to the Chi-square(2)
distribution.



Gaussian approx to ∆T at sin2 2θ = 0 and elsewhere

Disappearance measurements.

H0 - TH1 T = T
-60 -40 -20 0 20 40 600

10
20
30
40
50
60
70

H1: Gaus. Expect.

H1: MC

H0: Gaus. Expect.

H0: MC

H0 : sin2 2θ = 0, vs
H1 : sin2 2θ = 0.06 and |∆m2| = 2.5× 10−3 eV2.



Gaussian approx to ∆T (cont.)

Appearance measurements.

H0 - TH1 T = T
-60 -40 -20 0 20 40 600

20

40

60

80
H1: Gaus. Expect.

H1: MC

H0: Gaus. Expect.

H0: MC

H0 - TH1 T = T
-100 0 100 200 3000

10

20

30

40
H1: Gaus. Expect.

H1: MC

H0: Gaus. Expect.

H0: MC

H0 : sin2 2θ = 0, vs
Left Panel H1 : sin2 2θ = 0.008 and |∆m2| = 2.5× 10−3 eV2.
Right Panel: H1 : sin2 2θ = 0.03 and |∆m2| = 2.5× 10−3 eV2.

Cond. |µ1 − µref | << µ1 ∼ µref more likely to be violated for
appearance measurements. Use 4∆T + ms for var. helps a bit.



Compare different ways to set constraints to β:
T CI CLs
∆χ2 χ2(x , β1)−minβ χ

2(x , β) *

∆χ2
RS χ2(x , β1)−minβ[1] χ

2(x , (β[1], β1[2])) *

∆T χ2(x , β1)− χ2(x , βref) * *
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CI vs CLs based on ∆T = χ2(x , β1)− χ2(x , βref ):
CI (red) based on ∆T can exclude β1 that are not much less
compatible with x than βref is. CLs (black) based on ∆T avoid this.

22sin
-310 -210 -110

)2
 (e

V
2

m

-310

-210

-110

Data

95% CLs

p-value<0.05

Sensitivity

95% CLs

p-value<0.05

True value of sin2 2θ set to 0. For the CI (CLs) method, para. values to
the right of the red (black) line have p-values (CLs values) below 0.05.

Median sensitivity curves are based on MC: at each |∆m2|, 50% of
the MC samples have better exclusion limit than the sensitivity curve.
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Gaussian CLs vs. the MC CI vs. Raster-Scan MC CI

Constraints produced by CLs and CI serve different purposes.
Can still compare them, see for e.g., Read (2002); Cousins &
Highland (1992).

We look at:
I CI based on ∆χ2

I CI based on ∆χ2
RS (raster scan)

I CLs based on ∆T

Chi-square distribution does not well approximate the
distribution of ∆χ2 or ∆χ2

RS when the true sin2 2θ is near 0.
Monte Carlo needed for both CI methods.

Gaussian approx for CLs.



MC CI based on ∆χ2, MC CI based on ∆χ2
RS, Gaussian CLs,

if true sin2 2θ = 0:

Median sensitivity of the three methods are similar.

22sin
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 (e

V
2

m

-310 -210 -110
-310

-210

-110

CLs 95%

2D MC-CI 95%

2D MC-CI 90%

RS MC-CI 95%

Figure: Set sin2 2θ = 0 in generating MC. At each |∆m2|, 50% of MC
samples have a tighter exclusion limit than the sensitivity curve.



MC CI based on ∆χ2, MC CI based on ∆χ2
RS, Gaussian CLs,

if true sin2 2θ > 0:

22sin

)2
 (e

V
2

m

-310 -210 -110
-310

-210

-110
CI 90%

CLs 95%

RS 95%

Figure: True para. value is sin2 2θ = 0.1 and ∆m2 = 2.5× 10−3 eV2.



Use CI with ∆χ2 if calculation of its parent distribution under each β1
is affordable (Wilks, or in case of cond. violation, MC).

Otherwise, can adopt ∆T for the simplicity of its Gaussian approx
given cond. satisfied, and pair it with CLs.
Gaussian CLs is also easy to use for combining multiple independent
experimental results (Qian’s talk this afternoon): the CLs value at
each hypothesis β = β1 from experiments 1 to M can be calculated
with

∆T =
M∑

k=1

∆T (xk , β1),

∆TH1 =
M∑

k=1

∆T (k)
H1

∆TH0 =
M∑

k=1

∆T (k)
H0

.
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