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IceCube
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IceCube-DeepCore

78 strings, 125 m string
spacing
17 m modules vertical-spacing

8 strings, 40-75 m string
spacing
7 m modules vertical-spacing

→ Typical LE ν event
→ Eνµ
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IceCube-DeepCore-PINGU

78 strings, 125 m string
spacing
17 m modules vertical-spacing

8 strings, 75 m string spacing
7 m modules vertical-spacing

26 strings, 24 m string spacing
1.5 m modules
vertical-spacing

I all optical modules in
clearest ice
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Atmospheric neutrinos

2:1 ratio between νµ:νe

similar rate of ν and ν̄
I however, x-sec for ν̄ half of ν
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various baselines (L) available

Joshua Hignight PhyStat-ν Fermilab 2016 September 21st , 2016 5 / 20



Atmospheric neutrinos

arXiv:1510.08127

ν energy over several orders
of magnitude
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various baselines (L) available

⇒ wide range of L/E available for ν oscillation measurements
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Atmospheric neutrino oscillations
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 [ie. cos(Zen)=-1]νup-going 

Longest baseline (L=12760 km, cos θz = −1) has:
I First oscillation maxima at ∼ 25 GeV
I Matter effects below ∼ 12 GeV
I Potential for νe appearance at 8 GeV
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“Atmospheric mixing” parameters by IceCube
IceCube: Phys.Rev. D 91, 072004 (2015); SK: AIP Conf. Proc. 1666, 100001 (2015)

IceCube: fitting to data
done in 2D space
(E , θz)

I χ2/ndf = 54.9/56

Contours obtained using Wilk’s theorem
I Calculate ∆lnL = lnL− lnLbestfit for all points in 2D parameter space
I ∆lnL calculated by maximizing L over nuisance parameters
I −2∆lnL is asymptotically a χ2 distribution with 2 dof.

Side plots: profile of ∆lnL passing through best-fit
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IceCube – towards future analysis

PRD analysis focus in νµ CC “clean” events
I Clear µ tracks
I Require several non-scattered γ
I Use only up-going events⇒ very small atmospheric µ

contamination
I Fits analytical formula for Cherenkov light front propagated to PMTs

Currently working on new analysis based on new reconstruction:
I Planning to look at full-sky

F More atmospheric µ contamination
F But would give us better handle on flux systematics

I Use information from all hits in reconstruction
F Reconstruction more sensitive to scattering
F Unfortunately also more sensitive to noise

I Increased presence of νe, ντ and ν NC in sample
I And also increase significantly number of νµ events at final level

F significant improvement in final result expected
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IceCube – new event reconstruction

IceCube measures Cherenkov cones in “3D”
PMTs embedded in the parameter space
creates features in their vicinity
Natural medium also has local variations
Low number of hits

→ “bumpy” likelihood space

Vertex Z (m)
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500−

400−

300− Need to fit 8 parameters
corresponding to νµ DIS
interaction

I vertex (3), time, direction (2),
energies of µ and hadronic
cascade

Usual minimizers do not work well
I currently using “MultiNest”
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The “event” likelihood space
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L(D|H) =
∏

i∈{PMT}

ni∏
j=0

Poisson(

∫
t∈Ij

Qobsdt ,
∫

t∈Ij
Qexpdt)

Charge expectation (Qexp) distribution from spline tables
I Spline tables account for main local/global ice properties
I Derived from simulation

Idea for the future: replace tables by simulated expectations
I For every L(D|H) calculation run simulation to estimate expectation
I Can account of more detailed/evolving ice models
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The MultiNest algorithm
See full description in paper by F. Feroz et al. [arXiv:0809.3437 and arXiv:1306.2144]

MultiNest searches for maximum in multidimensional likelihood space
I Exploration of space via ellipsoidal nested sampling

F New trials thrown in volume defined by ellipsoids obtained from
distribution of previous trials → efficient sampling

F New trials accepted/rejected depending on their LH
F Posterior distributions provided could be used as error estimates

I Natively supports multi-modal distributions
F In our case important to avoid local minima10 F. Feroz, M.P. Hobson & M. Bridges
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Figure 6. Toy model 2: (a) two-dimensional plot of the likelihood function defined in Eqs. (32) and (33); (b) dots denoting the points with the lowest likelihood
at successive iterations of the MULTI NESTalgorithm. Different colours denote points assigned to different isolated modes as the algorithm progresses.

Analytical MULTI NEST

D log(Z) local log(Z) log(Z) local log(Z
1

) local log(Z
2

)

2 �1:75 �2:44 �1:72� 0:05 �2:28� 0:08 �2:56� 0:08

5 �5:67 �6:36 �5:75� 0:08 �6:34� 0:10 �6:57� 0:11

10 �14:59 �15:28 �14:69� 0:12 �15:41� 0:15 �15:36� 0:15

20 �36:09 �36:78 �35:93� 0:19 �37:13� 0:23 �36:28� 0:22

30 �60:13 �60:82 �59:94� 0:24 �60:70� 0:30 �60:57� 0:32

Table 2. The true and estimated global and locallog(Z) for toy model 2, as a function of the dimensionsD of the parameter space, using MULTI NEST.

the two-dimensional case, with the parameters described above, the
likelihood is shown in Fig. 6.

In analysing this problem using the methods presented in
FH08, we showed that the sampling efficiency dropped signifi-
cantly with increasing dimensionality, with the efficiencybeing less
than 2 per cent in 10 dimensions, with almost600; 000 likelihood
evaluations required to estimate the evidence to the required accu-
racy. Using 1000 active points in MULTI NEST,we list the evaluated
and analytical evidence values in Table 2. The total number of like-
lihood evaluations and the sampling efficiencies are listedin Table
3. For comparison, we also list the number of likelihood evaluations
and the sampling efficiencies with the ellipsoidal nested sampling
method proposed in FH08. One sees that MULTI NEST requires an
order of magnitude fewer likelihood evaluations than the method
of FH08. In fact, the relative computational cost of MULTI NEST is
even less than this comparison suggests, since it no longer performs
an eigen-analysis at each iteration, as discussed in Section 5.2. In-
deed, for this toy problem discussed, the EM partitioning algorithm
discussed in Section 5.2 was on average called only once per 1000
iterations of the MULTI NESTalgorithm.

7 COSMOLOGICAL PARAMETER ESTIMATION AND
MODEL SELECTION

Likelihood functions resembling those used in our toy models do
occur in real inference problems in astro- and particle physics,
such as object detection in astronomy (see e.g. Hobson & McLach-
lan 2003; FH08) and analysis of beyond-the-Standard-Modeltheo-
ries in particle physics phenomenology (see e.g. Feroz et al. 2008).

from FH08 MULTI NEST

D N

like

Efficiency N

like

Efficiency

2 27; 658 15:98% 7; 370 70:77%

5 69; 094 9:57% 17; 967 51:02%

10 579; 208 1:82% 52; 901 34:28%

20 43; 093; 230 0:05% 255; 092 15:49%

30 753; 789 8:39%

Table 3. The number of likelihood evaluations and sampling efficiency for
the ellipsoidal nested sampling algorithm of FH08 and MULTI NEST, when
applied to toy model 2 as a function of the dimensionD of the parameter
space.

Nonetheless, not all likelihood functions are as challenging and it
is important to demonstrate that MULTI NESTis more efficient (and
certainly no less so) than standard Metropolis–Hastings MCMC
sampling even in more straightforward inference problems.

An important area of inference in astrophysics is that of cos-
mological parameter estimation and model selection, for which the
likelihood functions are usually quite benign, often resembling a
single, broad multivariate Gaussian in the allowed parameter space.
Therefore, in this section, we apply the MULTI NEST algorithm to
analyse two related extensions of the standard cosmology model:
non-flat spatial curvature and a varying equation of state ofdark
energy.

The complete set of cosmological parameters and the ranges
of the uniform priors assumed for them are given in Table 4, where
the parameters have their usual meanings. With


k

= 0 and

c
 2008 RAS, MNRAS000, 1–14

(Figure extracted from arXiv:0809.3437)
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Measuring the ν Mass Ordering with atmospheric ν
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Measuring the ν Mass Ordering with atmospheric ν
ν ν

N
O

IO

Different oscillation probabilities for ν and ν for NO and IO
Measure combined ν+ν

I different cross-section⇒ effect doesn’t vanish
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Bin-by-bin significance of mass hierarchy signature
Assuming no ν vs ν identification
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Distinct hierarchy dependent signatures for tracks (mostly νµ CC)
and cascades (mostly νe CC)

I Intensity is statistical significance of each bin with 1 year data
I Measurement is possible “statistically” by combining all bins – there

is not one bin that would achieve that
I Particular expected “distortion pattern” helps mitigate impact of

systematics
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Estimating sensitivity to the NMO: Log Likelihood Ratio
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True Ordering

Wrong Ordering
+ Gauss FitPreliminary 1 Generate pseudo-data trial in

analysis binning
I True physics and systematics

kept fixed for generation
2 Fit assuming NO and IO
3 Calculate log likelihood ratio

between IO and NO

Advantages of the method:
I Can account for any systematic given
I Does not pre-suppose shape of ∆LLH distribution

Disadvantages of the method:
I The significance “limited” by number of trials
I Since each trial is a full fit (and given lots of trials needed) having

large number of systematics can became prohibitively time
consuming
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Median sensitivity
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For quantifying significance to measure ordering usually use
median sensitivity

I Widely used in literature
“Median sensitivity” will mean that 50% of the time we can do
better and 50% of the time we can do worse
“Median sensitivity” calculated by integrating shade region under
wrong ordering assumption

I If distribution fits well Gaussian, integrate area under Gaussian
curve instead of trial distribution
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Estimating sensitivity to the NMO: ∆χ2 method
1 Get expected number of events in analysis binning

I True physics and systematics kept fixed as in LLR method
I But, no Poisson fluctuations applied

2 Calculate minimal ∆χ2 for the WO

I ∆χ2 = minp∈WO
∑

i

(
µTO

i (p0)−µWO
i (p)

σi

)2

I ∆χ2 is Gaussian distributed with mean ±∆χ2 and sigma 2
√

∆χ2

3 Evaluate distribution of ∆χ2 for NO and IO
⇒ correspond to the LLR trial distribution

Advantages of the method:
I Linear systematics are extremely fast to be computed
I Even with non-linear systematics still much faster than LLR

Disadvantage of the method:
I Intrinsic assumption of gaussianity of final distribution
I Not possible to include non-centered priors
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Comparing Test Statistic of LLR and ∆χ2
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Good agreement between TS
⇒ sensitivities in agreement

I lines from ∆χ2

I points from LLR

Joshua Hignight PhyStat-ν Fermilab 2016 September 21st , 2016 19 / 20

Preliminary Preliminary



Summary

Various different techniques used for reconstruction
I sometimes different tools used as minimizers:

F MultiNest used to avoid local-minima by exploring L space

Measurements using very different statistical techniques
I Statistically evaluate presence of components in sample
I From −2∆lnL obtain contours via Wilks theorem
I LogLikelihood Ratio, ∆χ2 to distinguish between hypothesis

All these techniques used with main (physics) goal of measuring ν
oscillations
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Backup slides
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Atmospheric neutrino oscillations
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 [ie. cos(Zen)=-1]νup-going 

Longest baseline (L=12760 km, cos θz = −1) has:
I First oscillation maxima at ∼ 25 GeV
I Matter effects below ∼ 12 GeV
I Potential for νe appearance at 8 GeV
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More plots from MultiNest
From arXiv:0809.3437

Joshua Hignight PhyStat-ν Fermilab 2016 September 21st , 2016 23 / 20



Excluding an ordering
To say we measure the true ordering (TO) at a given CL we want to be
able to exclude the wrong ordering (WO) for any value of the oscillation
parameters
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Testing every point of the WO parameter space too costly
I WO best-fit gives parameters of “maximum confusion”

(used to get WO trial distribution)
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Unfolding

Interesting resources:

I Presentation on unfolding in HEP: http://mkuusela.web.cern.
ch/mkuusela/ETH_workshop_July_2014/slides.pdf

I V. Blobel, “Unfolding Methods in High-energy Physics Experiments”
at https://cds.cern.ch/record/157405?ln=en

I D’Agostini, Nucl.Instrum.Meth. A362 (1995) 487-498
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Unfolding instability example
From V. Blobel, “Unfolding Methods in High-energy Physics Experiments”
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Unfolding with regularization
From V. Blobel, “Unfolding Methods in High-energy Physics Experiments”

Input pdf and data
Unfolding result

Using B-splines for
regularization
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“Bayesian Unfolding” example
from Nucl.Instrum.Meth. A362 (1995) 487-498
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