

Likelihood-based test statistic in Solar Axion searches

LA-UR-16-27151

Wenqin Xu^{1, 2}, Steven R. Elliott¹ ¹Los Alamos National Laboratory ² University of South Dakota PhyStat-Nu workshop Sept-20-16, FNAL

Solar Axions

= 0

z = -d

z = -2d

Example Experiments

MAJORANA DEMONSTRATOR

EDELWEISS-III

Array of High Purity Germanium (HPGe) detectors Extremely clean, very low background rate edelweiss.in2p3.fr Ge detector/crystal sanfordlab.org

Axion Bragg Diffraction

Motion of the Sun w.r.t. the Earth \rightarrow Changing of attacking angles → Complicated signal patterns **Tables of Sun's trajectory**

Calculated for λ =1 and M_D=1kg HPGe Current limits: λ < around 1 x 10⁻³

DAMA, Phys. Lett. B 515 (2001) 6, 90% CL; EDELWEISS JCAP 11 (2013) 067, 95% CL

→ Numerical expression of signal rate $R^{(j)} = R^{(j)}(\phi^{(j)})$ depends on angle of the *j*th detector

Calculation of Axion signal closely follows: R. J. Creswick, et al., PLB 427 (1998) 235-240 SOLAX, Phys. Rev. Lett. 81, 5068 (1998)

0.9

The Statistical Problem

For the *j*-th detector (*j*=1, ..., n_D), the likelihood function isJoint likelihood
$$\mathcal{L}_D^{(j)} = e^{-m^{(j)}} \prod_{i=1}^{N^{(j)}} [b^{(j)} + R^{(j)}(t_i^{(j)}, E_i^{(j)})]$$
 $\mathcal{L} = \prod_{j=1}^{n_D} \mathcal{L}_D^{(j)}$ where *i* is the *i*-th event in this detector $R^{(j)} \propto \lambda M_D^{(j)}$

Assuming required angles of n_D detectors ($\vec{\phi}$) are all precisely known

Parameter of interest: Axion-photon coupling constant (λ , universal)

Axion signal

- Nuisance parameter: background (\overline{b} , universal)
- Apply the profile likelihood method Ref.:Rolke et al, NIMA 551 (2005) 493 -2ln(profile likelihood) should approximately have a $\chi^2(1)$ distribution
- $\equiv -2 \ln \mathcal{L}_p(\lambda_{true})$ Monte Carlo simulations generated with λ_{true} $= -2\ln \frac{\sup\{\mathcal{L}(\lambda_{true}, \bar{b}); \bar{b}\}}{\sup\{\mathcal{L}(\lambda, \bar{b}); \lambda, \bar{b}\}}$ 1000 simulations per ensemble Define a test statistic *D*, based on profile likelihood.

Effect of Physical Boundary

- Coupling λ_{true} =0 used in Monte Carlo simulations, no Axion signals
- Physical boundary makes the test statistic distribution narrower than $\chi^2(1.0)$ \rightarrow Over-coverage with nominal critical value 2.7 for 90% confidence level
 - \rightarrow Proper critical value for 90% C.L. is smaller than 2.7

Los Alamos Detector Angles: Poorly Known

Laboratory

Comprehensive orientation surveys are required to obtain the absolute angle for every Ge detector. Difficult to measure, and could suffer from large uncertainty ~ 15°, i.e. poorly known

Crystal axis angle measurable by Laue diffraction or charge carrier drift time (*in situ*)

Detector Array

Experiment Apparatus

Figures of **MAJORANA DEMONSTRATOR** courtesy of sanfordlab.org.

Topological contours of Sanford Underground Research Facility from Journal of Physics: Conference Series **606** (2015) 012015 Solar Axions

Figure of a HPGe Detector , Courtesy of James Loach, LBNL Los Alamos The Statistical Problem Revised

Parameter of interest: Axion-photon coupling constant (universal) Nuisance parameters: background (universal) and

angles of n_D detectors (poorly known to within 15°)

Test statistic $D \equiv -2 \ln \mathcal{L}_p(\lambda_{true})$ $= -2 \ln \frac{\sup\{\mathcal{L}(\lambda_{true}, \bar{b}, \vec{\phi}); \bar{b}, \vec{\phi}\}}{\sup\{\mathcal{L}(\lambda, \bar{b}, \vec{\phi}); \lambda, \bar{b}, \vec{\phi}\}}$

- Supposedly the nuisance parameters can be profiled out from the data.
- Works for background
- Works for the detector angles only if the data itself has sensitivity on them.
- Axion signal depends on the detector angles; the background events don't.
- → None to few axion signals = none to little ability to profile out the angles.

Only considering four detectors, $n_D=4$ simulated 1000day kg exposure for each detector

Los Alamos Poor Angle Info + Big Coupling

Signal $\lambda_{true} = 5 \times 10^{-4}$, bakground $\overline{b} = 0.1$ cts/kg/day/keV

- Total signal ~ 0.1 cts/day/kg, total background ~ 0.6 cts/day/kg
- Signal large enough for the detector angles to be accurately profiled out from data. Nominal critical value 2.7 for 90% is OK

• Los Alamos Poor Angle Info + Small Coupling

Signal $\lambda_{true} = 1 \times 10^{-4}$, bakground $\overline{b} = 0.1$ cts/kg/day/keV

- Total signal ~ 0.02 cts/day/kg, total background ~ 0.6 cts/day/kg
- Signals not large enough for accurate profiling of angles, but still some sensitivity to angles. Nominal critical value 2.7 for 90%CL gives under-coverage

• Los Alamos Poor Angle Info + Zero Coupling

Signal $\lambda_{true} = 0$, bakground $\overline{b} = 0.1$ cts/kg/day/keV

- No signals in MC data, no sensitivity on angles
- Test statistic distribution approximates $\chi^2(5.0)$
- 1 unknown coupling + 4 unknown angles of 4 detectors \rightarrow 5 degrees of freedom.

χ² Degree of Freedom

- Very poorly constrained nuisance parameters could affect test statistic to deviate from $\chi^2(1.0)$, if they cannot be profiled out in the data.
- Nominal critical values for $\chi^2(1.0)$ cause under-coverage.

If $\lambda_{true} = 0$ and large uncertainty on n_D angles, almost $\chi^2 (1 + n_D)$ How about tiny but non-zero λ_{true} ? Need extensive Monte Carlo simulations \rightarrow Numerically obtain critical value

Is there a general solution without extensive Monte Carlo simulations?

Avoid the problem: measure all the angles For one detector, *small enough* angular uncertainty

- \rightarrow angle can be treated as known \rightarrow Test statistic stays effectively x^2 with
- → Test statistic stays effectively χ^2 with 1 d.o.f.
- \rightarrow For n_D detectors, all angles can be treated as known, still $\chi^2(1)$.

In this example: 15° uncertainty =17% of the allowed range of 90°, already too large *How small is small enough?*

Maximum Angle Uncertainty

Angles Unknown

Current and future experiments have many detectors. Challenging to measure every detector angle to a 3°-4° precision. *Alternatively*,

- n_D detectors with equal mass M_D
- Joint likelihood.

- One detector with mass $n_D \times M_D$
- Reduce the dimension of the problem
- At the cost of losing individual detector information
- Single likelihood based on R_{Total}

An Averaging Approximation

Los Alamos

- Close to 50 detectors is sufficient to use the averaging approximation in the model
- A factor of 2.5-3 increase of experimental uncertainty on the coupling constant, even for numerous detectors, due to loss of information.

Findings:

Very poorly constrained nuisance parameters cause likelihood-based test statistic to deviate from $\chi^2(1.0)$, if they cannot be profiled out in the data.

Physical boundary also affects the test statistic distribution as well.

In solar axion search:

Extensive Monte Carlo simulations + likelihood-based test statistic
→ Numerically obtain correct critical values for confidence intervals

OR measure angles to 3°-4° precision \rightarrow test statistic ~ $\chi^2(1.0)$

OR use an averaging method with largely reduced sensitivity, if 50 or more detectors

Backup

Question: Both the axion-photon coupling and the angles can be treated as

- parameters of interest
- little to none sensitivity from the data
- somewhat constrained otherwise (physical boundary, subsidiary measurements)
 Statistical methods to treat this situation without extensive simulation?

Axion: originally postulated as the pseudo Nambu–Goldstone boson for the breaking of Peccei-Quinn U(1) symmetry, which is involved to explain the <u>strong CP problem</u> **Candidate for low mass dark matter**

Upper limits on Axion-photon coupling constant. Figure adapted CDMS Phys. Rev. Lett. 103, 141802 (2009) Examples of search efforts: Semi-conductor and solid scintillator (crystal) based: SOLAX, CDMS, DAMA, EDELWEISS, TEXONO, MAJORANA DEMONSTRATOR

Man-made magnetic field based: Tokyo Helioscope, CAST, ADMX, IAXO

Xenon based: XMASS, XENON100

Space based:

XMM-Newton: Potential solar axion signatures in earth magnetic field MNRAS **445**, 2146–2168 (2014)

⁷ This talk only considers the Axion-photon coupling and experiments using crystals

Statistical Method

Construct likelihood function

$$L(\lambda, b, \vec{\phi} | \vec{X}) = \prod_{i=1}^{n} f(X_i | \lambda, b, \vec{\phi})$$

 $\vec{\phi}$ are the azimuthal angles, and b is background level. They are the nuisance parameters

Profile Likelihood (
$$\Lambda$$
) = Maximized L against all nuisance parameters.

$$\Lambda(\lambda_0 | \vec{X}) = \frac{\sup\{L(\lambda_0, b, \vec{\phi} | \vec{X}); b, \vec{\phi}\}}{\sup\{L(\lambda, b, \vec{\phi} | \vec{X}); \lambda, b, \vec{\phi}\}}$$

Rolke et al, NIMA 551 (2005) 493

Rolke et al, NIMA 551 (2005) 493: " $-2\log\Lambda$ has an approximated χ^2 distribution with 1 degree of freedom" i.e. $\chi^2(1)$

If $\chi^2(1)$ is indeed followed, change $-2\log \Lambda$ by 2.71 (3.84) for 90% (95%) confidence level.

Physical limits and other factors will change the distribution of profile likelihood.
 Need adjustments to ensure coverage.

In-situ Angle Measurement

The charge carrier velocity has an angular dependence.

drift time v.s. angle

Alternatively, use a Laue measurement to study the Ge detectors:

- * Higher angular precision
- * May introduce more surface time, undesired for underground Low background Ge experiment

Experiment design

Utilize the coincidence between the 356keV gamma and the 81keV gamma of ¹³³Ba

For ¹³³Ba radioactive decay, the 356keV gamma is always immediately (~ns) followed by a 81keV gamma.

Use the 356keV gamma signal as a the starting time of an event.

Use the 81keV gamma to probe the Ge detector.

Most of this low energy gammas will not penetrate deep into Ge \rightarrow similar drift distance

 \rightarrow Avoids smearing in the drift time

Example efforts

Exact treatment of waveform varies, typically including:

Baseline removal, smoothing (e.g. via averaging) and pole-zero correction.

Typically 50% or 90% rise time of the Ge detector signal are regarded as the end of the drift \rightarrow Angle dependent

50% or 10% rise time of the scintillation signal are regarded as the start of the drift

 \rightarrow Common for all angles on average

Goodness of Fit with Approx.

- Model's single likelihood function constructed with the *approximation*.
- To describe Monte Carlo data. Does it work? Perform χ^2 Goodness of Fit test, convert χ^2 to p-value

If axion signals exist, the model (with the approximation) well describes an experiment with 150 detectors, does NOT describe an experiment with 5 detectors model cannot be used for 5-detector expt.

If no axion signal at all, the model well describes an experiment regardless of the detectors. No axion signals \rightarrow expression of R_{Total} is irrelevant

Alternatively

Current and future experiments many detectors

Tremendous challenge to measure every detector angle to 3°-4° precision

 n_G groups (e.g. n_G = 90), with equally n_D/n_G detectors in each group, if $n_D \rightarrow \infty$. Flat angle prior assumed.

Treat n_D detectors with equal mass M_D as ndetector with mass $n_D \times M_D$

$$\frac{\sum_{j=1}^{n_D} R^{(j)}(\phi^{(j)})}{n_D} \to \frac{\int_{-\pi/4}^{\pi/4} R(\phi) d\phi}{\pi/2}, \text{ if } n_D \to \infty$$