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Neutrino Mass Hierarchy 
Choosing between two simple hypotheses is the prototype problem in classic 
Neyman-Pearson theory of hypothesis testing (“simple” = no fit parameters). 
 
But rare in HEP.  We do have (almost) simple cases, e.g., 

– Number of light ν flavors (e.g., 3 vs 4 in late 1980’s) 
– Spin 1 vs spin 2 for new resonance 
– Higgs spin-parity (assuming spin 0) either 0+ or 0- 
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Neutrino Mass Hierarchy 
For MH, interesting complication of non-trivial nuisance parameters:  
phase δCP , angle θ23  

 
 
 
 
 
 
 
 
 
 
I concentrate on the simplest (but still rich!) case of simple vs simple testing. 
Although the ν community seems to have its confusion about that sorted out 
now, I thought it might be worth a “tutorial” on χ2, Iikelihood ratios. 
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Backhouse talk 



Likelihood ratios, Central Limit Thm, χ2 , and all that 
N quantities to measure.  i=1,N 
Simple HA: true values are { fA,i } 
Simple HB: true values are {fB,i} 
Measurements {di}, i=1,N  with Gaussian rms σi . 
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By Central Limit Theorem, −2lnλAB → Gaussian, independent of true H. 
(Can let the σi depend on H as well!)  
 
N.B: No mention yet of Wilks, χ2, DOF.  Just CLT, if we are in asymptopia or 
dominated by the certain term when re-expressed in certain way. 
(A more high-powered discussion can invoke non-central chisquare; see 
Blennow et al, JHEP 1403 (2014) 028 ) 
 The ν community calls the above “∆χ2 ”, where, individually under HA and HB : 
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Since this is a bit of a long way around in my opinion, it is instructive to take a 
closer look, viewing these also as likelihood ratios. 
 

Bob Cousins, PhyStat-nu Fermilab 2016 



L(Hsat) =   �
𝑁

𝑖=1

1
2



Repeat the above with binned Poisson data 
Observed bin contents {ni}, i=1,N. 
Simple HA: true Poisson means are { fA,i} 
Simple HB: true Poisson means are {fB,i} 
Hsat:  fsat,i ≡ ni  . 
 
 

L HA =   �
𝑁

𝑖=1

fA,i
𝑛𝑖    

𝑒−𝑓A,i

𝑛𝑖!

−2lnλA,B = −2ln
L HA

L HB
Once again,    
 

→ Gaussian by CLT. 
 

, similarly for L (HB). 
 

L Hsat =   �
𝑁

𝑖=1

ni
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𝑒−𝑛i

𝑛𝑖!

−2lnλA,sat = −2ln
L HA

L Hsat
→ χ2 , N DOF, similarly for −2lnλB,sat  
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GOF test based on Poisson LR −2lnλA,sat with 
saturated model was subject of my first foray into 
statistics literature...  
 



A recent worked MC example for binned Poisson data is in 
“Should unfolded histograms be used to test hypotheses?”  
Cousins, May, Sun http://arxiv.org/abs/1607.07038  

 

−2lnλA,sat
−2lnλA,B→ χ2, in this case 10 DOF 

 

→ Gaussian  
 

               -2lnλA,sat                                       -2lnλA,B                        

 -2lnλA,sat  -2lnλA,B 

−2lnλB,sat very similar 
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What about binned Poisson data? 
Now N is number of events (not bins).   
Let θ be vector of observable (energy, angles, etc.) with pdf  𝑝(θ|𝐻A). 
 
 
 

−2lnλA,B = −2ln
L HA

L HB
Once again,    
 

→ Gaussian by CLT. 
 

L HA =   �𝑝(θ𝑖|𝐻A)
𝑁

𝑖=1

;    similarly for L (HB). 
 

−2 ln HA = �−2ln(𝑝 θ𝑖 HA )
𝑁

𝑖=1

; 
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However,  there is no natural analog to the saturated model and hence the 
individual GOF tests are ~arbitrary, and −2lnλA,B is not equivalent to a "∆χ2". 
⇒ A reason why I prefer direct −2lnλA,B approach to "∆χ2" approach.  
 
 
 



Preparing for LHC, we imagined new dilepton resonance.   
HA: spin-1 Z′, or  
HB: spin-2 graviton G* 
Discriminating variable: quark-muon angle θCS  in Collins-Soper frame. 

spin-1 Z′ 
mass 1.5 TeV 

spin-2 G* 
mass 1.5 TeV 
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(Peak separation) / RMS scales beautifully with √N.

−2lnλA,B = −2ln
L HA

L HB
for individual MC events 
 

Histograms of  
 

Mean = -0.19 
RMS = 0.81 
 

Mean  = 0.087 
RMS = 0.72 

Mean = 9.5 
RMS = 5.7 
 

Mean = 4.4 
RMS = 5.1 
 

Each MC experiment is 50 samples from above. Add -2lnλ’s  from events: 

(An earlier paper had 
erroneously assumed 
that -2lnλ was χ2 .)

Event -2lnλ Event -2lnλ 

Expt -2lnλ 

Gaussian by CLT  
mean  = event mean × 50 
RMS  = event RMS × √50 
 



Above is all “pre-data” characterization of the test 
How to characterize post-data? 

 

In N-P theory, α is specified in advance.   

Suppose after obtaining data, you notice that with α=0.05 previously 
specified, you reject H0, but with α=0.01 previously specified, you accept H0.  
In fact, you determine that with the data set in hand, H0 would be rejected for 
α ≥ 0.023.  This interesting value has a name: 

After data are obtained, the p-value is the smallest value of α  for which H0 
would be rejected, had it been specified in advance. 
 
Numerically (if not philosophically) the same as usual “value obtained or more 
extreme” due to Fisher.  
Large literature bashing p-values. I defend HEP: http://arxiv.org/abs/1310.3791 
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Interpreting p-values and Z-values 
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It is crucial to realize that that value of α was typically not specified in 
advance, so p-values do not correspond to Type I error rates of the 
experiments which report them.       

Interpretation of p-values is a long, contentious story – beware! 

In HEP, typically converted to Z-value, equivalent number of Gaussian sigma.   

At LHC, we had recent case that forced us to think about post-data 
interpretation of (nearly) simple vs simple test. 
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Early CMS Higgs spin-parity test of 0+ vs. 0- 

Paper reported (fixing typo here): 
 
1) -2ln(L0- /L0+)  
             = 5.5  favoring 0+ 

 
2) p-value   = 0.72% for 0- 

 
3) p-value   = 0.7 for 0+ 
 
4) CLs = (0.72%) / (1–0.7) = 2.4%, 
“a more conservative value for 
judging whether the observed 
data are compatible with 0- ” 

 
 
 
 



Luc Demortier and Louis Lyons, http://arxiv.org/abs/1408.6123  

“Testing Hypotheses in Particle Physics: Plots of p0 versus p1” 

Test of point null vs point 
alternative, two Gaussians 
with same σ, peak 
separation ∆µ. 
 
At a glance can see that 
contours of constant λ01 are 
completely different topology 
from contours of e.g. p0. 
 
(For rest of plot, you will 
have to read their paper or 
stare at it for a long time.) 
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Number of light ν flavors in 1989: 3 light ν s known
Crucial to test ν=3 vs ν (or more?) in Z decay. 
Mark II collab at SLAC SLC, facing imminent competition from LEP. 
Rather than treating ν 3 and ν 4 has “point hypotheses”, they treated Nν
as a continuous parameter estimated with standard techniques, obtaining 
Nν = 2.8 ± 0.6 from resonance parameters of Z. 

PRL 63, 2173 (1989) 

“The 95%-C.L. limit, Nν<3.9, excludes to this level 
the presence of a fourth massless neutrino 
species within the standard-model framework.” 
 
(Several interesting discussion points, 
Including benefit of downward fluctuation!) 
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Continuous Mass Hierarchy variable? 
The +1 and -1 for MH appear in the equations as simply that: arithmetic signs.   
Various authors (e.g., Capozzi, Lisi, and Marrone, PRD 89 013001) have 
suggested replacing ±1 with (unbounded) continuous variable α.   
Reminiscent of continuous “number of light neutrino species” (which recall had 
BSM physics interpretation). 
In frequentist treatment, I think it is mostly a matter of presentation, since 
results from discrete way map to continuous way, and vice versa (particularly 
if F-C construction is used for confidence interval for α, with relevant set of 
C.L.’s). 
I encourage continuous α approach as part of toolkit.   
But…Eligio Lisi has explained to me that α is highly correlated with ∆m2, and 
contributes to increase its overall uncertainty. This leads to the undesired 
result that power is lost due to consideration of unphysical (or at least non-
SM) values of MH. Ugh. 
NOTE added after talk: I mis-stated Eligio’s point above at the time of the 
talk; I believe that it is now repaired.  -BC 
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Addition of Nuisance Parameter δ to MH Test  
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Small variation of nuisance parameters seems not to upset the formalism, 
and some relevant examples with toys still give nicely Gaussian distribution of 
LR test statistic.  However the situation can become harder – see talk by Sara 
Algeri at Tokyo. 

If the CP phase δ is treated as a nuisance parameter in the MH 
determination, then great care is needed.   

Providing the MH results as a function of δ (same δ in numerator and 
denominator of LR) would seem to be mandatory, before attempting to 
“eliminate” δ by profiling or marginalizing..  
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Addition of Nuisance Parameter δ to MH Test  
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Then I would try:  

a) Profiling: for each value of MH, find best case δ.  So numerator and 
denominator in LR would generally be evaluated at different values of δ. 
Info complementary to giving MH as ftn of same δ in num and denom. 

b) Marginalizing: Takes average weighted by prior for δ of numerator L; 
weighted average of denominator L over δ, then ratio. Scary!              
Obviously mandatory to study prior dependence, freq. coverage. 
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Profiling or Marginalizing Nuisance Parameters 
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Although profiling nuisance params is the “native” treatment in a frequentist 
context, it comes with no performance guarantees at small sample sizes. 

Marginalizing might even do better from frequentist point of view!   

Classic pathological case has integrable singularity in data pdf, and hence 
singularity in likelihood – Tom Loredo likes analogy of temperature vs heat. 
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But something about “eliminating” δCP reminds me of the quote by 
“likelihoodist” A.W.F. Edwards:  

“Let me say at once that I can see no reason why it should always be 
possible to eliminate nuisance parameters.  Indeed, one of the many 
objections to Bayesian inference is that it always permits this elimination.”  

(commenting on J.D. Kalbfleisch and J.D. Sprott, J. Roy. Stat. Soc. Series B 
32, 175 (1970). See my paper Oxford05.) 

 

For further reading: 

For PhyStat 2005, I wrote, “Treatment of nuisance parameters in high energy 
physics, and possible justifications and improvements in the statistics 
literature”.  Small compared to:  

Luc Demortier, “P Values: What They Are and How to Use Them”  http://www-
cdf.fnal.gov/~luc/statistics/cdf8662.pdf (174 pages!) 
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Testing point null(s) alternative 
Prototype: “Test for continuous θ=θ0 vs θ≠θ0” 
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Example before us at this conference: Is there CP violation in PMNS matrix ?   
H0: δ=0 or δ=π,  vs  
H1: δ ⊂ open intervals (0,π) ∪ (π,2π) 
 
Jargon (e.g. in Bayesian framework)  
Discrete parameter values with non-zero probability:  

Counting measure, probability mass, Dirac Delta-ftn in density 
Continuous parameter values with non-zero probability density, 

 probability for any single value is zero:  Lebesgue measure. 
 

Bayesian and frequentist frameworks treat mix of counting and Lebesgue 
measures in testing completely differently. 
In general the asymptotic convergence we are used to in estimation does not 
happen.   
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Classical Hypothesis Testing: Duality 
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“There is thus no need to derive optimum properties separately for 
tests and for intervals; there is a one-to-one correspondence 
between the problems as in the dictionary in Table 20.1” Stuart99, p. 175. 

Test θ=θ0 at α ↔ Is θ0 in conf. int. for θ with C.L. = 1- α   



Classical Hypothesis Testing (cont.) 
“Test for θ=θ0” ↔ “Is θ0 in confidence interval for θ” 

Using the likelihood ratio hypothesis test, this 
correspondence is the basis of intervals/ 
regions we advocated in PRD 57 3873 (1998): 

While paper was “in proof”, Gary realized 
that the method (including nuisance 
parameters)  was all on 1¼ pages of 
“Kendall and Stuart” !      
We thought this was good !  
It led to rapid inclusion in PDG RPP.  
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Duality: p-values from F-C 

Post-data, find the threshold C.L. for which θ  is on the boundary of the F-C 
confidence interval/region.  
I.e., for C.L. lower than that threshold, θ  is not in the confidence region.  
 
(Strangely, this post-data C.L. seems not to have a special name to 
distinguish from pre-data C.L.) 
 
The F-C p-value is then 1 minus this C.L. 
(Since pre-data alpha is 1−C.L.) 
 
But this just takes us full circle in the duality: this “F-C p-value” is just  
the p-value for the LR test in Kendall and Stuart! 
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Bayesian approach does not use the duality!!! 
 
Point and interval estimation for a parameter are separate from 
hypothesis testing.  
Also known as model selection: the lower-dimensional model with  
θ=θ0 vs the model with one more dimension, in θ. 
 
In contrast to frequentist method, one does not find a Bayesian credible 
interval for θ and test if θ  is in it. 
 
The historical standard for Bayesian model selection is due to Harold 
Jeffreys, calculating posterior probability of each model.   
 
Requires counting measure for null: bit of Dirac delta function in prior 
density at θ=θ  (or equivalent).  
Brings in a whole new set of issues not present in estimation!  
(“Can of worms” – Jim Berger) 
 

 test for continuous θ=θ0 vs θ≠θ0 
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Dependence on the prior for θ does not go away asymptotically: the 
Bayes Factor (ratio of posterior odds to prior odds) depends on π(θ) ! 
 
Improper priors lead to zero or infinity: if made finite by cut-off, answer 
depends on the cutoff. 
 
All the Ockham’s razor praise you hear about Bayesian model selection 
depends on cutoff if it’s an unbounded parameter (e.g. Poisson mean): 
fine if you are carefully subjective – beware of default priors! 
 
Even for  bounded binomial parameter ρ ( 0≤ ρ ≤ 1 ), testing e.g. ρ = 0.5 
vs ρ ≠ 0.5 has issues (though Bayesians like this example for bashing p-
values because at least there is no prior cutoff disaster)  
⇒ Jeffreys used different priors for estimation and testing. 
 

Bayesian test for continuous θ=θ0 vs θ≠θ0 (cont.) 

Bob Cousins, PhyStat-nu Fermilab 2016 



29 

 
δCP is bounded similarly to binomial ρ, so at least no cut-off issue. 
But still involves contentious frequentist vs Bayesian testing issues. 
 
This is deep stuff – physicists exploring use of using this (myself 
included) need to talk to Bayesian statisticians, read literature. 
 
My attempt to analyze and explain HEP p-value practice, with many 
references to Bayesian testing literature:  
 
“The Jeffreys–Lindley paradox and discovery criteria  
in high energy physics”,  
Synthese (2014), DOI 10.1007/s11229-014-0525-z 
http://arxiv.org/abs/1310.3791 (editing error fixed). 
 
 
 

Bayesian test for continuous θ=θ0 vs θ≠θ0: δCP  
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My advocacy for >10 years: 
• Have in place tools to allow computation of results using a variety of recipes, 

for problems up to intermediate complexity: 
– Bayesian with analysis of sensitivity to prior 
– Profile likelihood ratio (Minuit MINOS) 
– Frequentist construction (incl F-C) with approximate treatment of 

nuisance parameters 
– Other “favorites” such as LEP’s CLS  (which is an HEP invention) 

• The community can then demand that a result shown with one’s preferred 
method also be shown with the other methods, and sampling properties 
studied. 

• When the methods all agree, we are in asymptopic nirvana. 
• When the methods disagree, we learn something! E.g.: 

– The results are answers to different questions (but...) 
– Bayesian methods can have poor frequentist properties 
– Frequentist methods can badly violate likelihood principle 
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BACKUP 
 
These are mostly from my stock slides on things 
that I “wish everyone knew”.  
 
See also my summary talk at Tokyo PhyStat-nu, 
which include examples of pseudo-Bayes 
detection. 
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Who am I  (other than Gary Feldman’s co-author)? 
  
Ph.D. Thesis: Fermilab E533, 1978-80, π µ atoms 
Forward charm production in pp collisions at CERN ISR 
Rare kaon decays at BNL 
H dibaryon search at BNL 
Sabbatical year at Harvard working on CDF 
1994-1999 ν oscillation searches at NOMAD at CERN 
CMS at LHC since 2000 (Deputy Spokes, 2007-2009) 
 
Many committees, some relevant to ν’s, especially: 
Lehmann review of NUMI project (1998) 
Fermilab PAC 1999-2003 
P5 panel 2013-14 ⇒ crash course on all ν experiments in world 
(and their proposed statistical methods)  
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Summary of Three Ways to Make Intervals 
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Bayesian 
Credible 

Frequentist 
Confidence  

Likelihood Ratio 

Requires prior pdf? Yes No No 

Obeys likelihood 
principle? 

Yes (exception re 
Jeffreys prior) 

No  Yes 
 

Random variable in 
“ µ ∈ µ µ  

µ  µ µ  
 

µ µ  

Coverage guaranteed?  No Yes (but over-
coverage…) 

No 

Provides 
P(parameter|data)? 

Yes No No 

Frequentist intervals map to frequentist hypothesis tests, 
as discussed above. 
Bayesian equivalent of hypothesis testing is called   

 and is a whole other “can of worms”.
 33 



68% intervals by various methods for mean µ of 
Poisson process with n=3 observed 
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For the Jeffreys prior (1/√µ), Bayesian central interval is (1.72, 5.27). 
Fastest approach to correct coverage as n increases (Welch Peers, 1963) 
 
Numerical coindence of upper endpoint of intervals led to flat prior on 
Poisson mean in early HEP Bayesian analyses: probability matching prior 
for upper limits! 
 

Adapted from Cousins05 and                    
R. Cousins,  Am. J. Phys. 63 398  (1995) 

±√
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Sir David Cox at PhyStat-LHC 2007 
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From my Summary Talk: his list, as augmented in HEP 

Six 

•   Priors flat in arbitrary variables. 



Mini-review: Classical (N-P) Hypothesis Testing 
In Neyman-Pearson hypothesis testing (James06), frame 
discussion in terms of null hypothesis H0 = S.M., and an 
alternative H1 = mSUGRA, etc.  

α: probability (under H0) of rejecting H0 when it is true, i.e.,          
false discovery claim (Type I error) 

β: probability (under H1) of accepting H0 when it is false, i.e.,          
not claiming a discovery when there is one (Type II error) 

θ: parameters in the hypotheses 
Competing analysis methods can be compared by looking 
at graphs of β vs α at various θ, and at graphs of β vs θ at 
various α (power function).  
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Classical Hypothesis Testing (cont.) 
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James06, pp. 258, 262 

Where to live on the β vs α curve is a  discussion.  (Even longer when 
considered as N events increases, so curve moves toward origin.)  

 on whether to declare discovery requires two more inputs:  
1) Prior belief in H0 vs H1 
2) Cost of Type I error (false discovery claim) vs cost of Type II error 

(missed discovery) 
 

A one-size-fits-all criterion of α corresponding to 5σ is without foundation. 



Classical Hypothesis Testing: Neyman-Pearson Lemma 
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If Type I error probability α is specified in a test of  
 hypothesis H0 against  hypothesis H1 ,  

then the Type II error probability β is minimized by using 
as the test statistic the   
λ =  L(x| H0) /L(x| H1),  and rejecting H0 if λ ≤ kα 

Conceptual proof in Second lecture of Kyle Cranmer, February 2009 
http://indico.cern.ch/categoryDisplay.py?categId=72  . See also Stuart99, p. 176 

Phil. Transactions of the 
Royal Society of London. Vol. 
231, (1933), pp. 289-337 

The “lemma” applies only to a very special case: no nuisance 
parameters, not even undetermined parameters of interest! 
But it has inspired many generalizations, and likelihood ratios are 
a oft-used component of both frequentist and Bayesian methods. 

http://indico.cern.ch/categoryDisplay.py?categId=72


Conditioning* 
• An “ancillary statistic” (see literature for precise math 

definition)  is a function of your data which carries 
information about the precision of your measurement of the 
parameter of interest, but no info about parameter’s value. 

• The classic example is a branching ratio measurement in 
which the total number of events N can fluctuate if the expt 
design is to run for a fixed length of time.  Then N is an 
ancillary statistic. 

• You perform an experiment and obtain N total events, and 
then do a toy M.C. of repetitions of the experiment. Do you 
let N fluctuate, or do you fix it to the value observed?  

• It may seem that the toy M.C. should include your  
procedure, including fluctuations in N. 

• But there are strong arguments, going back to Fisher, that 
inference should be based on probabilities 

! 
     *See Reid95 for a review; my post http://arxiv.org/abs/1109.2023 has discussion in 

controversial non-ancillary case of bounded Gaussian mean problem. 
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Conditioning (cont.) 
• The 1958 thought expt of David R. Cox focused the issue: 

– Your procedure for weighing an object consists of 
flipping a coin to decide whether to use a weighing 
machine with a 10% error or one with a 1% error; and then 
measuring the weight. (Coin flip result is ancillary stat.) 

– Then “surely” the error you quote for your measurement 
should reflect which weighing machine you actually used, 
and not the average error of the “whole space” of all 
measurements! 

– But classical most powerful Neyman-Pearson hypothesis 
test uses the whole space! 

• In more complicated situations, ancillary statistics do not 
exist, and it is not at all clear how to restrict the “whole 
space” to the relevant part for frequentist coverage. 

• In methods obeying the likelihood principle, in effect one 
conditions on the exact data obtained, giving up the 
frequentist coverage criterion for the guarantee of relevance. 
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Conditioning (cont.) 
• At past PhyStats and CosmoStats, Jim Berger said that one 

of his “pet peeves” was people ignoring frequentist 
conditioning – improving inference by noting where one’s 
own sample is in the unconditional  sample space.   

• Fisher introduced the concept of “recognizable subsets” in 
the sample space.  

• It’s interesting that D.R. Cox does not mind null intervals 
(essentially viewing them as bad fit), but others view 
downward fluctuations as a “recognizable subset”. 

• From this point of view, there IS a problem with null-set 
confidence intervals!   

• So the situation is significantly more interesting than saying 
that all frequentists care about is the “unconditional 
ensemble”, and not about your particular data. 

• Feldman-Cousins intervals seem to survive an important test 
failed by standard intervals: Buehler’s betting game” 

     See http://arxiv.org/abs/1109.2023  
http://www.physics.ucla.edu/~cousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf  
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(θ) 
π0 

L(θ) 

θ θ0 ^ 
θ 

σtot 

τ 

(θ) 
π0 

L(θ) 

θ θ0 ^ 
θ 

σtot 

τ 

Tale of two =5 effects 

σtot /τ smaller: 
BF for H0 bigger! 
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Sensitivity Analysis 
• Since a Bayesian result depends on the prior 

probabilities, which are either personalistic or with 
elements of arbitrariness, it is widely recommended by 
Bayesian statisticians to study the  of the 
result to varying the prior. 

• I express dismay a lot in HEP at how little emphasis this 
is given by Bayesian advocates in HEP.  My  
is that it could also be given more emphasis in 
astro/cosmo – some exemplary papers certainly exist! 
 

• An “objective Bayesian’s” point of view:                     
“Non-subjective Bayesian analysis is just a part -- an 
important part, I believe – of a healthy  
analysis to the prior choice…” – J.M. Bernardo, J. Roy. 
Stat. Soc., Ser. B 41 113 (1979) 
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From the Proceedings: “…Again, different individuals may 
react differently, and the sensitivity analysis for the effect of 
the prior on the posterior is the analysis of the scientific 
community...” 

From his transparencies: 
“Sensitivity Analysis is at the heart of scientific Bayesianism.” 

Sensitivity analysis:       
A subjective Bayesian’s 
point of view: 
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“Perhaps the most important general lesson 
is that the facile use of what appear to be 
uninformative priors is a dangerous 
practice in high dimensions.” 
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Jim Berger: 
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U.L. in Poisson Process, n=3 observed: 3 ways 
1. Bayesian upper limit at 90% credibility:                       

find µu such that posterior probability P(µ >µu) = 0.1. 
2. Likelihood ratio method for approximate 90% C.L. U.L.:  

find µu such that L(µu) / L(3)  has prescribed value.  
3. Frequentist one-sided 90% C.L. upper limit:               

find µu such that P(n≤3 | µu)  = 0.1. 
 
Deep foundational issues 

– Only #3 has guaranteed ensemble properties (though 
issues arise with systematics.)    Good ?!? 

– Only #3 uses P(n|µ) for n ≠ observed value.  Bad?!? 
(Violates likelihood principle) 

These issues will not (should not) be resolved in HEP: aim 
to have software for reporting all 3 answers, and 
sensitivity to prior.  Make all available to consumer. 
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Likelihood Principle 
• As noted above, in both Bayesian methods and likelihood-ratio 

based methods, the probability (density) for obtaining the 
is used (via the likelihood function), 

• In contrast, in typical frequentist calculations (e.g., a p-value which 
is the probability of obtaining a value as extreme or 
than that observed), one uses probabilities of data . 

• This difference is captured by the : If two 
experiments yield likelihood functions which are proportional, then 
Your inferences from the two experiments should be identical. 

• L.P. is built in to Bayesian inference (except e.g., when Jeffreys 
prior leads to violation).   

•
• Although practical experience indicates that the L.P. may be too 

restrictive, it is useful to keep in mind.  When frequentist results 
“make no sense” or “are unphysical”, in my experience the 
underlying reason can be traced to a bad violation of the L.P. 

      
      *There are various versions of the L.P.,  strong and weak forms, etc. See Stuart99 

and book by Berger and Wolpert. 
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Likelihood Principle Discussion 
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We will not resolve this issue, but should 
be aware of it. 

• See book by Berger & Wolpert, but be 
prepared for the “Stopping Rule 
Principle” to set your head spinning. 

• When frequentist intervals and limits 
badly violate the L.P., use great caution 
in interpreting them! 

• And when Bayesian inferences badly 
violate the frequentist coverage, again 
use great caution! 



Bayes, Fisher, Neyman,  
Neutrino Masses, and the LHC 

Bob Cousins 
Univ. of California, Los Angeles 

 
 Virtual Talk 

12 September 2011 
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http://www.physics.ucla.edu/~cousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf
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1) 1960’s and beyond:                                  
UL = max( , 0) + 1.64 σ   

2) 1979 “PDG” (real 1986 PDG) and beyond:                
Bayesian with uniform prior 

3) 1997: Alex Read et al. (LEP)                   
CLS 

4) 1997: Feldman and Cousins (NOMAD)      
Unified Approach 

5) 2010: Power Constrained Limits;   
Cowan, Cranmer, Gross, Vitells (ATLAS): 
UL = max(0, max(x, xPCL) + 1.64 σ)  
 

 

Five methods used for bounded Gaussian mean problem 



References Cited in Talk Slides 
Cousins05: Robert Cousins, “Treatment of nuisance parameters in high 

energy physics, and possible justifications and improvements in the 
statistics literature”, PhyStat05: Statistical Problems in Particle Physics, 
Astrophysics and Cosmology, Oxford, 12-15 Sept. 2005. 

James06: Frederick James, Statistical Methods in Experimental Physics, 
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Recommended reading 
Books: Among the many books available, I usually recommend the following 

progression, reading the first three cover-to-cover, and consulting the last 
two as needed: 

1) Philip R. Bevington and D.Keith Robinson, Data Reduction and Error 
Analysis for the Physical Sciences (Quick read for undergrad-level review) 

2) Glen Cowan, Statistical Data Analysis (Solid foundation for HEP) 
3) Frederick James, Statistical Methods in Experimental Physics, World 

Scientific, 2006. (This is the second edition of the influential 1971 book by 
Eadie et al., has more advanced theory, many examples) 

4) A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of Statistics, Vol. 
2A, 6th edition, 1999; and earlier editions of this “Kendall and Stuart” 
series. More modern books include: 

5) George Casella and Roger L. Berger, Statistical Inference, 2nd Ed., 2002 
PhyStat conference series: Beginning with Confidence Limits Workshops in 

2000, links at http://phystat-lhc.web.cern.ch/phystat-lhc/ and 
http://www.physics.ox.ac.uk/phystat05/ 

By now there are many many web pages with lists of statistics references – 
Google on your favorite topic.   

My Bayesian reading list is the set of citations in my Comment, PRL 101 
029101 (2008), especially refs 2, 8, 9, 10, 11 (and 7 for model selection) 
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Memorable Quotes Therein from Jim Berger 
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*** 

“The Case for Objective Bayesian Analysis,” Bayesian Analysis 1.  See pp. 397, 459. 



Must-Read for HEP/Astro/Cosmo (incl discussion!) 

Robert E. Kass and Larry Wasserman, “The Selection of Prior 
Distributions by Formal Rules,” J. Amer. Stat. Assoc.  91 
1343 (1996). 

Telba Z. Irony and Nozer D. Singpurwalla, “Non-informative 
priors do not exist: A dialogue with Jose M. Bernardo,” J. 
Statistical Planning and Inference 65 159 (1997). 

J.O. Berger and L.R. Pericchi,  “Objective Bayesian Methods for 
Model Selection: Introduction and Comparison,” in  Model 
Selection, Inst. of Mathematical Statistics Lecture Notes-
Monograph Series, ed. P. Lahiri, vol 38 (2001) pp .135-207 

James Berger, “The Case for Objective Bayesian Analysis,” 
Bayesian Analysis 1 385 (2006) 

Michael Goldstein, “Subjective Bayesian Analysis: Principles 
and Practice,” Bayesian Analysis 1 403 (2006) 
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