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The unfolding problem

Any measurement is affected by the finite resolution of the particle
detectors

This causes the observed spectrum of events to be “smeared” or
“blurred” with respect to the true one

The unfolding problem is to estimate the true spectrum using the
smeared observations

Mathematically closely related to deblurring in optics and
tomographic image reconstruction in medical imaging

−5 0 5
0

500

1000

1500

Physical observable

(b) Smeared intensity

In
te
n
si
ty

Figure : Smeared spectrum

Folding←−−
Unfolding−−→

−5 0 5
0

500

1000

1500

Physical observable

(a) True intensity

In
te
n
si
ty

Figure : True spectrum

Mikael Kuusela (UChicago) September 21, 2016 2 / 21



Problem formulation

Let f be the true, particle-level spectrum and g the smeared, detector-level
spectrum

Denote the true space by E and the smeared space by F (both taken
to be intervals on the real line)
Mathematically f and g are the intensity functions of the underlying
Poisson point process

The two spectra are related by

g(t) =

∫
E

k(t, s)f (s) ds,

where the smearing kernel k represents the response of the detector and is
given by

k(t, s) = p(Y = t|X = s,X observed)P(X observed|X = s),

where X is a true event and Y the corresponding smeared event

Task: Infer the true spectrum f given smeared observations from g
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Discretization

Problem primarily discretized using histograms (splines are also sometimes used)
Let {Ei}pi=1 and {Fi}ni=1 be binnings of the true space E and the smeared space F
Let y be the corresponding histogram of smeared observations with mean vector

µ =

[∫
F1

g(t) dt, . . . ,

∫
Fn

g(t) dt

]T

Let us set out to make inferences about the particle-level mean histogram

λ =

[∫
E1

f (s) ds, . . . ,

∫
Ep

f (s) ds

]T

The mean histograms are related by µ = Kλ, where the elements of the response
matrix K are given by

Ki,j =

∫
Fi

∫
Ej
k(t, s)f (s) ds dt∫
Ej
f (s) ds

= P(smeared event in bin i | true event in bin j)

The discretized statistical model becomes

y ∼ Poisson(Kλ),

where K is an ill-conditioned matrix
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Demonstration of ill-posedness
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Demonstration of ill-posedness
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Demonstration of ill-posedness
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Current methodology

Two main approaches to unfolding (at least in LHC experiments):

1 Tikhonov regularization (Höcker and Kartvelishvili, 1996; Schmitt, 2012)

2 Expectation-maximization iteration with early stopping (D’Agostini, 1995;
Richardson, 1972; Lucy, 1974; Shepp and Vardi, 1982; Lange and Carson,
1984; Vardi et al., 1985)
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Tikhonov regularization

Tikhonov regularization estimates λ by solving:

min
λ∈Rp

(y −Kλ)TĈ
−1

(y −Kλ) + δP(λ)

The first term as a Gaussian approximation to the Poisson log-likelihood
The second term penalizes physically implausible solutions
Common penalty terms:

Norm: P(λ) = ‖λ‖2

Curvature: P(λ) = ‖Lλ‖2, where L is a discretized 2nd derivative operator
SVD unfolding (Höcker and Kartvelishvili, 1996):

P(λ) =

∥∥∥∥∥∥∥∥∥L

λ1/λ

MC
1

λ2/λ
MC
2

...
λp/λ

MC
p


∥∥∥∥∥∥∥∥∥

2

,

where λMC is a MC prediction for λ
TUnfold1 (Schmitt, 2012): P(λ) = ‖L(λ− λMC)‖2

1TUnfold implements also more general penalty terms
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D’Agostini iteration

Starting from some initial guess λ(0) > 0, iterate

λ
(k+1)
j =

λ
(k)
j∑n

i=1 Ki ,j

n∑
i=1

Ki ,jyi∑p
l=1 Ki ,lλ

(k)
l

Regularization by stopping the iteration before convergence:

λ̂ = λ(K) for some small number of iterations K
I.e., bias the solution towards λ(0)

In RooUnfold (Adye, 2011), λ(0) = λMC
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D’Agostini iteration

λ
(k+1)
j =

λ
(k)
j∑n

i=1 Ki ,j

n∑
i=1

Ki ,jyi∑p
l=1 Ki ,lλ

(k)
l

This iteration has been discovered in various fields, including optics
(Richardson, 1972), astronomy (Lucy, 1974) and tomography (Shepp
and Vardi, 1982; Lange and Carson, 1984; Vardi et al., 1985)

In particle physics, it was popularized by D’Agostini (1995) who
called it “Bayesian” unfolding

But: This is in fact an expectation-maximization (EM) iteration
(Dempster et al., 1977) for finding the maximum likelihood estimator
of λ in the Poisson regression problem y ∼ Poisson(Kλ)

As k →∞, λ(k) → λ̂MLE (Vardi et al., 1985)

This is a fully frequentist technique for finding the (regularized) MLE

The name “Bayesian” is an unfortunate misnomer
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D’Agostini demo, k = 0
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D’Agostini demo, k = 100
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D’Agostini demo, k = 10000
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D’Agostini demo, k = 100000
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Choice of the regularization strength

A key issue in unfolding concerns the choice of the regularization
strength (δ in Tikhonov, K in D’Agostini)

Many data-driven methods have been proposed:

Cross-validation (Stone, 1974)
L-curve (Hansen, 1992)
Empirical Bayes estimation (Kuusela and Panaretos, 2015)
Goodness-of-fit test in the smeared space (Veklerov and Llacer, 1987)
Akaike information criterion (Volobouev, 2015)
Minimization of a global correlation coefficient (Schmitt, 2012)
...

Limited experience about the relative merits of these methods in
typical unfolding problems

Some evidence that empirical Bayes tends to be more stable than
cross-validation (Kuusela, 2016; Wood, 2011)

Notice that all these are aiming to do optimal point estimation

Not necessarily optimal for uncertainty quantification!
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Some comments based on experience from the LHC

One should think carefully if unfolding is really needed

E.g., if the goal if the experiment is to measure just a few 1-dimensional
parameters, then one should perform the fit in the smeared space (as
opposed to inferring the quantities from the regularized unfolded spectrum)
What about smearing the theory instead of unfolding the data?
(Complicated by systematics in the response matrix)
Unfolding can be useful for comparison of experiments, propagation to
further analyses, tuning of MC generators, exploratory data analysis,...

One should analyze carefully if regularization is necessary

If there is little smearing (response matrix almost diagonal), then the MLE
obtained by running D’Agostini until convergence will do the job2

Some insight can be obtained by studying the condition number of K

One must not rely on software defaults for the regularization strength

The unfolded solution is very sensitive to this choice and the optimal
choice is very problem dependent

2The matrix inverse λ̂ = K−1y also gives the MLE provided that K is invertible and λ̂ ≥ 0
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Some comments based on experience from the LHC

The standard methods (at least as implemented in RooUnfold)
regularize by biasing the solution towards the MC prediction λMC

Danger of producing over-optimistic results, as too strong
regularization will always make the unfolded histogram match the MC,
whether the MC is correct or not
Safer to use MC-independent regularization (possible in TUnfold)

Uncertainty quantification (i.e., providing confidence intervals) in the
unfolded space is a very delicate matter

When regularization is used, the variance alone may not be a good
measure of uncertainty because it ignores the bias
But the bias is needed to regularize the problem... (Cf. inference in
lasso regression and spline smoothing)
Two ways to alleviate this situation:

1 Debiased confidence intervals (Kuusela and Panaretos, 2015; Kuusela,
2016)

2 Shape-constrained confidence intervals (Kuusela and Stark, 2016;
Kuusela, 2016)
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Undercoverage of existing methods
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Unfolding using debiased confidence intervals

Method Coverage at s = 0 Mean length

Bias-correction (data-driven) 0.932 (0.915, 0.947) 0.079 (0.077, 0.081)
Bias-correction (oracle) 0.937 (0.920, 0.951) 0.064 (0.064, 0.064)
Undersmoothing (data-driven) 0.933 (0.916, 0.948) 0.091 (0.087, 0.095)
Undersmoothing (oracle) 0.949 (0.933, 0.962) 0.070 (0.070, 0.070)
MMLE 0.478 (0.447, 0.509) 0.030 (0.030, 0.030)
MISE 0.359 (0.329, 0.390) 0.028
Unregularized 0.952 (0.937, 0.964) 40316

MMLE = choose δ to maximize the marginal likelihood

MISE = choose δ to minimize the mean integrated squared error
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Unfolding using shape-constrained confidence intervals
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Figure : Shape-constrained unfolded confidence intervals for the inclusive
jet pT spectrum with guaranteed conservative 95 % simultaneous coverage.
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Summary and conclusions

Ill-posedness makes unfolding a very complex problem
Tikhonov regularization and D’Agostini iteration are the most popular
techniques

I personally find it easier to interpret the 2nd derivative penalty in
Tikhonov than the early stopping in D’Agostini

Proper choice of the regularization strength is crucial
A choice that is optimal for point estimation might not be optimal for
uncertainty quantification

Results from standard software (RooUnfold) depend strongly on the
MC prediction (results biased towards the MC)

Better to use MC-independent regularization
Uncertainties from standard techniques can be unreliable

Improved uncertainty quantification can be achieved by debiasing or by
imposing qualitative shape constraints

Many open statistical issues remain:
How to properly present unfolded results? (Bins are correlated)
How to properly deal with systematic uncertainties in the detector
response?
How to properly compare, combine and propagate unfolded results?
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Backup
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Undercoverage of existing methods
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Unfolding is an ill-posed inverse problem

The linear system µ = Kλ is typically ill-conditioned

That is, true histograms λ that are very different can map into
smeared histograms µ that are very similar

As a result, the (pseudo)inverse of K is very sensitive to statistical
fluctuations in the smeared data

Mikael Kuusela (UChicago) September 21, 2016 28 / 21



UQ in inverse problems is challenging
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Towards improved uncertainty quantification

Standard methods based on the variability of the unfolded point
estimator do not adequately take the bias into account

As a result, they may suffer from drastic undercoverage in realistic
unfolding scenarios (several examples given in Kuusela (2016))

These exists very little previous work on how to solve this problem

I have investigated two complementary approaches for improving this
situation:

1 Debiased confidence intervals based on an iterative bias-correction
(Kuusela and Panaretos, 2015; Kuusela, 2016)

Yields significantly improved coverage performance with only a modest
increase in the interval length

2 Shape-constrained confidence intervals (Kuusela and Stark, 2016;
Kuusela, 2016)

Yields guaranteed conservative coverage, provided that the spectrum
satisfies simple shape constraints (positivity, monotonicity, convexity)
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Optimal point estimation 6= optimal interval estimation

(a) Unbiased (b) Optimal point estimation (c) Optimal UQ
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Debiasing

Let β̂ be the unfolded point estimator depending on the
regularization strength δ (large δ ↔ strong regularization)

A trivial way of debiasing β̂ is to undersmooth (Hall, 1992) by
choosing δ to be smaller than the value that would lead to optimal
point estimation performance

The variability of the debiased point estimator is then used to
construct confidence intervals

Data-driven choice of δ: Calibrate 1− α intervals to have coverage
1− α− ε
But: One can obtain even more powerful inferences (i.e. shorter
confidence intervals) by employing an iterative bias-correction:

Iterative bias-correction

1 Estimate the bias: b̂ias
(t)

(β̂) = Eβ̂(t)(β̂)− β̂(t)

2 Compute the bias-corrected estimate: β̂(t+1) = β̂(0) − b̂ias
(t)

(β̂)
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Coverage-length trade-off
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Demonstration: Z → e+e− invariant mass spectrum
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Figure : Unfolding of the Z boson invariant mass spectrum, 95 % iteratively
bias-corrected percentile intervals, calibrated to have 94 % target coverage
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Examples of unfolding in LHC data analysis
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Data-driven deconvolved confidence intervals
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Figure : Gaussian intervals, 95 % nominal coverage, 94 % target coverage
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Comparison of coverage performance, λtot = 1 000
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Comparison of coverage performance, λtot = 10 000
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Comparison of coverage performance, λtot = 50 000

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
E

m
p

ir
ic

a
l 
c
o

v
e

ra
g

e
(a) Comparison of coverage performance, λ

tot
 = 50000

 

 

Data−driven BC

EB

HB, Pareto(1,10
−10

)

HB, Pareto(1/2,10
−10

)
HB, Gamma(0.001,0.001)

HB, Gamma(1,0.001)

Bootstrap basic

Bootstrap percentile

Mikael Kuusela (UChicago) September 21, 2016 39 / 21



Shape-constrained unfolding of steeply falling spectra

Joint work with Philip B. Stark (UC Berkeley)
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Shape-constrained unfolding [arXiv:1512.00905]

We present a technique for forming unfolded confidence intervals with
guaranteed finite-sample simultaneous frequentist coverage, provided
that f satisfies simple, physically justified shape constraints.

Current methods: Shape-constrained unfolding:

How to choose the regularization
parameter?

There is no regularization parameter
to choose

The uncertainties can suffer from
serious undercoverage

The uncertainties have guaranteed
frequentist finite-sample coverage

There is a systematic uncertainty
from the MC prediction which is
extremely difficult to quantify
rigorously

No need for a MC prediction and
hence no associated systematic
uncertainty

Correlations make the unfolded
graphical display difficult to interpret

The resulting simultaneous confidence
envelope has a direct interpretation
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Regularization using shape constraints
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Regularization using shape constraints
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Semi-discrete forward mapping

The response matrix K depends on the MC prediction because of the discretization of the
unfolded space

We remove this dependence by considering a semi-discrete forward mapping, where only
the smeared space is discretized

Recall the continuous forward model g(t) =
∫
E
k(t, s)f (s) ds

As before, we assume histogrammed observations y with mean vector

µ =

[∫
F1

g(t) dt, . . . ,

∫
Fn

g(t) dt

]T

The elements of µ are given by

µj =

∫
Fj

g(t) dt =

∫
Fj

∫
E

k(t, s)f (s) ds dt =

∫
E

kj(s)f (s) ds := Kj f

with kj(s) =
∫
Fj
k(t, s) dt

The semi-discrete forward mapping K is then given by µ = Kf = [K1f , . . . ,Knf ] T

The statistical model becomes y ∼ Poisson(µ), with µ = Kf

Aim: Infer λ =
[∫

E1
f (s) ds, . . . ,

∫
Ep
f (s) ds

]T

= [H1f , . . . ,Hpf ] T with Hk : f 7→
∫
Ek
f (s) ds
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Strict bounds confidence intervals (Stark, 1992)

Rn

Smeared space

V

True space

yΞ

D = K−1(Ξ)
C

f

K

µ

Rλk λkλk

λk = Hk f =
∫
Ek

f (s) ds, λk = min
f ∈C∩D

Hk f , λk = max
f ∈C∩D

Hk f
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Strict bounds confidence intervals (Stark, 1992)

Rn

Smeared space

V

True space

yΞ

D = K−1(Ξ)
C

f

K

µ

Rλk λkλk

Pf (µ ∈ Ξ) ≥ 1− α (1)⇒ Pf (f ∈ D) ≥ 1− α
⇒ Pf (f ∈ C ∩ D) ≥ 1− α
(2)⇒ Pf (λ ∈ [λ1, λ1]× · · · × [λp, λp]) ≥ 1− α

(1) Pf (µ ∈ Ξ) = Pf (f ∈ K−1(Ξ)) = Pf (f ∈ D)

(2) Pf (λ ∈ [λ1, λ1]× · · · × [λp , λp ]) ≥ Pf (f ∈ C ∩ D)
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Shape-constrained strict bounds

Hence the problem reduces to solving the optimization problems

min
f∈C∩D

Hk f and max
f∈C∩D

Hk f

We derive a conservative solution for the following shape constraints C :
1 f positive ⇒ finite-dimensional linear program
2 f positive and decreasing ⇒ finite-dimensional linear program
3 f positive, decreasing and convex ⇒ finite-dimensional program with a

linear objective and nonlinear constraints

This enables us to compute simultaneous confidence intervals for λ

The coverage of the intervals is guaranteed for known smearing kernel k
and for true f satisfying the shape constraints
The coverage probability will generally be larger than the nominal value,
but the interval lengths are still orders of magnitude shorter than those of
unregularized intervals

Details of the construction described in arXiv:1512.00905
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Demonstration: Inclusive jet pT spectrum

We demonstrate shape-constrained unfolding using the inclusive jet
transverse momentum spectrum

Let the true spectrum be (CMS Collaboration, 2011)

f (pT) = LN0

( pT

GeV

)−α(
1− 2√

s
pT cosh(ymin)

)β
e−γ/pT

with L = 5.1 fb−1,
√

s = 7000 GeV,N0 = 1017 fb/GeV, γ = 10 GeV,
α = 5, β = 10 and ymin = 0

We generate the smeared data by convolving this with the calorimeter
resolution N(0, σ(pT)2) where

σ(pT) = pT

√
N2

p2
T

+
S2

pT
+ C 2, N = 1 GeV,S = 1 GeV1/2,C = 0.05
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Demonstration: Inclusive jet pT spectrum
(a) Inclusive jet p

T
 spectrum, linear scale
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Demonstration: Inclusive jet pT spectrum
(b) Inclusive jet p

T
 spectrum, log scale
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Use of the unfolded simultaneous confidence intervals

In my view, the best way of
communicating the unfolded results is a
simultaneous confidence envelope in the
unfolded space

This confidence envelope has a direct
physical interpretation

The envelope contains the true λ,
whatever it may be, at least 95% of the
time under repeated sampling

(b) Uncertainty quantification with strict bounds
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The envelope can be used to perform a goodness-of-fit test of a new theory
prediction by simply overlaying the prediction on the figure

If the prediction is contained within the envelope then it is consistent with the
experimental data
If the prediction is outside the envelope at any bin, then it is rejected at 5%
significance level

The envelope can be used for propagating the unfolded measurements to
further analyses (after an appropriate multiplicity correction)

Algorithms for doing this are not yet there, but can be developed
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Conclusions and outlook

We have presented a method that provides guaranteed coverage
(for known k) in a large class of unfolding problems
This is in contrast with the current state-of-the-art unfolding methods
that can demonstrably fail to achieve nominal coverage
Provides rigorous guarantees without having to worry about the choice
of the regularization strength, MC dependence, unfolding biases,...
Many extensions possible:

Uncertainty in k(t, s)
Unimodality constraint
Combination of several unfolded measurements
Propagation of unfolded measurements to e.g. PDFs
Optimality considerations

Further details available in:
Kuusela, M. and Stark P. B. (2015). Shape-constrained uncertainty
quantification in unfolding steeply falling elementary particle spectra.
arXiv:1512.00905 [stat.AP].

The code for the simulation study available at:
https://github.com/mkuusela/ShapeConstrainedUnfolding

Mikael Kuusela (UChicago) September 21, 2016 52 / 21

https://github.com/mkuusela/ShapeConstrainedUnfolding

	Appendix
	Shape-constrained unfolding of steeply falling spectra

