Unfolding: A Statistician's Perspective

Mikael Kuusela

Department of Statistics University of Chicago

Phystat- ν

Fermilab September 21, 2016

The unfolding problem

- Any measurement is affected by the finite resolution of the particle detectors
 - This causes the observed spectrum of events to be "smeared" or "blurred" with respect to the true one
- The *unfolding problem* is to estimate the true spectrum using the smeared observations
- Mathematically closely related to deblurring in optics and tomographic image reconstruction in medical imaging

Problem formulation

- Let *f* be the true, particle-level spectrum and *g* the smeared, detector-level spectrum
 - Denote the true space by *E* and the smeared space by *F* (both taken to be intervals on the real line)
 - Mathematically *f* and *g* are the intensity functions of the underlying Poisson point process
- The two spectra are related by

$$g(t) = \int_E k(t,s)f(s)\,\mathrm{d}s,$$

where the smearing kernel k represents the response of the detector and is given by

$$k(t,s) = p(Y = t | X = s, X \text{ observed}) P(X \text{ observed} | X = s),$$

where X is a true event and Y the corresponding smeared event

Task: Infer the true spectrum f given smeared observations from g

Discretization

- Problem primarily discretized using histograms (splines are also sometimes used)
- Let {E_i}^p_{i=1} and {F_i}ⁿ_{i=1} be binnings of the true space E and the smeared space F
 Let y be the corresponding histogram of smeared observations with mean vector

$$\boldsymbol{\mu} = \left[\int_{F_1} g(t) \, \mathrm{d}t, \ldots, \int_{F_n} g(t) \, \mathrm{d}t\right]^\mathsf{T}$$

Let us set out to make inferences about the particle-level mean histogram

$$\boldsymbol{\lambda} = \left[\int_{E_1} f(s) \, \mathrm{d} s, \dots, \int_{E_p} f(s) \, \mathrm{d} s \right]^{-1}$$

• The mean histograms are related by $\mu = \mathsf{K}\lambda$, where the elements of the *response matrix* **K** are given by

 $K_{i,j} = \frac{\int_{F_i} \int_{E_j} k(t,s) f(s) \, ds \, dt}{\int_{F_i} f(s) \, ds} = P(\text{smeared event in bin } i \mid \text{true event in bin } j)$

The discretized statistical model becomes

$$\mathbf{y} \sim ext{Poisson}(\mathbf{K} \boldsymbol{\lambda}),$$

where \mathbf{K} is an ill-conditioned matrix

Discretization

- Problem primarily discretized using histograms (splines are also sometimes used)
- Let $\{E_i\}_{i=1}^p$ and $\{F_i\}_{i=1}^n$ be binnings of the true space E and the smeared space F
- Let **y** be the corresponding histogram of smeared observations with mean vector

$$\boldsymbol{\mu} = \left[\int_{F_1} g(t) \,\mathrm{d}t, \ldots, \int_{F_n} g(t) \,\mathrm{d}t\right]^\mathsf{T}$$

• Let us set out to make inferences about the particle-level mean histogram

$$\boldsymbol{\lambda} = \left[\int_{E_1} f(s) \,\mathrm{d} s, \ldots, \int_{E_p} f(s) \,\mathrm{d} s\right]^{-1}$$

• The mean histograms are related by $\mu = K\lambda$, where the elements of the *response* matrix **K** are given by

 $\mathcal{K}_{i,j} = \frac{\int_{F_i} \int_{E_j} k(t,s) f^{\mathrm{MC}}(s) \, \mathrm{d}s \, \mathrm{d}t}{\int_{E_j} f^{\mathrm{MC}}(s) \, \mathrm{d}s} = P(\text{smeared event in bin } i \, | \, \text{true event in bin } j)$

• The discretized statistical model becomes

$$\mathbf{y} \sim ext{Poisson}(\mathbf{K} \boldsymbol{\lambda}),$$

where ${\bf K}$ is an ill-conditioned matrix

Demonstration of ill-posedness

 $\boldsymbol{\mu} = \boldsymbol{\mathsf{K}} \boldsymbol{\lambda}, \quad \boldsymbol{\mathsf{y}} \sim \operatorname{Poisson}(\boldsymbol{\mu}) \quad \stackrel{??}{\Longrightarrow} \quad \hat{\boldsymbol{\lambda}} = \boldsymbol{\mathsf{K}}^{-1} \boldsymbol{\mathsf{y}}$

Demonstration of ill-posedness

Demonstration of ill-posedness

Regularization: bias \uparrow , variance \downarrow

Two main approaches to unfolding (at least in LHC experiments):

- **1** Tikhonov regularization (Höcker and Kartvelishvili, 1996; Schmitt, 2012)
- Expectation-maximization iteration with early stopping (D'Agostini, 1995; Richardson, 1972; Lucy, 1974; Shepp and Vardi, 1982; Lange and Carson, 1984; Vardi et al., 1985)

Tikhonov regularization

• Tikhonov regularization estimates λ by solving:

$$\min_{\boldsymbol{\lambda} \in \mathbb{R}^{\rho}} \left(\mathbf{y} - \mathbf{K} \boldsymbol{\lambda} \right)^{\mathsf{T}} \hat{\mathbf{C}}^{-1} (\mathbf{y} - \mathbf{K} \boldsymbol{\lambda}) + \delta P(\boldsymbol{\lambda})$$

• The first term as a Gaussian approximation to the Poisson log-likelihood

- The second term penalizes physically implausible solutions
- Common penalty terms:
 - Norm: $P(\lambda) = \|\lambda\|^2$
 - Curvature: $P(\lambda) = \|\mathsf{L}\lambda\|^2$, where L is a discretized 2nd derivative operator
 - SVD unfolding (Höcker and Kartvelishvili, 1996):

$$P(\boldsymbol{\lambda}) = \left\| \mathbf{L} \begin{bmatrix} \lambda_1 / \lambda_1^{\mathrm{MC}} \\ \lambda_2 / \lambda_2^{\mathrm{MC}} \\ \vdots \\ \lambda_p / \lambda_p^{\mathrm{MC}} \end{bmatrix} \right\|^2,$$

where $\lambda^{
m MC}$ is a MC prediction for λ

• TUnfold¹ (Schmitt, 2012): $P(\lambda) = \| \mathsf{L}(\lambda - \lambda^{\mathrm{MC}}) \|^2$

¹TUnfold implements also more general penalty terms

• Starting from some initial guess $oldsymbol{\lambda}^{(0)} > oldsymbol{0}$, iterate

$$\lambda_{j}^{(k+1)} = \frac{\lambda_{j}^{(k)}}{\sum_{i=1}^{n} K_{i,j}} \sum_{i=1}^{n} \frac{K_{i,j} y_{i}}{\sum_{l=1}^{p} K_{i,l} \lambda_{l}^{(k)}}$$

Regularization by stopping the iteration before convergence:

- $\hat{oldsymbol{\lambda}}=oldsymbol{\lambda}^{(K)}$ for some small number of iterations K
- I.e., bias the solution towards $\lambda^{(0)}$
- In RooUnfold (Adye, 2011), $oldsymbol{\lambda}^{(0)} = oldsymbol{\lambda}^{ ext{MC}}$

D'Agostini iteration

$$\lambda_{j}^{(k+1)} = \frac{\lambda_{j}^{(k)}}{\sum_{i=1}^{n} K_{i,j}} \sum_{i=1}^{n} \frac{K_{i,j} y_{i}}{\sum_{l=1}^{p} K_{i,l} \lambda_{l}^{(k)}}$$

- This iteration has been discovered in various fields, including optics (Richardson, 1972), astronomy (Lucy, 1974) and tomography (Shepp and Vardi, 1982; Lange and Carson, 1984; Vardi et al., 1985)
- In particle physics, it was popularized by D'Agostini (1995) who called it "Bayesian" unfolding
- But: This is in fact an expectation-maximization (EM) iteration (Dempster et al., 1977) for finding the maximum likelihood estimator of λ in the Poisson regression problem y ~ Poisson(Kλ)
- As $k o \infty$, $oldsymbol{\lambda}^{(k)} o oldsymbol{\hat{\lambda}}_{ ext{MLE}}$ (Vardi et al., 1985)
- This is a fully frequentist technique for finding the (regularized) MLE
 - The name "Bayesian" is an unfortunate misnomer

D'Agostini demo, k = 0

D'Agostini demo, k = 100

Choice of the regularization strength

- A key issue in unfolding concerns the choice of the regularization strength (δ in Tikhonov, K in D'Agostini)
- Many data-driven methods have been proposed:
 - Cross-validation (Stone, 1974)
 - L-curve (Hansen, 1992)
 - Empirical Bayes estimation (Kuusela and Panaretos, 2015)
 - Goodness-of-fit test in the smeared space (Veklerov and Llacer, 1987)
 - Akaike information criterion (Volobouev, 2015)
 - Minimization of a global correlation coefficient (Schmitt, 2012)

• ...

- Limited experience about the relative merits of these methods in typical unfolding problems
 - Some evidence that empirical Bayes tends to be more stable than cross-validation (Kuusela, 2016; Wood, 2011)
- Notice that all these are aiming to do optimal point estimation
 - Not necessarily optimal for uncertainty quantification!

Some comments based on experience from the LHC

- One should think carefully if unfolding is *really* needed
 - E.g., if the goal if the experiment is to measure just a few 1-dimensional parameters, then one should perform the fit in the smeared space (as opposed to inferring the quantities from the regularized unfolded spectrum)
 - What about smearing the theory instead of unfolding the data? (Complicated by systematics in the response matrix)
 - Unfolding can be useful for comparison of experiments, propagation to further analyses, tuning of MC generators, exploratory data analysis,...
- One should analyze carefully if regularization is necessary
 - If there is little smearing (response matrix almost diagonal), then the MLE obtained by running D'Agostini until convergence will do the job²
 - $\bullet\,$ Some insight can be obtained by studying the condition number of ${\bf K}$
- One must not rely on software defaults for the regularization strength
 - The unfolded solution is very sensitive to this choice and the optimal choice is very problem dependent

 $^2 {\sf The}$ matrix inverse $\hat{\lambda}={\sf K}^{-1}{\sf y}$ also gives the MLE provided that ${\sf K}$ is invertible and $\hat{\lambda}\geq 0$

Some comments based on experience from the LHC

- The standard methods (at least as implemented in RooUnfold) regularize by biasing the solution towards the MC prediction $\lambda^{
 m MC}$
 - Danger of producing over-optimistic results, as too strong regularization will always make the unfolded histogram match the MC, whether the MC is correct or not
 - Safer to use MC-independent regularization (possible in TUnfold)
- Uncertainty quantification (i.e., providing confidence intervals) in the unfolded space is a very delicate matter
 - When regularization is used, the variance alone may not be a good measure of uncertainty because it ignores the bias
 - But the bias is needed to regularize the problem... (Cf. inference in lasso regression and spline smoothing)
 - Two ways to alleviate this situation:
 - Debiased confidence intervals (Kuusela and Panaretos, 2015; Kuusela, 2016)

 Shape-constrained confidence intervals (Kuusela and Stark, 2016; Kuusela, 2016)

Undercoverage of existing methods

Method	Coverage at $s = 0$	Mean length
Bias-correction (data-driven) Bias-correction (oracle) Undersmoothing (data-driven) Undersmoothing (oracle) MMLE MISE	0.932 (0.915, 0.947) 0.937 (0.920, 0.951) 0.933 (0.916, 0.948) 0.949 (0.933, 0.962) 0.478 (0.447, 0.509) 0.359 (0.329, 0.390) 0.952 (0.937, 0.964)	0.079 (0.077, 0.081) 0.064 (0.064, 0.064) 0.091 (0.087, 0.095) 0.070 (0.070, 0.070) 0.030 (0.030, 0.030) 0.028 40316

$$\label{eq:MMLE} \begin{split} \mathsf{MMLE} &= \mathsf{choose}\ \delta\ \mathsf{to}\ \mathsf{maximize}\ \mathsf{the}\ \mathsf{marginal}\ \mathsf{likelihood}\\ \mathsf{MISE} &= \mathsf{choose}\ \delta\ \mathsf{to}\ \mathsf{minimize}\ \mathsf{the}\ \mathsf{mean}\ \mathsf{integrated}\ \mathsf{squared}\ \mathsf{error} \end{split}$$

Unfolding using shape-constrained confidence intervals

Figure : Shape-constrained unfolded confidence intervals for the inclusive jet $p_{\rm T}$ spectrum with *guaranteed* conservative 95 % simultaneous coverage.

Summary and conclusions

- Ill-posedness makes unfolding a very complex problem
- Tikhonov regularization and D'Agostini iteration are the most popular techniques
 - I personally find it easier to interpret the 2nd derivative penalty in Tikhonov than the early stopping in D'Agostini
- Proper choice of the regularization strength is crucial
 - A choice that is optimal for point estimation might not be optimal for uncertainty quantification
- Results from standard software (RooUnfold) depend strongly on the MC prediction (results biased towards the MC)
 - Better to use MC-independent regularization
- Uncertainties from standard techniques can be unreliable
 - Improved uncertainty quantification can be achieved by debiasing or by imposing qualitative shape constraints
- Many open statistical issues remain:
 - How to properly present unfolded results? (Bins are correlated)
 - How to properly deal with systematic uncertainties in the detector response?
 - How to properly compare, combine and propagate unfolded results?

- Adye, T. (2011). Unfolding algorithms and tests using RooUnfold. In Prosper, H. B. and Lyons, L., editors, *Proceedings of the PHYSTAT* 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN-2011-006, pages 313–318, CERN, Geneva, Switzerland.
- CMS Collaboration (2011). Measurement of the inclusive jet cross section in *pp* collisions at $\sqrt{s} = 7$ TeV. *Physical Review Letters*, 107:132001.
- D'Agostini, G. (1995). A multidimensional unfolding method based on Bayes' theorem. *Nuclear Instruments and Methods A*, 362:487–498.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)*, 39(1):1–38.
- Hall, P. (1992). Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. *The Annals of Statistics*, 20(2):675–694.

References II

- Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. *SIAM Review*, 34(4):561–580.
- Höcker, A. and Kartvelishvili, V. (1996). SVD approach to data unfolding. Nuclear Instruments and Methods in Physics Research A, 372:469–481.
- Kuusela, M. (2016). Uncertainty quantification in unfolding elementary particle spectra at the Large Hadron Collider. PhD thesis, EPFL. https://infoscience.epfl.ch/record/220015.
- Kuusela, M. and Panaretos, V. M. (2015). Statistical unfolding of elementary particle spectra: Empirical Bayes estimation and bias-corrected uncertainty quantification. *The Annals of Applied Statistics*, 9(3):1671–1705.
- Kuusela, M. and Stark, P. B. (2016). Shape-constrained uncertainty quantification in unfolding steeply falling elementary particle spectra. arXiv:1512.00905v3 [stat.AP], submitted.

References III

- Lange, K. and Carson, R. (1984). EM reconstruction algorithms for emission and transmission tomography. *Journal of Computer Assisted Tomography*, 8(2):306–316.
- Lucy, L. B. (1974). An iterative technique for the rectification of observed distributions. *Astronomical Journal*, 79(6):745–754.
- Richardson, W. H. (1972). Bayesian-based iterative method of image restoration. *Journal of the Optical Society of America*, 62(1):55–59.
- Schmitt, S. (2012). TUnfold, an algorithm for correcting migration effects in high energy physics. *Journal of Instrumentation*, 7:T10003.
- Shepp, L. A. and Vardi, Y. (1982). Maximum likelihood reconstruction for emission tomography. *IEEE Transactions on Medical Imaging*, 1(2):113–122.
- Stark, P. B. (1992). Inference in infinite-dimensional inverse problems: Discretization and duality. *Journal of Geophysical Research*, 97(B10):14055–14082.

References IV

- Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B (Methodological), 36:111–147.
- Vardi, Y., Shepp, L. A., and Kaufman, L. (1985). A statistical model for positron emission tomography. *Journal of the American Statistical Association*, 80(389):8–20.
- Veklerov, E. and Llacer, J. (1987). Stopping rule for the MLE algorithm based on statistical hypothesis testing. *IEEE Transactions on Medical Imaging*, 6(4):313–319.
- Volobouev, I. (2015). On the expectation-maximization unfolding with smoothing. arXiv:1408.6500v2 [physics.data-an].
- Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. *Journal of the Royal Statistical Society. Series B* (*Methodological*), 73(1):3–36.

Undercoverage of existing methods

Unfolding is an ill-posed inverse problem

- The linear system $\mu = \mathsf{K}\lambda$ is typically ill-conditioned
 - That is, true histograms λ that are very different can map into smeared histograms μ that are very similar
- As a result, the (pseudo)inverse of **K** is very sensitive to statistical fluctuations in the smeared data

UQ in inverse problems is challenging

Details in Kuusela and Panaretos (2015) and Kuusela (2016)

Towards improved uncertainty quantification

- Standard methods based on the variability of the unfolded point estimator do not adequately take the bias into account
 - As a result, they may suffer from *drastic undercoverage* in realistic unfolding scenarios (several examples given in Kuusela (2016))
- These exists very little previous work on how to solve this problem
- I have investigated two complementary approaches for improving this situation:
 - Debiased confidence intervals based on an iterative bias-correction (Kuusela and Panaretos, 2015; Kuusela, 2016)
 - Yields significantly improved coverage performance with only a modest increase in the interval length
 - Shape-constrained confidence intervals (Kuusela and Stark, 2016; Kuusela, 2016)
 - Yields guaranteed conservative coverage, provided that the spectrum satisfies simple shape constraints (positivity, monotonicity, convexity)

Optimal point estimation \neq optimal interval estimation

Debiasing

- Let $\hat{\beta}$ be the unfolded point estimator depending on the regularization strength δ (large $\delta \leftrightarrow$ strong regularization)
- A trivial way of debiasing $\hat{\beta}$ is to *undersmooth* (Hall, 1992) by choosing δ to be smaller than the value that would lead to optimal point estimation performance
 - The variability of the debiased point estimator is then used to construct confidence intervals
- Data-driven choice of $\delta:$ Calibrate $1-\alpha$ intervals to have coverage $1-\alpha-\varepsilon$
- But: One can obtain even more powerful inferences (i.e. shorter confidence intervals) by employing an iterative bias-correction:

Iterative bias-correction

9 Estimate the bias:
$$\widehat{ ext{bias}}^{(t)}(\hat{eta}) = \mathsf{E}_{\hat{eta}^{(t)}}(\hat{eta}) - \hat{eta}^{(t)}$$

2 Compute the bias-corrected estimate: $\hat{eta}^{(t+1)} = \hat{eta}^{(0)} - \widehat{\mathrm{bias}}^{(t)}(\hat{eta})$

Coverage-length trade-off

Demonstration: $Z \rightarrow e^+e^-$ invariant mass spectrum

Figure : Unfolding of the Z boson invariant mass spectrum, 95 % iteratively bias-corrected percentile intervals, calibrated to have 94 % target coverage

Examples of unfolding in LHC data analysis

Inclusive jet cross section

W boson cross section

Hadronic event shape

Charged particle multiplicity

Data-driven deconvolved confidence intervals

(a) Non-bias-corrected intervals, $\sigma = 0.005$

Figure : Gaussian intervals, 95 % nominal coverage, 94 % target coverage

Comparison of coverage performance, $\lambda_{\mathrm{tot}} = 1\,000$

Comparison of coverage performance, $\lambda_{\mathrm{tot}} = 10\,000$

Comparison of coverage performance, $\lambda_{tot} = 50\,000$

Shape-constrained unfolding of steeply falling spectra

Joint work with Philip B. Stark (UC Berkeley)

We present a technique for forming unfolded confidence intervals with guaranteed finite-sample simultaneous frequentist coverage, provided that f satisfies simple, physically justified shape constraints.

Current methods:

- How to choose the regularization parameter?
- The uncertainties can suffer from serious undercoverage
- There is a systematic uncertainty from the MC prediction which is extremely difficult to quantify rigorously
- Correlations make the unfolded graphical display difficult to interpret

Shape-constrained unfolding:

- There is no regularization parameter to choose
- The uncertainties have guaranteed frequentist finite-sample coverage
- No need for a MC prediction and hence no associated systematic uncertainty
- The resulting simultaneous confidence envelope has a direct interpretation

Semi-discrete forward mapping

- The response matrix **K** depends on the MC prediction because of the discretization of the unfolded space
- We remove this dependence by considering a semi-discrete forward mapping, where only the smeared space is discretized
- Recall the continuous forward model $g(t) = \int_E k(t,s)f(s) ds$
- As before, we assume histogrammed observations y with mean vector

$$\boldsymbol{\mu} = \left[\int_{F_1} g(t) \,\mathrm{d}t, \ldots, \int_{F_n} g(t) \,\mathrm{d}t\right]^{\mathsf{T}}$$

• The elements of μ are given by

$$\mu_j = \int_{F_j} g(t) \,\mathrm{d}t = \int_{F_j} \int_E k(t,s) f(s) \,\mathrm{d}s \,\mathrm{d}t = \int_E k_j(s) f(s) \,\mathrm{d}s := K_j f(s) \,\mathrm{d}s$$

with $k_j(s) = \int_{F_j} k(t, s) dt$

- The semi-discrete forward mapping \mathcal{K} is then given by $\boldsymbol{\mu} = \mathcal{K}f = [\mathcal{K}_1 f, \dots, \mathcal{K}_n f]^{\mathsf{T}}$
- The statistical model becomes $\mathbf{y} \sim \operatorname{Poisson}(\boldsymbol{\mu}), \ {\sf with} \ \boldsymbol{\mu} = \mathcal{K} f$

• Aim: Infer
$$\lambda = \left[\int_{E_1} f(s) \, \mathrm{d}s, \dots, \int_{E_p} f(s) \, \mathrm{d}s\right]^{\mathsf{T}} = \left[H_1 f, \dots, H_p f\right]^{\mathsf{T}}$$
 with $H_k \colon f \mapsto \int_{E_k} f(s) \, \mathrm{d}s$

Strict bounds confidence intervals (Stark, 1992)

$$\lambda_k = H_k f = \int_{E_k} f(s) \, \mathrm{d}s, \quad \underline{\lambda}_k = \min_{f \in C \cap D} H_k f, \quad \overline{\lambda}_k = \max_{f \in C \cap D} H_k f$$

Strict bounds confidence intervals (Stark, 1992)

$$\begin{array}{rcl} \mathsf{P}_{f}(\boldsymbol{\mu}\in\Xi)\geq 1-\alpha & \stackrel{(1)}{\Rightarrow} & \mathsf{P}_{f}(f\in D)\geq 1-\alpha \\ & \Rightarrow & \mathsf{P}_{f}(f\in C\cap D)\geq 1-\alpha \\ & \stackrel{(2)}{\Rightarrow} & \mathsf{P}_{f}(\boldsymbol{\lambda}\in[\underline{\lambda}_{1},\overline{\lambda}_{1}]\times\cdots\times[\underline{\lambda}_{p},\overline{\lambda}_{p}])\geq 1-\alpha \end{array}$$

(1) $P_f(\mu \in \Xi) = P_f(f \in \mathcal{K}^{-1}(\Xi)) = P_f(f \in D)$ (2) $P_f(\lambda \in [\underline{\lambda}_1, \overline{\lambda}_1] \times \cdots \times [\underline{\lambda}_p, \overline{\lambda}_p]) \ge P_f(f \in C \cap D)$

Shape-constrained strict bounds

• Hence the problem reduces to solving the optimization problems

 $\min_{f \in C \cap D} H_k f \quad \text{and} \quad \max_{f \in C \cap D} H_k f$

- We derive a conservative solution for the following shape constraints C:
 - f positive \Rightarrow finite-dimensional linear program
 - 2 f positive and decreasing \Rightarrow finite-dimensional linear program
 - I positive, decreasing and convex ⇒ finite-dimensional program with a linear objective and nonlinear constraints
- ullet This enables us to compute simultaneous confidence intervals for λ
 - The coverage of the intervals is guaranteed for known smearing kernel k and for true f satisfying the shape constraints
 - The coverage probability will generally be larger than the nominal value, but the interval lengths are still orders of magnitude shorter than those of unregularized intervals
- Details of the construction described in arXiv:1512.00905

Demonstration: Inclusive jet $p_{\rm T}$ spectrum

- We demonstrate shape-constrained unfolding using the inclusive jet transverse momentum spectrum
- Let the true spectrum be (CMS Collaboration, 2011)

$$f(p_{\rm T}) = LN_0 \left(\frac{p_{\rm T}}{\rm GeV}\right)^{-\alpha} \left(1 - \frac{2}{\sqrt{s}} p_{\rm T} \cosh(y_{\rm min})\right)^{\beta} e^{-\gamma/p_{\rm T}}$$

with $L = 5.1 \text{ fb}^{-1}$, $\sqrt{s} = 7000 \text{ GeV}$, $N_0 = 10^{17} \text{ fb/GeV}$, $\gamma = 10 \text{ GeV}$, $\alpha = 5, \beta = 10 \text{ and } y_{\min} = 0$

 We generate the smeared data by convolving this with the calorimeter resolution N(0, σ(p_T)²) where

$$\sigma(p_{\rm T}) = p_{\rm T} \sqrt{\frac{N^2}{p_{\rm T}^2} + \frac{S^2}{p_{\rm T}} + C^2}, \quad N = 1 \, {
m GeV}, S = 1 \, {
m GeV}^{1/2}, C = 0.05$$

Demonstration: Inclusive jet $p_{\rm T}$ spectrum

Demonstration: Inclusive jet $p_{\rm T}$ spectrum

Use of the unfolded simultaneous confidence intervals

- In my view, the best way of communicating the unfolded results is a simultaneous confidence envelope in the unfolded space
- This confidence envelope has a direct physical interpretation
 - The envelope contains the true $\lambda,$ whatever it may be, at least 95% of the time under repeated sampling

- The envelope can be used to perform a goodness-of-fit test of a new theory prediction by simply overlaying the prediction on the figure
 - If the prediction is contained within the envelope then it is consistent with the experimental data
 - If the prediction is outside the envelope at any bin, then it is rejected at 5% significance level
- The envelope can be used for propagating the unfolded measurements to further analyses (after an appropriate multiplicity correction)
 - Algorithms for doing this are not yet there, but can be developed

Conclusions and outlook

- We have presented a method that provides guaranteed coverage (for known k) in a large class of unfolding problems
- This is in contrast with the current state-of-the-art unfolding methods that can demonstrably fail to achieve nominal coverage
- Provides rigorous guarantees without having to worry about the choice of the regularization strength, MC dependence, unfolding biases,...
- Many extensions possible:
 - Uncertainty in k(t, s)
 - Unimodality constraint
 - Combination of several unfolded measurements
 - Propagation of unfolded measurements to e.g. PDFs
 - Optimality considerations
- Further details available in:

Kuusela, M. and Stark P. B. (2015). Shape-constrained uncertainty quantification in unfolding steeply falling elementary particle spectra. arXiv:1512.00905 [stat.AP].

• The code for the simulation study available at:

 $\verb+https://github.com/mkuusela/ShapeConstrainedUnfolding+$