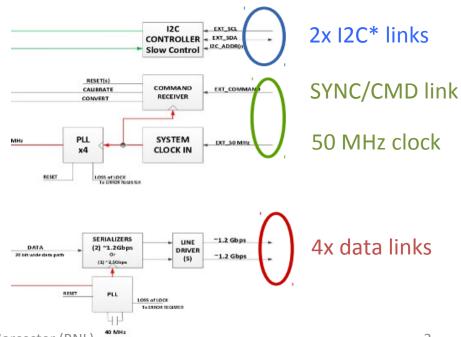

ProtoDUNE Cold Cable

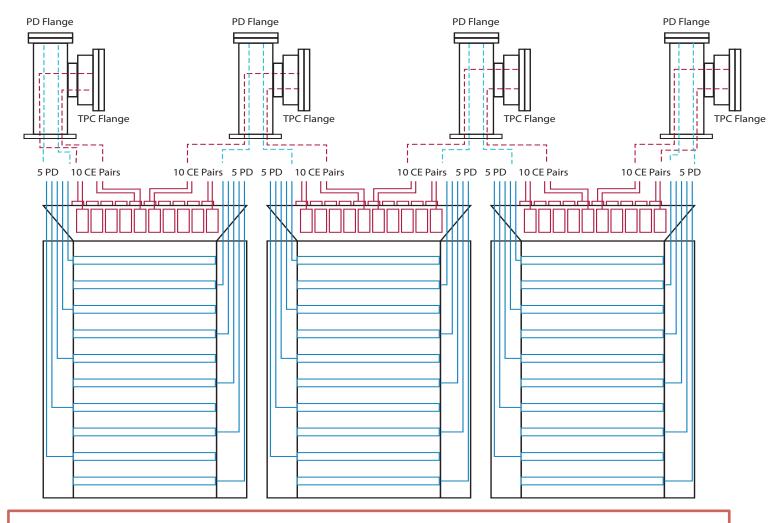
Matthew Worcester (BNL)

WIB Discussion April 21, 2016

TPC Electronics

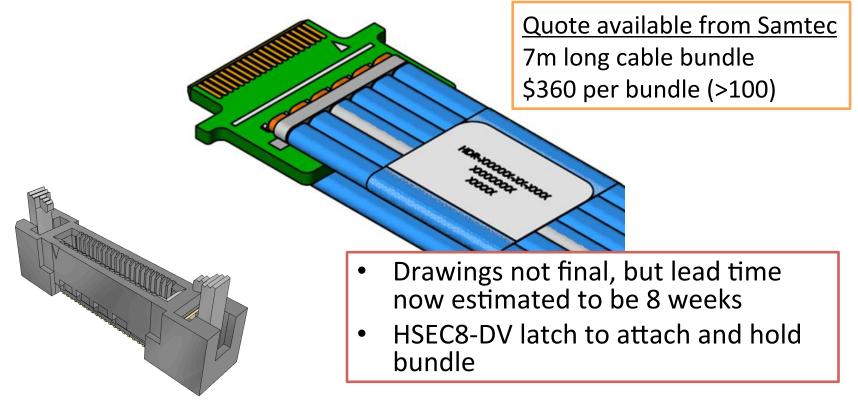


Cold Cable


- High-speed data: 480 bits x 2 MHz x 1.25 (8b/10b encoding) = 1.2 Gbps
 - Per 32 channels: 4 per FEMB

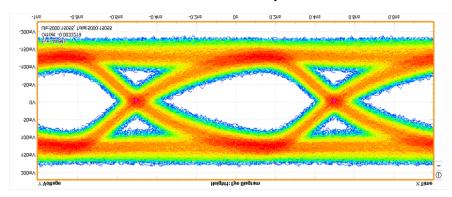
- 12 links required per FPGA
 - Four 1.2 Gbps data links
 - Two differential I2C* links
 - One differential 50 MHz clock
 - One differential SYNC/CMD link
 - 4 JTAG signals (single-ended) for FPGA programming
- Not including LV power
- COLDATA mezzanine requires 9 differential links

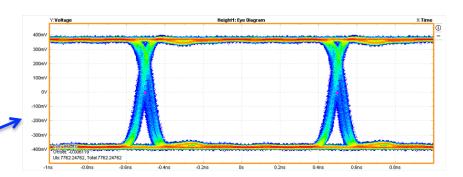
Cable Routing Scheme

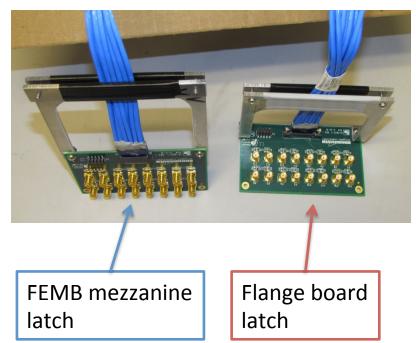


Longest cable = 6.4m including contingency, same as DUNE upper APAs

Samtec 12-Pair Cable Bundles


Samtec 26-gauge twin-axial cable will carry all 12 links


- Samtec will custom assemble with Samtec HSEC8 connector
- All cable bundles in ProtoDUNE will be short (< 7 meters)



Recent Test Results

- Samtec 26-gauge cable tested at 25m (DUNE long cable) with active equalizer at warm end for signal recovery
 - Produced eye diagram
 - Passed BER test up to 10¹³ bits
- Samtec connectors tested in LiN with 25m of warm Gore 24-gauge cable
 - Produced eye diagram (below)
 - Passed BER test up to 10¹² bits

Samtec Twinax Cable

100 Ohm, 26 AWG Twinax Cable

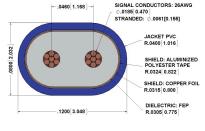
PERFORMANCE DATA

Capacitance: 13 pF/ft (nominal) Skew: 10 ps/m within pairs Propagation Delay: 1.46 ns/foot Flex Cycles: 4,000 cycles, single'

Current Rating: Single Conductor = 4.7 Amps**

Two Conductors = 3.4 Amps**

Shield DCR: 63Ω/1000ft CC DCR: 39Ω/1000ft Min. Bend Radius: .125' Availability: Single, tape bonded


Temperature Rating: -25°C to 105°C, UL VW-1 Tested ***

DWV Working Voltage: 575 V****

Performa

ance Rating:		
IL	.25m	1m
-3dB	>20GHz	11.4GHz
-7dB	>20GHz	>20GHz

A 3M Company

Dyneon[™]

Fluorothermoplastics

THV 500G

Product Features

- Excellent flexibility
- · Processing profile allows co-processing with olefinic plastics and hydrocarbon elastomers
- · Excellent chemicaland permeationresistance
- · Low flammability
- · Bondable to itself and other substrates (for multi-layer constructions)

Typical Properties (Data not for specification purposes)

Form	Pellets		
Melting Point	165°C (330°F)	ASTM D4591	
Melt Flow Index	10 (265°C/5 kg)	ASTM D1238	
Specific Gravity	1.98 g/cm³	ASTM D792	
Tensile at Break	28 MPa (4,060 psi)	ASTM D638 (film)	
Elongation at Break	500%	ASTM D638	
Flexural Modulus	210 MPa (30,000 psi)	ASTM D790	
Limiting Oxygen Index	>75	ASTM D2863	
Packaging	25 kg (55lb) bag 590 kg (1,300 lb) tote		

Introduction

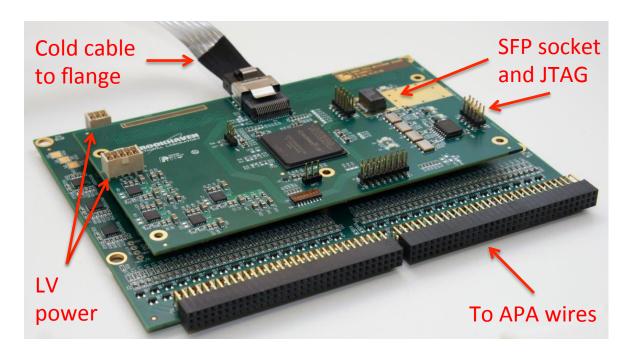
THV 500G is a flexible, transparent fluoroplastic composed of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride in the form of pellets. It provides a balance of low temperature processing, low flammability, thermal stability, and melt processability. It can be used to prepare

Safety/Toxicology

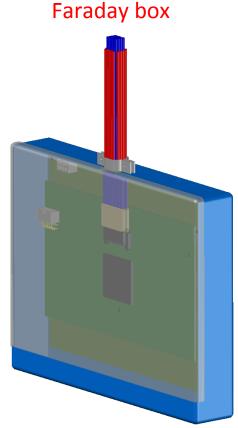
This is a fluoroplastic material so normal precautions observed with fluoroplastics should be followed. Before processing these products, consult the Material Safety Data Sheet and labels. Follow all directions and handling precautions. General handling/processing

- 30 AWG THV insulated twinax cable is available
 - Cold test at BNL to check integrity of cable insulation OK at LN2 temperature
 - Sample of cable is undergoing purity test at Fermilab MTS, results due by the end of April
- 26 AWG THV insulated twinax cable sample will be available by the end of April
 - To verify electrical test results, compared to PVC insulated twinax cable already tested at BNL
- Fabrication of 12-pair cable assembly will start after purity test at Fermilab and electrical test at BNI

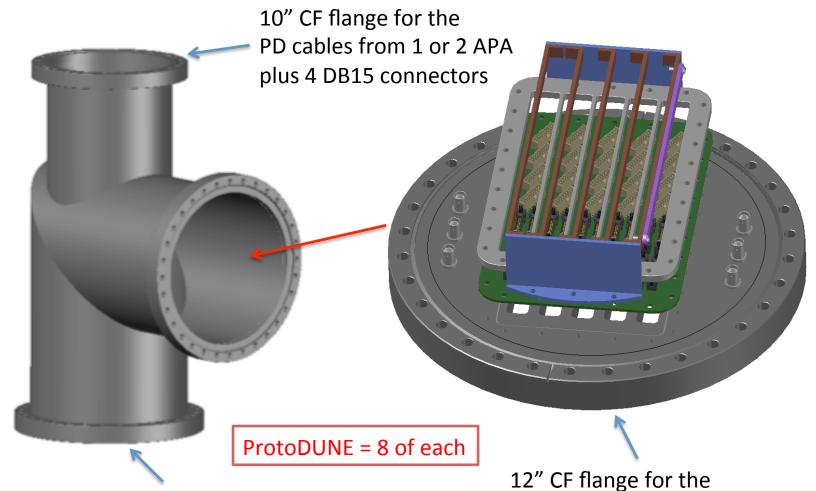
Remaining Schedule


- Prototypes of 7 meter long Samtec bundle with connector available by summer 2016
 - Cable validation tests at BNL
 - Noise and integration tests at FNAL, CERN, BNL
- Prototype FEMB mezzanine and flange boards available by summer 2016
 - Will be tested with cable in cold electronics integration teststand at BNL
- If Samtec cables fail prototyping tests, fallback is 3M mini-SAS cable
 - Mini-SAS will be tested concurrently for SBND
- Final order of Samtec bundles for protoDUNE by end of 2016
 - -120 + 20 spares
 - 8 weeks of lead time: bundles available for validation by March 2017

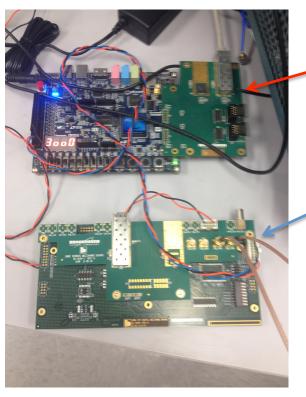
Conclusion


- Samtec 26 AWG cable bundles will be used in ProtoDUNE
 - Candidate for all cable lengths in DUNE far detector
 - All bundles will be short (< 7 meter)
 - 8 week lead time works in accelerated ProtoDUNE schedule
- Cable testing, FEMB and flange designs ongoing at BNL

Backup Slides


FEMB

- 128 channels of digitized TPC wire readout
 - 8 FE ASICs/8 ADC ASICs on the analog motherboard
 - Controlled by 2 COLDATA/1 FPGA on the mezzanine
- 12 bit ADCs digitizing at 2 MHz
- Mounted in modular Faraday box with built-in cable strain relief


Cryostat Flange and Feed-through

10" pipe, 12" CF flange for the cryostat nozzle

CE cables from 1 or 2 APA plus wire bias connectors

Cold Cable Test Setup at BNL

Cyclone V evaluation board

- generates a random bit pattern
- sends pattern to 35ton FPGA

35ton FPGA mezzanine

- sends bits over LVDS cable pair to scope
- sets pre-emphasis "kick" to drive data

Tektronix oscilloscope

- locks onto bit pattern and generates eye diagram
- eye diagram necessary to validate cable but not guarantee of 0 bit error rate

DUNE Cable Length Estimate

Condition #1

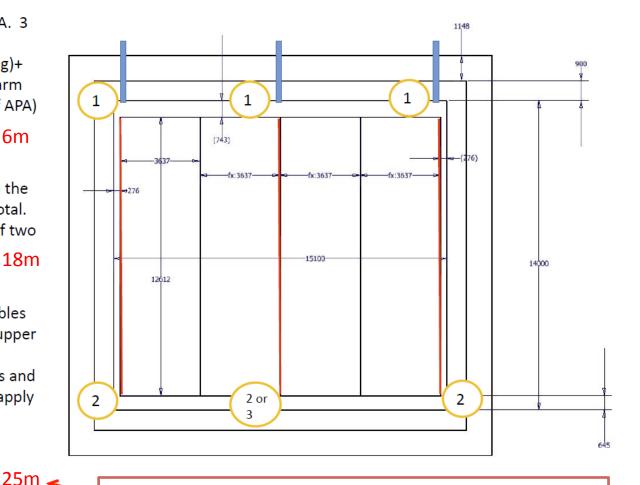
This will apply to all of the upper APA. 3 rows of 25 or 75 total.

743 (distance from fin to inner ceiling)+
900 (insulation thickness)+ 1148 (warm
structure thickness)+ 2320 (width of APA)
= 5111 mm + 25% = 6400 mm

Condition #2

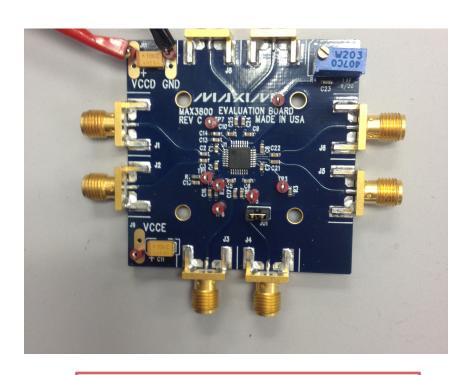
This will apply to the bottom APA on the two outer rows. 2 row of 25 or 50 total.

Same as #1, 5111 + 12612 height of two APAs) = 17723 + 25 % = 22150 mm


18m

Condition #3

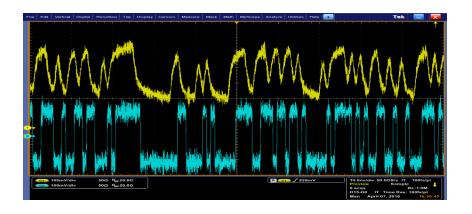
If we cannot route the lower APA cables through the structural tubes of the upper APA the cables will need to go the cryostat floor, route over to the walls and then up to the feed thrus. This will apply to the final 25 APAs.


Same as #2, 17723 + 3637 (distance between CPA and APA) + 3637

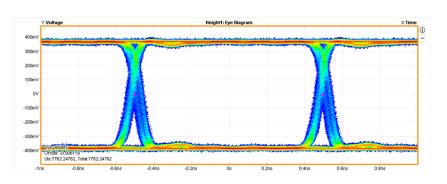
= 24997 + 25 = 31250 mm

Readout of this length at room temperature is biggest challenge

Samtec Cable Testing



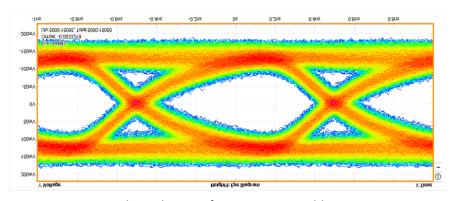
26-gauge Samtec is an option for DUNE far detector long cable.


- Use commercial active equalizer to recover signals at warm end of long cable
 - MAX3800 from Maxim Integrated
 - Equalizers will be implemented on WIB with a bypass option
- Samtec HSEC8 connector tested in cryo
 - With Gore bundle
 - Passed eye diagram and bit error rate (BER) tests

Cold Cable Active Signal Equalization

- One way to enhance cable performance is to use an equalization IC on the output end of the cable. Shown is a screen shot comparison of the two sides of the twin-axial signal from a 25 meter, 26 gauge cable (Omnibit) manufactured by Hitachi.
- In the figure one conductor is equalized and one conductor is not. The equalizer used is a Max3800.
- The 2nd figure shows an eye diagram o a 25 meter, 26 gauge, Samtec twin-axial cable after equalization.
- It should be noted that an eye diagram produced with equalization is probably not a sufficient test of the cable signal integrity. A Bit Error Rate Test (BER) must be performed also.
- Both the Samtec and Hitachi Omnibit cables passed a BER test up to 10¹³ bits.

Comparison of signals through a cable with and without equalization.


Eye diagram of a 25 meter, 26 gauge cable from Samtec after equalization

Cold Cable Gore Prototype Cable Tests

- The Gore proto-type cable has the following characteristics
 - 1) 12 twin-axial, 24 gauge pairs
 - 2) 25 meters long
- 3) PC boards designed to insert into a Samtec HSEC8-120 connector
- Shown are the 2 terminations along with the breakout boards (one with a vertical connector and the other with a right angle connector) along with strain relief used for testing. Eight of the twin-axial pairs are terminated with SMA connectors for testing.
- To test the cable termination, each breakout board was separately immersed in LN and a BER test made up to 10^{12.} bits. All 8 twin-ax pairs for each board passed.
- All 8 twin-axial pairs were also tested at room temperature. All passed and shown is a typical eye diagram from one of the pairs. The total variance in eye height and jitter from pair to pair is approximately 10% for eye height and 20% for total jitter.

Terminations and strain relief for cable breakout

Typical Eye diagram for Gore proto-cable at RT. Eye height = 131 mV, Total Jitter = 427 ps

Cable Option Summary

	Gore	Samtec	3M mini-SAS
Validated length	25m	25m (w/equalizer)	7m
Gauge	24	26	30
Туре	Twin-axial	Twin-axial	Twin-axial/single
Connector	Samtec HSEC8	Samtec HSEC8	Molex
FEMB revision	Next	Next	Current (SBND)
Decision for first prototypes	End of April 2016	End of April 2016	End of April 2016
Decision for final components	September 2016 (cable lead time)	September 2016 (FEMB design)	September 2016 (FEMB design)
Cost (/bundle)	\$2,175	\$360	\$72
Lead time	5 months	8 weeks	10 weeks
Status	Sample at BNL	Sample fabrication in May 2016	Sample at BNL (r/o SBND FEMB)