Measurement of Antineutrino to Neutrino Charged-current Interaction Cross Section Ratio in MINERvA

Lu Ren On Behalf of the MINERvA Collaboration University of Pittsburgh August 1st, 2017

Outline

- Motivation
- Low-v Method
- Systematic Uncertainty
- Results
- Conclusion

Motivation

- Future long-baseline oscillation experiments measure oscillation parameters and CP phase using neutrino and antineutrino beams below 10 GeV
- CP asymmetry $A_{cp} = \frac{P(\nu_{\mu} \to \nu_{e}) P(\bar{\nu_{\mu}} \to \bar{\nu_{e}})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu_{\mu}} \to \bar{\nu_{e}})}$ is sensitive to the antineutrino to neutrino cross section ratio

Low-v Method

- Relies on the information from hadron energy $v = E_{Had} = E_v E_\mu$ • $\frac{d\sigma^{\nu,\bar{\nu}}}{d\nu} = A(1 + \frac{B^{\nu,\bar{\nu}}}{A}\frac{\nu}{E} - \frac{C^{\nu,\bar{\nu}}}{A}\frac{\nu^2}{2E^2})$
- In the limit $\frac{\nu}{E} \to 0$
 - Cross sections are independent of neutrino energy
 - Neutrino and antineutrino are almost identical
 - Small ν /E dependent correction
 - Flux normalized with external (neutrino) world data.

Hadronic system

Low-v Method

Neutrino Energy (GeV)

Charged-current Event Selection

- Low Energy (LE) data
 - Forward Horn Current (FHC)
 - Reverse Horn Current (RHC)
- Inclusive sample
 - Events with a vertex in fiducial volume and a muon matched in MINOS near detector
 - Kinematic cuts
 - $\blacksquare \quad E_{\mu} > 1.8 \text{ GeV}$
 - $\bullet \quad \theta_{\mu} < 0.35 \text{ rads}$
- Flux sample
 - Extra maximum hadron energy cut

E Range (GeV)	$\nu_o ~({ m GeV})$
2-3	0.3
3-7	0.5
7-12	1.0
>12	2.0

Systematic Uncertainty

- Normalization: precision of NOMAD¹ measurements in normalization region (3.58%)
- Model uncertainty (GENIE-Hybrid)
 - GENIE recommended 26 parameter variations Ο
 - Rein-Seghal, Bodek-Yang, FSI, etc.
 - Valencia 2p2h model Ο
 - Random Phase approximation (RPA) Ο
- Reconstruction
 - Muon energy scale Ο
 - Muon momentum reconstruction
 - Detector mass and energy loss per length
 - Hadron energy scale Ο
 - Detector response of final state particles

-	Energy Source	Uncertain
_		
	MINERvA mass (C, Fe, Pb)	$17 { m MeV}$
	MINERvA mass (scintillator)	$11 { m MeV}$
	MINERvA $\frac{dE}{dx}$ (C, Fe, Pb)	$40 { m MeV}$
	MINERvA $\frac{dE}{dx}$ (scintillator)	$30 { m MeV}$
	MINOS Curvature $(p_{\mu} > 1 GeV)$) 0.6%
	MINOS Curvature $(p_{\mu} < 1 GeV)$) 2.5%

Error Source

MINOS Range

Error

2.%

. 10 TZ

Energy Source	Uncertainty
Proton	3.5%
Neutron (KE <50 MeV)	25%
Neutron (50 <ke <150="" mev)<="" td=""><td>10%</td></ke>	10%
Neutron (KE >150 MeV)	20%
Muon	2.4%
γ, π^0, e^{\pm}	3%
π^{\pm} , Kaon	5%
Cross talk	20%
Other	20 %

Systematic Uncertainty on Fluxes

- Dominated by energy scales at low energy
- Dominated by external normalization at high energy
- Larger statistical uncertainty for antineutrinos

Systematic Uncertainty on Cross Sections and the Ratio

- Cross sections
 - Common systematics of inclusive and flux samples cancel for the cross sections (e.g., energy scales)
 - Cross section model uncertainty dominates at low energy, normalization dominates at high energy
- Ratio
 - Common systematics of neutrino and antineutrino cross sections partially cancel for the ratio (e.g. normalization and cross section model uncertainty)
 - Statistical uncertainty dominates

Fluxes

- Extracted low-v fluxes comparing with input MC fluxes (hadron production model)
- Low-v fluxes have a factor of 1.5-1.9 improvement of uncertainties

Cross Sections: Data vs Model

- The primary results are $\sim 2\sigma$ below the model at low energy
- Difference between two results is due to different cross section models and different kinematic modeling at low energy
 Primary: GENIE-hybrid

Cross Sections: World Data

- Measured cross sections comparing with GENIE 2.8.4 in the energy range 2-22 GeV
- Neutrino cross section normalized to NOMAD in 12-22
 GeV, antineutrino cross section normalization is related to neutrino
- Most precise measurement of antineutrino cross section below
 6 GeV

Cross Section Ratio: Data vs Model

- Results are above the model $(< 1\sigma)$ at low energy
- The difference between two results are smaller than cross sections due to cancellation between neutrino and antineutrino cross sections
- NuWro result is below GENIE-Hybrid result everywhere

Cross Section Ratio: World Data

- Antineutrino to neutrino CC inclusive cross section ratio $R_{CC} = \sigma^{\overline{\nu}} / \sigma^{\nu}$
- First precise measurement below 6 GeV
 - Many systematic uncertainties cancel in the ratio
 - \circ The precision reaches ~5%
 - Can be improved by increasing antineutrino sample

Conclusions

- Measured neutrino and antineutrino fluxes, cross sections and the antineutrino to neutrino cross section ratio in the 2-22 GeV region
 - Fluxes: reasonable agreement with hadron production model
 - Neutrino cross section : ~10% below model at low energy, has the similar trend as world data
 - Antineutrino cross section and ratio : most precise measurement below 6 GeV, error dominated by statistics
- Feature of this measurement

1 1 1

- Results with GENIE and NuWro model corrections
- Allow correction from alternative models in the future

L. Ren et al. (MINERvA Collaboration), Phys.Rev. D95 (2017) no.7, 072009

Backup

T2K result

- T2K recently published CC Inclusive cross sections and the ratio below 1.5 GeV, <u>https://arxiv.org/pdf/1706.04257.pdf</u>
- Ratio: 0.373 ± 0.012 (stat.) ± 0.015 (syst.), 5% total uncertainty

Model-dependence Corrections

GENIE uncertainty

GENIE Knob name	Description	1 σ
MaRES	Ajust M_A in Rein-Seghal cross section	$\pm 20\%$
MvRES	Ajust M_v in Rein-Seghal cross section	$\pm 10\%$
Rvp1pi	1 pi production from νp non-resonant interactions	$\pm 50\%$
Rvn1pi	1 pi production from νn non-resonant interactions	$\pm 15\%$
Rvp2pi	2 pi production from νp non-resonant interactions	$\pm 50\%$
Rvn2pi	2 pi production from νn non-resonant interactions	$\pm 50\%$
VeCFFCCQEshape	Changes from BBBA to dipole	on or off
AhtBY	Bodek-Yang parameter A_{HT}	$\pm 25\%$
BhtBY	Bodek-Yang parameter B_{HT}	$\pm 25\%$
CV1uBY	Bodek-Yang parameter C_{V1u}	$\pm 30\%$
CV2uBY	Bodek-Yang parameter C_{V2u}	$\pm 40\%$

GENIE Knob name	Description	1σ
MFP_N	mean free path for nucleons	$\pm 20\%$
FrCex_N	nucleon fates - charge exchange	$\pm 50\%$
FrElas_N	nucleon fates - elastic	$\pm 30\%$
Frinel_N	nucleon fates - inelastic	$\pm 40\%$
FrAbs_N	nucleon fates - absorption	$\pm 20\%$
FrPiProd_N	nucleon fates - pion production	$\pm 20\%$
MFP_pi	mean free path for pions	$\pm 20\%$
FrCEx_pi	pion fates - charge exchange	$\pm 50\%$
FrElas_pi	pion fates - elastic	$\pm 10\%$
Frinel_pi	pion fates - inelastic	$\pm 40\%$
FrAbs_pi	pion fates - absorption	$\pm 30\%$
FrPiProd_pi	pion fates - pion production	$\pm 20\%$

EFNUCR	Increase/decrease to nuclear size for low energy hadrons.
FZONE	Change formation time by 50%
Hadronization_Alt1	Change AGKY model to do a simple phase space decay of hadrons.