Neutral Current Coherent π⁰ Measurement in the NOvA ND

Hongyue Duyang University of South Carolina

For the NOvA Collaboration

DPF Meeting 2017

APS PARTICLES & FIELDS

July 31 – August 4 dpf2017.fnal.gov Fermilab

Introduction to Coherent Pion Production

 Neutrinos can coherently scatter off target nucleus via charge/neutral current interaction and produce pions:

 $u {\cal A}
ightarrow
u {\cal A} \pi^0$

- The target nucleus stays in ground state.
- Small momentum transfer. No quantum number (charge, spin, isospin) exchange.
- Single forward-going pion in the final state, no other pions or nucleons or vertex activity.

- Coherent π^0 is an important background to ν_e appearance measurement..
- Physics in its own right: Partially Conserved Axial Current (PCAC) hypothesis, used in Rein-Seghal model and in most neutrino event generators such as GENIE.

- 0.3 kton, 4.2mX4.2mX15.8m,
- 1 km from source, underground at Fermilab.
- PVC cells filled with liquid scintillator.
- Alternating planes of orthogonal view.

- 0.3 kton, 4.2mX4.2mX15.8m,
- 1 km from source, underground at Fermilab.
- PVC cells filled with liquid scintillator.
- Alternating planes of orthogonal view.

NOvA Far Detector (Ash River, MN)

Wisconsin

Lake Michigan

Milwaukee

Fermilab

Chicago

MINOS Far Detector (Soudan, MN)

- 0.3 kton, 4.2mX4.2mX15.8m,
- 1 km from source, underground at Fermilab.
- PVC cells filled with liquid scintillator.
- Alternating planes of orthogonal view.

- 0.3 kton, 4.2mX4.2mX15.8m,
- 1 km from source, underground at Fermilab.
- PVC cells filled with liquid scintillator.
- Alternating planes of orthogonal view.

- 0.3 kton, 4.2mX4.2mX15.8m,
- 1 km from source, underground at Fermilab.
- PVC cells filled with liquid scintillator.
- Alternating planes of orthogonal view.

Low-Z, fine-grained (1 plane ~ 0.15X₀), highly-active tracking calorimeter Optimized for EM shower measurement, including the π^0 s

Coherent π^0 in The NOvA ND

- Signature of COH π^0 in the NOvA ND is one single forward-going π^0 .
- Photons from neutral pion decay make EM showers.
- Reconstructing both photons provide additional constraint on background and energy scale.

- Narrow band neutrino beam 1~3GeV peak at ~2GeV, Dominated by $v_{\mu}(94\%)$
- Neutrino flux uncertainty comes form hadron production and beam focusing.
- Hadron production uncertainty constraint by external hadron production data (PPFX).

Analysis Strategy

- Select NC π^0 sample: no muon track, two photon showers, no other particles. Reconstruct the invariant mass.
- Using kinematics, further select a signal sample with most of the coherent signal.
- Define a control sample (sideband), dominated by non-coherent π^0 s, to constrain background modeling.
- Apply the background fit result to the signal sample.
- Get a flux-averaged cross-section measurement from the signal sample as the data event excess over background prediction in the coherent region.

Photon Shower Identification

- Look for $\pi^0 \Rightarrow \gamma \gamma$ and both photons are reconstructed.
- Identify EM showers by likelihoods build upon shower longitudinal and transverse dE/dx information.

NC π^0 Sample

- Identify the NC π^0 sample
 - Absence of muon.
 - Two showers identified as photons by dE/dx-based likelihoods.
- Reconstruct invariant mass.
- Background dominated by RES and DIS π^0 s.
- Cut on invariant mass further reduces background.
- Also serve as a check of photon reconstruction and energy scale.

Signal Sample and Control Sample

Signal Sample and Control Sample

NOvA Preliminary 800 Events/3.7×10²⁰ POT/0.02 GeV 🕂 Data COH π^0 600 NonCOH Non π^0 400 200 0 0.2 0.4 0.6 0.8 Vertex Energy (GeV)

• Divide the NC π^0 into two sub-samples:

- Signal sample: events with most of their energy in the 2 photonshowers and low vertex energy: it has >90% of the signal.
- Control sample: the events with extra energy other than the photons or in the vertex region, dominated by non-coherent π⁰ s (RES and DIS).

Control Sample

The control sample is used to fit background to data in π^0 energy vs angle 2D space.

Background Fit

Background Fit

DIS in Control Sample NOvA Simulation

 E_{π^0} (GeV) E_{π^0} (GeV) Fit the backgrounds to control sample data in π^0 energy vs angle 2D space. **RES in Signal Sample NOvA Simulation**

Apply the background tuning to the signal sample.

Signal Sample

- Background fit result are applied to the backgrounds in the signal sample.
- Coherent signal measurement by subtracting normalized background from data in the coherent region of the energy and angle 2D space.

6.7% statistical uncertainty with 3.7E20POT data

16.7% total uncertainty (stat + syst): a very competitive result.

- Coherent signal measurement by subtracting normalized background from data in energy and angle 2D space.
- Measured flux-averaged cross-section:
 σ = 14.0 ± 0.9(stat.) ± 2.1(syst.)×10⁻⁴⁰cm²/nucleus
- Total uncertainty is 16.7%, systematic dominant.

Summary

- Coherent is an important interaction mode for neutrino oscillation measurement, and also has its own physics interest.
- NOvA near detector is good for π^0 measurements.
- Large dataset leads to a small statistic uncertainty.
- Data-driven methods to constrain most of the systematic uncertainty.
- We measured the cross-section of NC coherent π^0 :

σ = 14.0 ± 0.9(stat.) ± 2.1(syst.)×10⁻⁴⁰cm²/nucleus

Total uncertainty is 16.7%.

• A very precise measurement in the few-GeV region.

Back up slides

Muon-Removed Brem Showers

- Rock muons induce EM showers in the detector via bremsstrahlung radiation.
- A muon-removal (MR) technique is developed to isolate those EM showers.
- Provide a data-driven method to check detector performance and benchmark EM shower modeling and likelihoods.

Muon-Removed Brem Showers

- Rock muons induce EM showers in the detector via bremsstrahlung radiation.
- A muon-removal (MR) technique is developed to isolate those EM showers.
- Provide a data-driven method to check detector performance and benchmark EM shower modeling and likelihoods.

Muon-Removed Brem Showers

- Rock muons induce EM showers in the detector via bremsstrahlung radiation.
- A muon-removal (MR) technique is developed to isolate those EM showers.
- Provide a data-driven method to check detector performance and benchmark EM shower modeling and likelihoods.

- Muon-Removed Brem showers provide a photon control sample to benchmark the modeling and selection efficiency of EM showers.
- Very good agreement between data and MC.
- 1% difference in selection efficiency, taken into systematic uncertainty.

Coherent π^0 : World Measurement

There are relatively few coherent π⁰ measurement, most suffer from large uncertainty.

Experiments	A	$< E_{\nu} > (\text{GeV})$	$\sigma (10^{-40} cm^2/N)$	$\sigma/\sigma(\nu_{\mu}\text{-CC})$	$\sigma/\sigma(RS)$
Aachen-Padova	27	2	$29{\pm}10$		
Gargamelle	31	3.5	31 ± 20		
CHARM	20	30	$96{\pm}42$		
SKAT	30	7	$79{\pm}28$	4.3 ± 1.5	
15' BC	20	20		$0.20{\pm}0.04$	
NOMAD	12.8	24.8	$72.6{\pm}10.6$	$3.21 {\pm} 0.46$	
MiniBooNE	12	0.8			$0.65 {\pm} 0.14$
SciBooNE	12	0.8			$0.9{\pm}0.20$
MINOS	48	4.9	$77.6^{+15.8}_{-17.5}$		

EM Shower Angular Resolution

- A "measured" angular resolution in data by comparing the reconstructed EM shower direction to the muon direction.
- The NOvA ND has good angular resolution (~0.02rad) for EM shower measurement.
- Important to the coherent π^0 cross-section measurement.

NC Coherent π^0

• Select the coherent region in energy vs angle 2D space

 E_{π^0} (GeV)

$\mathsf{DFR}\ \pi^{\!0}$

Coherent π^0 Candidate in the NOvA ND

A coherent π^0 candidate events with 2 photons from π^0 decay.

Reconstruction: Slicing

Group hits together in time and space for each neutrino interaction.

Reconstruction: Vertexing

Find particle paths, and use the intersection to form vertex

Reconstruction: Clustering

Group hits from each shower together using clustering algorithm.