

THE UNIVERSITY OF CHICAGO

SUSY Strong production

Search for gluino-mediated stop and bottom pair production in events with *b*-jets and large missing transverse momentum

Giordon Stark DPF 2017 giordonstark.com

ATLAS-CONF-2017-021]

Event: 684427250 2016-09-08 04:49:33 CEST SR: Gbb B, Gtt 0-lepton B gluino-mediated stop/sbottom pair production Motivation

 Supersymmetry (SUSY) at the LHC: high gluino cross section @ 13 TeV

 Stops and sbottoms decay to corresponding quark + LSP (neutralino)

 Typical signature for 3rd generation, R-parity conserving, Supersymmetry (3G RPC SUSY) models

- large number of b-jets
- high missing transverse energy (MET)
- Lorentz-boosted W bosons and top quarks in certain regions of parameter space
- Prior analyses done: <u>Run 1, 2015 paper, ATLAS-</u> <u>CONF-2016-052</u>, and <u>ATLAS-CONF-2017-021</u>

Parameterizing the model

 $m_{\tilde{g}} \sim 2 imes m_{\tilde{\chi_0}}$ more jets, less energy per jet

looked for SUSY here and did not find it

mass of neutralino

 $m_{\tilde{g}} \gg m_{\tilde{\chi_0}}$ fewer jets, more energy per jet merged decays

mass of gluino

Run I results

Excluded up to 1.4 TeV

Objects of Interest

- Signal: 4 top quarks
- Small energetic jets
- Large reclustered jets
- Leptons: electrons and muons
- High missing transverse energy
- MET trigger

Background: 2 top quarks

Data/Simulation Comparison

$t \xrightarrow{b} t$

▲ <u>ttbar-enhanced</u>
MET > 200 GeV
≥4 signal jets
≥2 b-jets
0 leptons

Selections optimized for <u>SUSY exclusion</u>

Multi-bin Strategy

Define orthogonal **signal** regions using jet multiplicity and effective mass

- allow for model-dependent interpretations (e.g. low jet multiplicity probes Gbb-like models)
- Then define orthogonal regions dominated by ttbar: control
 - Likelihood fit using MC
 - Derive normalization factors by fitting to data
- Lastly, define orthogonal regions: validation
 - Verify that our control region derives normalization correctly
 - Check variable extrapolations between signal and control

Open the box (unblind)!

simultaneously fit multiple parts of phase space together

[ATLAS-CONF-2017-021]

High-jet-multiplicity regions

					 Bightar regions are onthogonal doing lepton multiplicity
Criteria com	mon to all hi	gh- $N_{\rm jet}$ region	ns: $N_{b\text{-jets}} \ge 3$		
	Variable	SR-0L	SR-1L	CR	 Control regions flip the transverse mass cut
Criteria common to all regions of the same type	$N_{ m lepton}$	0	≥ 1	≥ 1	to be orthogonal to 1-lepton SRs
	$\Delta \phi_{ m min}^{ m 4j}$	> 0.4	_	-	9_{\downarrow}
	$m_{ m T}$	_	> 150	< 150	5 = 13 TeV, 36.1 fb ⁻¹
$\begin{array}{c} \text{High-}m_{\text{eff}} \\ (\text{HH}) \\ (\text{Large }\Delta\text{m}) \end{array}$	$N_{ m jet}$	≥ 7	≥ 6	≥ 6	P 7 0L-HI Image: state of the state of t
	$m_{ m eff}$	> 2500	> 2300	> 2100	
	$m_{\mathrm{T,min}}^{b ext{-jets}}$	> 100	> 120	> 60	₩+jets
	$E_{\rm T}^{\rm miss}$	> 400	> 500	> 300	□ Diboson □ Dib
Intermediate- $m_{\rm eff}$ (HI) (Intermediate Δm)	$N_{ m jet}$	≥ 9	≥ 8	≥ 8	3 3 4 5 5 6 1 1 1 1 1 1 1 1 1 1
	$m_{ m eff}$	[1800, 2500]	[1800, 2300]	[1700, 2100]	
	$m_{\mathrm{T,min}}^{b ext{-jets}}$	> 140	> 140	> 60	
	$E_{\rm T}^{\rm miss}$	> 300	> 300	> 200	
$\begin{array}{c} \text{Low-}m_{\text{eff}} \\ (\text{HL}) \\ (\text{Small }\Delta\text{m}) \end{array}$	$N_{ m jet}$	≥ 9	≥ 8	≥ 8	200 300 400 500 600 700 800 900 1000
	$m_{ m eff}$	[900, 1800]	[900, 1800]	[900, 1700]	E ^{miss} _T [GeV]
	$m_{\mathrm{T,min}}^{b\mathrm{-jets}}$	> 140	> 140	> 130	
	$E_{\rm T}^{\rm miss}$	> 300	> 300	> 250	Apply all selections for a
			ΓΑΤΙ	AS-CONF	signal region, except for MET -2017-021]

Signal regions are orthogonal using lepton

Systematic Uncertainties

- Systematics on objects
 - For example, the measurement of a jet's momentum
- Statistical uncertainties
 - For example, statistical uncertainty on the normalization of ttbar in the control regions
- Theory uncertainties: systematic comparisons with alternatively-produced samples
 - radiation (two-sided), parton shower, generator
 - combine in quadrature for each region
- Total background systematics are between 30-50% for all regions
- Dominant uncertainties:
 - normalization due to our data/MC fit in the control region for ttbar normalization
 - theory systematics sensitive to radiation effects and MC generator chosen
 - jet energy scale/resolution (JES/JER) due to corrections in energy/momentum of jets measured in the calorimeter [JES = 13-25%, JER=6-16%]
 - statistical

Results

multi-bin

Validating our work

[ATLAS-CONF-2017-021]

no significant mismodeling between observation and theory 11

multi-bin

Signal Regions Unblinded

[ATLAS-CONF-2017-021]

no large difference between observation and theory

Set strong limits given no large difference The limits

exclude up to ~1.95 TeV

Conclusion

- A search for supersymmetry at the ATLAS detector was performed and no excess was observed above the predicted background
 - A cut-and-count analysis was optimized for discovery
 - No excess was observed, so the multi-bin analysis was performed and optimized for exclusion
- Stronger limits were set on gluino masses excluded at the 95% CL in simplified models involving the pair production of gluinos that decay via top (bottom) squark

Next paper coming out soon!

Backup

<u>Objects</u>

Jets

Baseline small-R

R=0.4, pT > 20 GeV, $|\eta| < 2.8$ Calibrated: EM+JES+GSC JVT > 0.59 & pT < 60 GeV & $|\eta| < 2.4$

Signal OR'ed pT > 30 GeV **b-jets** MV2c10, 77% OP |ŋ| < 2.5

Baseline large-R

Signal

reclustered from signal small-R jets Anti-Kt, R=0.8, $f_{cut} = 10\%$ * pT > 100 GeV

*remove subjets with pT < 10% of total jet pT

Leptons

Baseline Electrons

ID: LooseLHBLayer pT > 20 GeV, $|\eta| < 2.47$

Signal

Overlap Removal, ID: MediumLLH LooseTrackOnly isolation $|z_0 \sin \theta| < 0.5 \ mm$, $|d_0/\sigma_{d_0}| < 5$

Baseline Muons

ID: Medium Track pT > 20 GeV, $|\eta| < 2.5$

Signal

Overlap Removal LooseTrackOnly isolation $|z_0 \sin \theta| < 0.5 \ mm, \ |d_0/\sigma_{d_0}| < 3$

Trigger and MET

MET reconstructed using Track Soft Terms 2015 trigger: HLT_xe70 2016 trigger: HLT_xe(100|110)_mht_L1XE50¹⁶

Variables of Interest $\Delta \phi_{\min}^{4j} = \min(|\phi_1 - \phi_{E_{\mathrm{T}}^{\mathrm{miss}}}|, \dots, |\phi_4 - \phi_{E_{\mathrm{T}}^{\mathrm{miss}}}|) \quad \text{QCD suppression}$ minimum $\Delta \Phi$ between leading 4 jets and MET $m_{eff}^{incl} = \sum_{i \le n} p_T^{j_i} + \sum_{j \le m} p_T^{\ell_j} + E_T^{miss}$ Only signal objects used Inclusive effective mass $m_{T,\min}^{b-jets} = \min_{i \le 3} \sqrt{\left(E_T^{miss} + p_T^{j_i}\right)^2 - \left(E_T^{miss} + p_x^{j_i}\right)^2 - \left(E_T^{miss} + p_y^{j_i}\right)^2}$ Transverse mass of MET and *b*-jets (leading 3 b-jets) $m_{\rm T} = \sqrt{2p_{\rm T}E_{\rm T}^{\rm miss}\left(1 - \cos\Delta\phi\left(E_{\rm T}^{\rm miss}, {\rm lepton}\right)\right)}$ Regions with ≥ 1 lepton Transverse mass leptonic W $M_J^{\Sigma,4} = \sum_{i < 4} m_{J,i}$ Sum of 4 leading reclustered jets Total jet mass

All regions optimized for discovery

Strategy

Define signal regions based on Gtt/Gbb models

- Goal: enhance signal/background
- Define ttbar control regions
 - Likelihood fit using MC
 - Derive normalization factors
- Define validation regions
 - Kinematically close
 - Orthogonal to SRs / CRs
 - Validate extrapolations between CR and SR
 - Open the box (unblind)!

</>
 </>
Used the <u>root_optimize</u> optimization framework

Systematic Uncertainties

Systematics on objects

- For example, the measurement of a jet's momentum
- Statistical uncertainties
 - For example, statistical uncertainty on the normalization of ttbar in the control regions
- Theory uncertainties: systematic comparisons with alternatively-produced samples
 - radiation (two-sided), parton shower, generator
 - combine in quadrature for each region
- Total background systematics are between 30-50% for all regions
- Dominant uncertainties:
 - normalization due to our data/MC fit in the control region
 - theory systematics sensitive to radiation effects and MC generator chosen
 - jet energy scale (JES) due to corrections in energy/momentum of jets measured in the calorimeter

Gtt OL CUncertainty of channelSRTotal background expectation36.23Total statistical ($\sqrt{N_{exp}}$) ± 6.02 Total background systematic ± 10.36 [28.59%]ttbar normalization ± 9.60 theory systematics ± 9.12 jet energy scale ± 6.13

statistical

Likelihood fits

 inputs to likelihood fits in control regions of cutand-count and multi-bin analysis

jet multiplicity

b-jet multiplicity

missing transverse momentum

total jet mass

transverse mass

cut-and-count

Validating our work

no significant mismodeling between observation and theory 26

cut-and-count

Did we find SUSY? (no)

no large difference between observation and theory