SUSY Strong production

Search for gluino-mediated stop and bottom pair production in events with b-jets and large missing transverse momentum

Giordon Stark
DPF 2017
giordonstark.com
Motivation

- Supersymmetry (SUSY) at the LHC: high gluino cross section @ 13 TeV
 - Stops and sbottoms decay to corresponding quark + LSP (neutralino)
- Typical signature for 3rd generation, R-parity conserving, Supersymmetry (3G RPC SUSY) models
 - Large number of b-jets
 - High missing transverse energy (MET)
 - Lorentz-boosted W bosons and top quarks in certain regions of parameter space
- Prior analyses done: Run 1, 2015 paper, ATLAS-CONF-2016-052, and ATLAS-CONF-2017-021
Parameterizing the model

- Looked for SUSY here and did not find it.
- Mass of neutralino: $m_{\tilde{\chi}_0}$
- Mass of gluino: $m_{\tilde{g}}$

- $m_{\tilde{g}} \sim 2 \times m_{\tilde{\chi}_0}$: more jets, less energy per jet.
- $m_{\tilde{g}} \gg m_{\tilde{\chi}_0}$: fewer jets, more energy per jet.
- Mergered decays.
Run I results

\[\tilde{g}\tilde{g} \text{ production, } \tilde{g} \rightarrow t\bar{t}+\tilde{\chi}_1^0, m(\tilde{q}) \gg m(\tilde{g}) \]

\[L^{\text{int}} = 20.1 \text{ fb}^{-1}, \ S = 8 \text{ TeV} \]

ATLAS

0 and 1 lepton + 3 b-jets channels

Excluded up to 1.4 TeV

10.1007/JHEP10(2014)024
Objects of Interest

Signal: 4 top quarks

- Small energetic jets
- Large reclustered jets
- Leptons: electrons and muons
- High missing transverse energy
- MET trigger

Background: 2 top quarks

![Graph showing data for ATLAS Preliminary analysis with 0L Preselection, showing events vs. number of jets with various backgrounds and signal points at different mass values.](image-url)
Data/Simulation Comparison

\textbf{ATLAS Preliminary}
\(\sqrt{s}=13\ \text{TeV}, \ 36.1\ \text{fb}^{-1}\)

0L Preselection

\begin{itemize}
 \item Data
 \item Total background
 \item \(t\bar{t}\)
 \item Single top
 \item \(t\bar{t} + X\)
 \item \(Z+\text{jets}\)
 \item \(W+\text{jets}\)
 \item Diboson
 \item Multijet
\end{itemize}

- \(b\)-jets
- \(0\) leptons

\textbf{ttbar-enhanced}
\(\text{MET} > 200\ \text{GeV}\)
\(\geq 4\) signal jets
\(\geq 2\) \(b\)-jets
\(0\) leptons
Multi-bin Strategy

Define orthogonal **signal** regions using jet multiplicity and effective mass
- allow for model-dependent interpretations (e.g. low jet multiplicity probes Gbb-like models)

Then define orthogonal regions dominated by $t\bar{t}$: **control**
- Likelihood fit using MC
- Derive normalization factors by fitting to data

Lastly, define orthogonal regions: **validation**
- Verify that our control region derives normalization correctly
- Check variable extrapolations between **signal** and **control**

Open the box (unblind)!

Selections optimized for **SUSY exclusion**

simultaneously fit multiple parts of phase space together

[ATLAS-CONF-2017-021]
High-jet-multiplicity regions

- Signal regions are orthogonal using lepton multiplicity
- Control regions flip the transverse mass cut to be **orthogonal** to 1-lepton SRs

| Criteria common to all high-N_{jet} regions: $N_{\text{b-jets}} \geq 3$ |
|---------------------------------|---|---|---|
| Variable | SR-0L | SR-1L | CR |
| N_{lepton} | 0 | ≥ 1 | ≥ 1 |
| $\Delta \phi_{\text{min}}^{ij}$ | > 0.4 | – | – |
| m_T | – | > 150 | < 150 |

- **High-m_{eff}** (HH) (Large Δm)
 - $N_{\text{jet}} \geq 7$ ≥ 6 ≥ 6
 - $m_{\text{eff}} > 2500$ > 2300 > 2100
 - $m_{T,\text{b-jets}} > 100$ > 120 > 60
 - $E_T^{\text{miss}} > 400$ > 500 > 300

- **Intermediate-m_{eff}** (HI) (Intermediate Δm)
 - $N_{\text{jet}} \geq 9$ ≥ 8 ≥ 8
 - $m_{\text{eff}} [1800,2500]$ $[1800,2300]$ $[1700,2100]$
 - $m_{T,\text{b-jets}} > 140$ > 140 > 60
 - $E_T^{\text{miss}} > 300$ > 300 > 200

- **Low-m_{eff}** (HL) (Small Δm)
 - $N_{\text{jet}} \geq 9$ ≥ 8 ≥ 8
 - $m_{\text{eff}} [900,1800]$ $[900,1800]$ $[900,1700]$
 - $m_{T,\text{b-jets}} > 140$ > 140 > 130
 - $E_T^{\text{miss}} > 300$ > 300 > 250

ATLAS Preliminary

$\sqrt{s}=13$ TeV, 36.1 fb$^{-1}$

OL-HI Multi-bin analysis

- **Data**
- Total background
- $t\bar{t}$
- Single top
- $t\bar{t} + X$
- $Z+$jets
- $W+$jets
- Diboson
- Multijets

Apply all selections for a signal region, except for MET
Systematic Uncertainties

- **Systematics on objects**
 - For example, the measurement of a jet’s momentum

- **Statistical uncertainties**
 - For example, statistical uncertainty on the normalization of ttbar in the control regions

- **Theory uncertainties**: systematic comparisons with alternatively-produced samples
 - radiation (two-sided), parton shower, generator
 - combine in quadrature for each region

- Total background systematics are between 30-50% for all regions

- Dominant uncertainties:
 - normalization — due to our data/MC fit in the control region for ttbar normalization
 - theory systematics — sensitive to radiation effects and MC generator chosen
 - jet energy scale/resolution (JES/JER) — due to corrections in energy/momentum of jets measured in the calorimeter [JES = 13-25%, JER=6-16%]
 - statistical
Results
Validating our work

No significant mismodeling between observation and theory
Signal Regions Unblinded

\(\sqrt{s} = 13 \text{ TeV, } 36.1 \text{ fb}^{-1} \)

Multi-bin analysis

\[\text{Events} \]

\[10^3 \]

\[10^2 \]

\[10^1 \]

\[10^{-1} \]

\[\text{Data} \]

\[\text{t\bar{t}} \]

\[\text{t\bar{t} + X} \]

\[\text{Z+jets} \]

\[\text{W+jets} \]

\[\text{Multijet} \]

\[\text{Total background} \]

\[\text{Single top} \]

\[\text{Diboson} \]

\[\text{[ATLAS-CONF-2017-021]} \]

no large difference between observation and theory
Set strong limits given no large difference

The limits

\[\tilde{\tilde{g}} \text{ production, } \tilde{\tilde{g}} \to t\bar{t}+\tilde{\chi}_1^0, \ m(\tilde{g}) >> m(\tilde{g}) \]

ATLAS Preliminary

\(\sqrt{s} = 13 \text{ TeV}, \ 36.1 \text{ fb}^{-1} \)

Multi-bin analysis

Expected limit in 2015

Observed limit in 2015

Expected limit \(\pm 1 \sigma_{\text{exp}} \)

Observed limit \(\pm 1 \sigma_{\text{SUSY}} \)

All limits at 95% CL

\[m_\tilde{g} < m_{\tilde{\chi}_1^0} + 2m_t \]

[ATLAS-CONF-2017-021]

\[\text{exclude up to } \sim 1.95 \text{ TeV} \]
Conclusion

- A search for supersymmetry at the ATLAS detector was performed and no excess was observed above the predicted background
 - A cut-and-count analysis was optimized for discovery
 - No excess was observed, so the multi-bin analysis was performed and optimized for exclusion
- Stronger limits were set on gluino masses excluded at the 95% CL in simplified models involving the pair production of gluinos that decay via top (bottom) squark

Next paper coming out soon!
Backup
Baseline small-R
- **R**=0.4, **pT** > 20 GeV, |**η**| < 2.8
- Calibrated: EM+JES+GSC
- **JVT** > 0.59 & **pT** < 60 GeV & |**η**| < 2.4

Signal
- OR’ed
- **pT** > 30 GeV

b-jets
- **MV2c10**, 77% OP
- |**η**| < 2.5

Baseline large-R

Signal
- reclustering from signal small-R jets
- Anti-Kt, **R**=0.8, **f_cut** = 10%*
- **pT** > 100 GeV

*remove subjects with **pT** < 10% of total jet **pT**

Leptons

Baseline Electrons
- **ID**: LooseLHBLayer
- **pT** > 20 GeV, |**η**| < 2.47

Signal
- Overlap Removal, **ID**: MediumLLH
- LooseTrackOnly isolation
- |z_0|sinθ| < 0.5 mm, |d_0/σ_d_0| < 5

Baseline Muons
- **ID**: Medium Track
- **pT** > 20 GeV, |**η**| < 2.5

Signal
- Overlap Removal
- LooseTrackOnly isolation
- |z_0|sinθ| < 0.5 mm, |d_0/σ_d_0| < 3

Objects

Jets

Baseline small-R
- **R**=0.4, **pT** > 20 GeV, |**η**| < 2.8
- Calibrated: EM+JES+GSC
- **JVT** > 0.59 & **pT** < 60 GeV & |**η**| < 2.4

Signal
- OR’ed
- **pT** > 30 GeV

b-jets
- **MV2c10**, 77% OP
- |**η**| < 2.5

Baseline large-R

Signal
- reclustering from signal small-R jets
- Anti-Kt, **R**=0.8, **f_cut** = 10%*
- **pT** > 100 GeV

*remove subjects with **pT** < 10% of total jet **pT**

Trigger and MET

MET reconstructed using Track Soft Terms

2015 **trigger**: HLT_xe70

2016 **trigger**: HLT_xe(100|110)_mht_L1XE50
Variables of Interest

\[\Delta \phi_{\text{min}}^{4j} = \min(|\phi_1 - \phi_{E_T}^{\text{miss}}|, \ldots, |\phi_4 - \phi_{E_T}^{\text{miss}}|) \]
QCD suppression

minimum \(\Delta \Phi \) between leading 4 jets and MET

\[m_{\text{incl}} = \sum_{i \leq n} p_T^{j_i} + \sum_{j \leq m} p_T^{\ell_j} + E_T^{\text{miss}} \]
Only signal objects used

Inclusive effective mass

\[m_{\text{b-jets}}^{T, \text{min}} = \min_{i \leq 3} \sqrt{\left(E_T^{\text{miss}} + p_T^{j_i} \right)^2 - \left(E_T^{\text{miss}} + p_T^{\ell_j} \right)^2 - \left(E_T^{\text{miss}} + p_T^{j_i} \right)^2} \]
Transverse mass of MET and \(b \)-jets (leading 3 \(b \)-jets)

\[m_T = \sqrt{2 p_T E_T^{\text{miss}} \left(1 - \cos \Delta \phi \left(E_T^{\text{miss}}, \text{lepton} \right) \right)} \]
Regions with \(\geq 1 \) lepton

Transverse mass leptonic W

\[M_{\sum, 4}^J = \sum_{i \leq 4} m_{J,i} \]
Sum of 4 leading reclustered jets

Total jet mass
Strategy

- Define signal regions based on Gtt/Gbb models
 - Goal: enhance signal/background
 - Define ttbar control regions
 - Likelihood fit using MC
 - Derive normalization factors
 - Define validation regions
 - Kinematically close
 - Orthogonal to SRs / CRs
 - Validate extrapolations between CR and SR
- Open the box (unblind)!

⚠️ All regions optimized for discovery

Used the root_optimize optimization framework
Systematic Uncertainties

- **Systematics on objects**
 - For example, the measurement of a jet’s momentum

- **Statistical uncertainties**
 - For example, statistical uncertainty on the normalization of ttbar in the control regions

- **Theory uncertainties**: systematic comparisons with alternatively-produced samples
 - radiation (two-sided), parton shower, generator
 - combine in quadrature for each region

- Total background systematics are between 30-50% for all regions

- Dominant uncertainties:
 - normalization — due to our data/MC fit in the control region
 - theory systematics — sensitive to radiation effects and MC generator chosen
 - jet energy scale (JES) — due to corrections in energy/momentum of jets measured in the calorimeter
 - statistical

Gtt 0L C

<table>
<thead>
<tr>
<th>Uncertainty of channel</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total background expectation</td>
<td>36.23</td>
</tr>
<tr>
<td>Total statistical ($\sqrt{N_{\exp}}$)</td>
<td>±6.02</td>
</tr>
<tr>
<td>Total background systematic</td>
<td>±10.36 [28.59%]</td>
</tr>
<tr>
<td>ttbar normalization</td>
<td>±9.60</td>
</tr>
<tr>
<td>theory systematics</td>
<td>±9.12</td>
</tr>
<tr>
<td>jet energy scale</td>
<td>±6.13</td>
</tr>
</tbody>
</table>
Likelihood fits

- inputs to likelihood fits in control regions of cut-and-count and multi-bin analysis
jet multiplicity
b-jet multiplicity

0L

1L
missing transverse momentum
total jet mass
transverse mass

\(m_T\) vs. recoil mass for 0L and 1L preselections.
Validating our work

ATLAS Preliminary

$\sqrt{s}=13$ TeV, 36.1 fb$^{-1}$

Cut-and-count analysis

no significant mismodeling between observation and theory
Did we find SUSY? (no)

ATLAS Preliminary

Case Study

<table>
<thead>
<tr>
<th>Events</th>
<th>Data</th>
<th>$t\bar{t}$</th>
<th>$t\bar{t} + X$</th>
<th>$Z +$jets</th>
<th>W+jets</th>
<th>Multijet</th>
<th>Total background</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cut-and-count analysis

no large difference between observation and theory