Developments in Accelerators for Future High Energy Machines

Mark Palmer

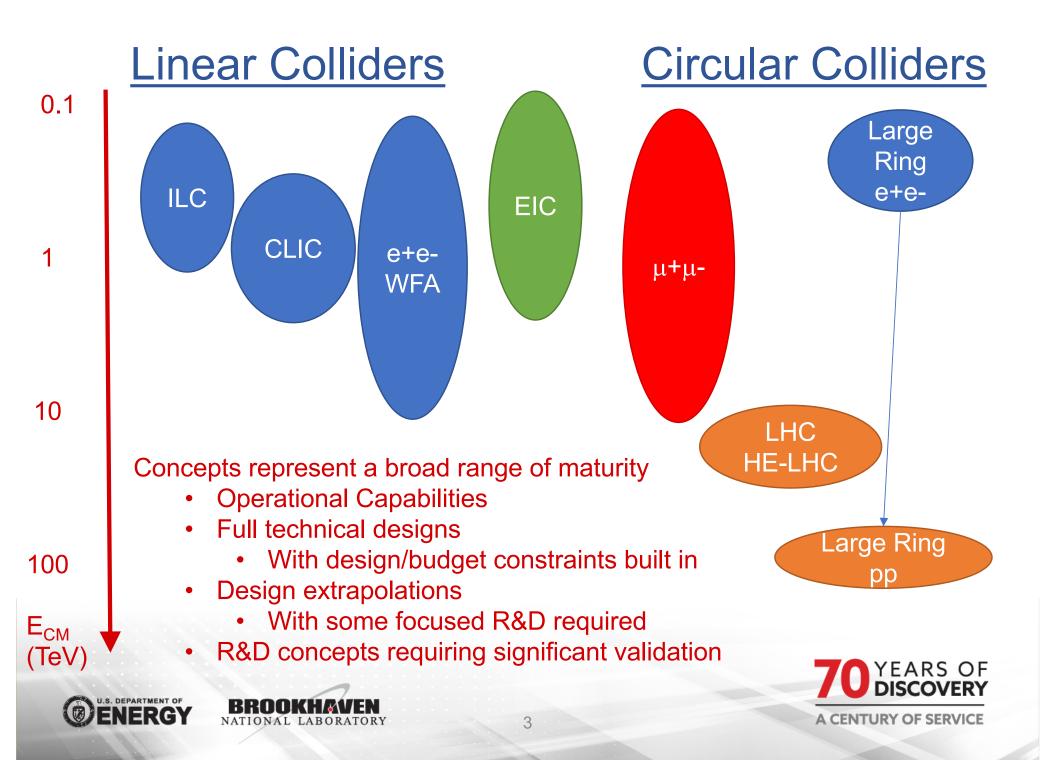
Brookhaven National Laboratory

DPF Meeting 2017 70 YEARS OF **DISCOVERY July 31 – August 4** dpf2017.fnal.gov Fermilab

APS PARTICLES & FIELDS

A CENTURY OF SERVICE

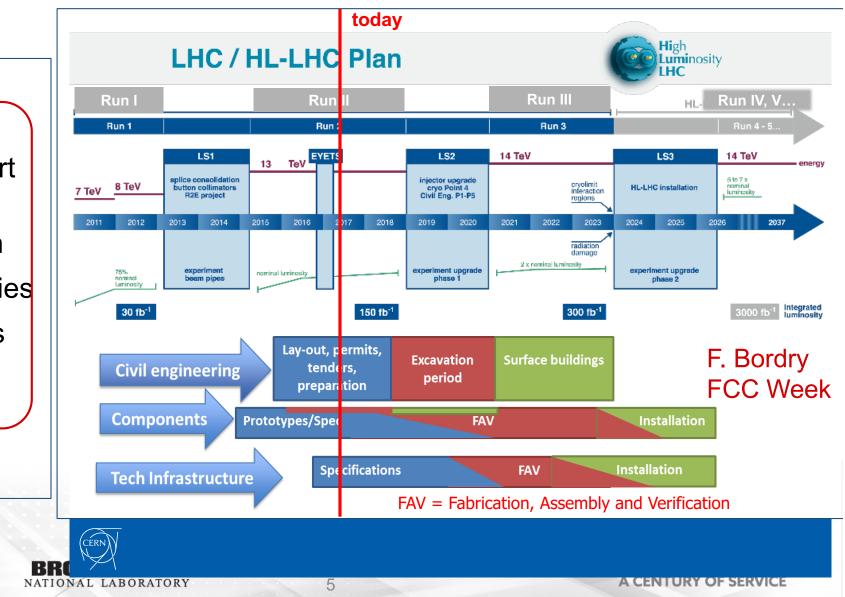
NATIONAL LABORATORY


What are the possible paths forward for future high energy capabilities?

• Will focus on paths to next generation colliders

Hadron Capabilities

A Short Status Overview

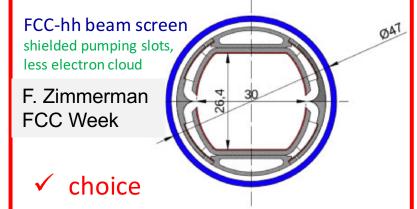

LHC ⇒ HL-LHC Program

Upgrades:

- IR Quads
- Nb₃Sn short dipoles
- Collimation
- Crab Cavities
- Cryogenics
- Machine Protection
- Detectors

U.S. DEPARTMENT OF

NERGY


Options for Next Generation pp Machines

F. Zimmerman – FCC Week

parameter	FCC-hh		HE-LHC	(HL) LHC
collision energy cms [TeV]	100		27	14
dipole field [T]	16		16	8.33
circumference [km]	1	00	27	27
straight section length [m]	1	400	528	528
# IP	2 main & 2		2 & 2	2 & 2
beam current [A]	0.5		1.12	(1.12) 0.58
bunch intensity [10 ¹¹]	1 1 (0.2)		2.2 (0.44)	(2.2) 1.15
bunch spacing [ns]	25 25 (5)		25 (5)	25
rms bunch length [cm]	7	.55	7.55	(8.1) 7.55
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5 30		25	(5) 1
events/bunch crossing	170 1k (200)		~800 (160)	(135) 27
stored energy/beam [GJ]	8	3.4	1.3	(0.7) 0.36
beta* [m]	1.1	1-0.3	0.25	(0.20) 0.55
norm. emittance [µm]	2.2	(0.4)	2.5 (0.5)	(2.5) 3.75
	Also	Chinese SF	PC option as foll	ow-on to CEPC

Key Issues

- Focus on 16T dipole
 - Includes US Magnet Development Program Efforts
 - Compact design required for HE-LHC
- Vacuum System Design

A. V. Zlobin, L. Cooley Fermi National Accelerator Labora Batavia, IL 60510

D. Larbalestier Florida State University and the National High Magnetic Field Laboratory Tallahassee, FL 32310

JUNE 2016

- Crab Cavities and Electron Lenses based on HL-LHC
- Other issues: Beam Parameters, Electron Cloud, Pileup
- Cost Evaluation

Lepton Collider Options

A Short Status Overview

e⁺e⁻ Circular Colliders

- LEP2 nearly reached the Higgs
- Rings are robust and well-understood technology
- Current focus: 80-100km ring leading to a 100 TeV scale hadron collider

Technical	l
Issues	

Comments

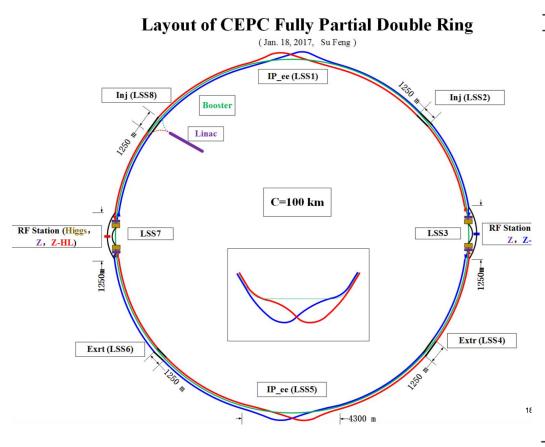
- SR energy:
- $\Delta E[GeV] = 8.85 \times 10^{-5} \frac{E^4 [GeV^4]}{\rho [m]}$ • RF Efficiency
- Beam Lifetime (~10³ sec) and Top-Up Injection
- Collective Effects
- Energy Bandwidth

FCC-ee in 2017 K. Oide – FCC Week

Design			201	17		
Circumference	[km]		97.7	750		
Arc quadrupole scheme			twin ap	oerture		Jura Jura
Bend. rad. of arc dipoles	[km]		10.7	747		
Number of IPs / ring			2	1		
Crossing angle at IP	[mrad]		30	C		
Solenoid field at IP	[T]		±	2		
ℓ^*	[m]		2.	2		
Local chrom. correction			y-plane with cr	ab-sext. effect		
RF frequency	[MHz]		40	0		Schematic of an 80 - 100 km
Total SR power	[MW]		10	0		
Beam energy	[GeV]	45.6	80	120	175	
SR energy loss/turn	[GeV]	0.036	0.34	1.72	7.80	
Long. damping time	[ms]	414	76.8	22.9	7.49	
Current/beam	[mA]	1390	147	29.0	6.4	Arav
Bunches/ring		70760	7280 (4540)	826 (614)	64(50)	
Particles/bunch	$[10^{10}]$	4.0	4.1 (6.6)	7.1 (9.6)	20.4(26.0)	
Arc cell		$60^{\circ}/60^{\circ}$		90°/90°		Mandalaz Copyright
Mom. compaction α_p	$[10^{-6}]$	14.79		7.31		Copyright
β -tron tunes ν_x / ν_y		269.14 /267.22		389.08 / 389.18	3	
Arc sext. families		208		292		► Base
Horizontal emittance ε_x	[nm]	0.267	0.28	0.63	1.34	$\mathbf{F}_{\mathbf{S}}^{\mathbf{S}} = (0.5)$
$\varepsilon_y/\varepsilon_x$ at collision	[%]	0.38	0.36	0.2	0.2	
β_x^* / β_y^*	[m / mm]	0.15 / 1		1 / 2 (0.5 / 1)		
Energy spread by SR	[%]	0.038	0.066	0.099	0.147	<u> </u>
Energy spread SR+BS	[%]	0.073	0.072(0.091)	0.106(0.122)	0.193(0.212)	
Hor. beam-beam ξ_x		0.008	$0.080 \ (0.046)$	$0.081 \ (0.053)$	0.082(0.049)	≥ 1035
Ver. beam-beam ξ_y		0.106	0.141 (0.141)	0.140 (0.140)	0.140(0.138)	
RF Voltage	[MV]	255	696	2620	9500	Ĕ
Bunch length by SR	[mm]	2.1	2.1	2.0	2.4	§
Bunch length SR+BS	[mm]	4.1	2.3(2.9)	2.2(2.5)	2.9(3.5)	
Synchrotron tune ν_z		-0.0413	-0.0340	-0.0499	-0.0684	24
RF bucket height	[%]	3.8	3.7	2.2	10.3	10 ³⁴ 10 ²
Luminosity/IP	$[10^{34}/cm^2s]$	137	16.4(30.0)	4.6 (8.0)	1.35(2.09)	E _{beam} (GeV)

design challenges

6


A CENTURY OF SERVICE

BR

NATIONAL LABORATORY

CEPC – 100km baseline

	Pre-CDR	Higgs	w	Z
Number of IPs	2	2	2	2
Energy (Gev)	120	120	80	45.5
Circumference (km)	54	100	100	100
SR loss/turn (Gev)	3.1	1.67	0.33	0.034
Half crossing angle (mrad)	0	16.5	16.5	16.5
Piwinski angle 👁	0	3.19	5.69	4.29
N _s /bunch (10 ¹¹)	3.79	0.968	0.365	0.455
Bunch number	50	412	5534	21300
Beam current (mA)	16.6	19.2	97.1	465.8
SR power /beam (MW)	51.7	32	32	16.1
Bending radius (km)	6.1	11	11	11
Momentum compaction (10*)	3.4	1.14	1.14	4.49
$\beta_{\Pi' x' y}(\mathbf{m})$	0.8/0.0012	0.171/0.002	0.171 /0.002	0.16/0.002
Emittance 1/y (nm)	6.12/0.018	1.31/0.004	0.57/0.0017	1.48/0.0078
Transverse on (um)	69.97/0.15	15.0/0.089	9.9/0.059	15.4/0.125
ζ,/ζ,/IP	0.118/0.083	0.013/0.083	0.0055/0.062	0.008/0.054
$V_{\rm RF}$ (GV)	6.87	2.1	0.41	0.14
f _{RF} (MHz)	650	650	650	650
Nature oz /Total oz (mm)	2.14/2.65	2.72/2.9	3.37/3.4	3.97/4.0
HOM power/cavity (kw)	3.6 (5cell)	0.41(2cell)	0.36(2cell)	1.99(2cell)
Energy spread (%)	0.13	0.098	0.065	0.037
Energy acceptance requirement (%)	2	1.5		
Energy acceptance by RF (%)	6	2.1	1.1	1.1
n _y	0.23	0.26	0.15	0.12
Life time due to beamstrahlung_cal	47	52		
(minute) L _{mav} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.04	2.0	6.16	11.0
Lunion (In cm 2)	2.04	2.0	5.15	11.9

Wang – J. Phys, Conf. Series 874 (2017) 012009

Robust design and component R&D program underway

U.S. DEPARTMENT OF ENERGY

11

Table 1. Parameters for 100 km CEPC double ring with 2 mm vertical β*.

Linear Colliders

- $\mathcal{L} = \frac{N^2 f_{coll}}{4\pi\sigma_x \sigma_y} \mathcal{H}_D$ $\mathcal{L} = \frac{P_b}{E_b} \left(\frac{N}{4\pi\sigma_x \sigma_y} \right) \mathcal{H}_D$
- The strong fields at the interaction point result in
 - A luminosity enhancement characterized by the disruption parameter $\mathcal{H}_{\scriptscriptstyle D}$
 - Beamstrahlung emission gives rise to energy spread and backgrounds at the interaction point

Luminosity

ILC in Japan

- Start with 250 GeV implementation
- Upgradeable to 1 TeV
- Government statement
 expected in 2018

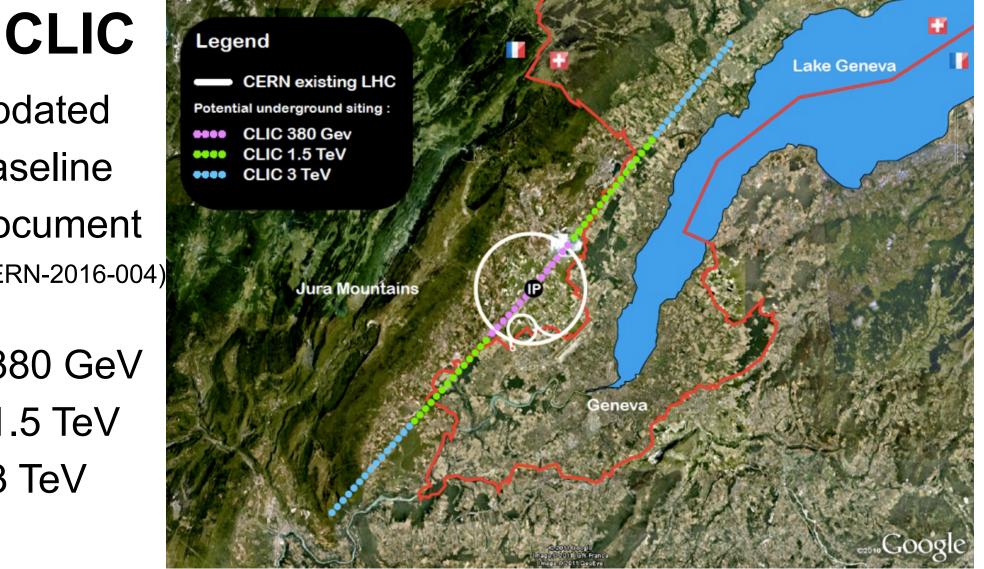
NATIONAL LABORATORY

DEPARTMENT OF

Main Linac

Technology is ready Costs well-understood

Damping Rings



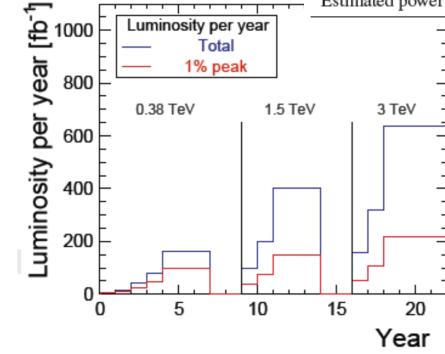
Lumi (e 34)

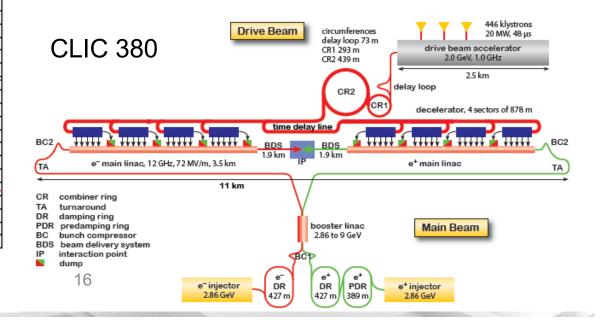
Luminosity

1								
	1 T	eV	1 TeV Ba	seline				
	150%	2.4	166%	4.9			1000	
	263	14.6	298	27.3				_
	Base	line	High	L				
	100%	1.8	106%	3.6			500	
	163	10.5	204	21.0				
	LH	IF	LHF hi	gh L	LHF High	L/High P		E_cm (GeV)
	69%	0.75	74%	1.5	106%	3	250	.
	129	9.4	161	11.8	204	21		_ ш'
	13:	12	2625 / (24	150 4Hz)	2625	10 Hz	A fact	
	Number of	f bunches a	and repetitio	on rate ->			2.5 in	L/P _{wall}
	Lumino	sity vs Ene	rgv			Leg	end	
10 -			01			Ti	tle	
						Rel Cost	L (e34)	
1 -	•		→ -ILC			P_AC	P_2	
0.1 -			• ILC - initi	al • • •	• • • • •	(MW)	beam	· • • •
) 500 100 -		00			M. Ros		RS OF
	E_cm ((GeV)					A CENTURY OF	
				11				

Updated **Baseline** Document (CERN-2016-004)

- 380 GeV
- 1.5 TeV
- 3 TeV





CLIC Stages

- Successful CTF3 demonstrator program recently completed
- Technology is ready for full demonstrator
- Costs and staging plan well-understood

			-		-
Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	Ν	10 ⁹	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	920/20	660/20	660/20
Normalised emittance (at IP)	$\varepsilon_x/\varepsilon_y$	nm	950/30	_	_
Estimated power consumption	P _{wall}	MW	252	364	589

Novel Longer-Term Concepts

Wakefield Acceleration Schemes

- Leverage the potential for accelerating gradients in the GV/m range
 - Beam-Driven Wakefield Accelerators (PWFA)
 - In US: FACET/FACET-II
 - Laser-driven Wakefield Accelerators (LWFA)
 - In US: BELLA (at 1 micron), early studies of 10 micron options planned for ATF/ATF-II
 - Dielectric Wakefield Acceleration (DWFA)
 - In US: AWA, ATF
 - Major research efforts are also underway in Europe and Asia
 - Some are: AWAKE (CERN), Eupraxia, FLASH_Forward (DESY), SPARC_Lab (INFN)

Advanced Accelerator Development Strategy Report

DOE Advanced Accelerator Concepts Research Roadmap Workshop, Feb 2-3, 2016

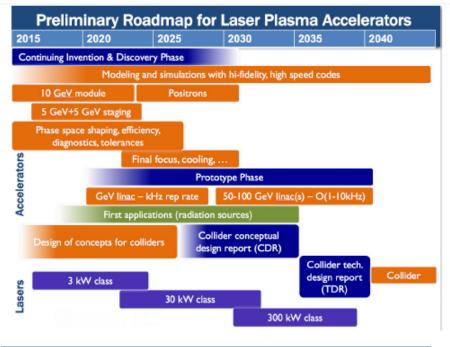
The next ten years of AAC research should focus on addressing common challenges identified during the workshop:

- 1. Higher energy staging of electron acceleration with independent drive beams, equal energy, and 90% beam capture;
- 2. Understanding mechanisms for emittance growth and developing methods for achieving emittances compatible with colliders;
- 3. Completion of a single electron acceleration stage at higher energy;
- 4. Demonstration and understanding of positron acceleration; and
- 5. Continuous, joint development of a comprehensive and realistic operational parameter set for a multi-TeV collider, to guide operating specifications for AAC.

ENERGY

Office of Science

Advanced Accelerator Development Strategy Report


DOE Advanced Accelerator Concepts Research Roadmap Workshop February 2–3, 2016

Development Roadmaps (US & EU)

20

	DW	FA LC 10	YEAR ROA	ADMAP	
2016	2018	2020	2022	2024	2026
DWI	A LC Baselin	e Technology	(potential mu	lti-fold cost redu	iction)
Technol		tion Phase			
			Technology	Integration Ph	ase
Single Stage					
I	ligh Fidelity Sta	ging			
		Main I	Beam Source		
				3GeV Acc	eleration Facility
	Bunch Sha	ping for Doubli	ng RF-Beam Ef	ficiency	
	High Efficiency	y Klystron (Syn	ergy efforts from	n CLIC/SLAC)	
					CDR for L
DWFA	Exploratory 8	tudies (potent	ially order of n	nagnitude cost r	eduction)
	Science Di	scovery and T	echnology Inv		
			Ultralow Emi	ttance e-	
		Ultralow Er	nittance e+ (Sy	nergy efforts fron	n LPWA)

	2016	2020	2025		2030	2035	2040
	LHC Physics Pro	gram				★ End LHC Phy	rsics Program
	Plasma Accelera other National &						
	PWFA-LC Conce	epts & Parame	ter Studies P	WFA-LC CDR	1	PWFA-LC TDR	PWFA-LC Construction
	Beam Dynamics	& Tolerance S	tudies				
Ĕ	Plasma Source D	Development					
Development	FACET-II Constru	uction				Leg	end
	FA	CET-II Operati	on				mulation/Design
Š,	Experimental Design & Protoyping					-	ng/Construction
ŏ	En	nittance Preser	vation			Experimen	ts/Operations
ē		Transfor	rmer Ratio > 1				
Hesearch			Staging Studies		Multiple Stages		
PWFA	PWFA App Dev. & CDR	PWFA-App TDR	PWFA-App Construction	PWFA-App	Operation		
L			ure Facility Desig TBD)	n FFTBD Constructio		Operation & Collider Prototy est'	pe
	Positron PWFA Concept Dev.		PWFA in C Regime				
lech.	Euro XFEL Construction	Euro XFEL C	Operation				
Driver	LCLS-II Construction	LCLS-II Ope	ration				

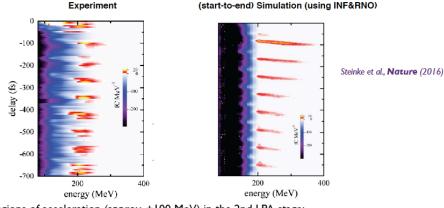
Beam Driven Plasma Accelerator Roadmap for HEP

	2020	2025	2030	2035	2040
LHC Physics Pro	gram 🌞 uronit langar				END LIK: Physica Program
High efficiency l	aser #80 (ICAN) Popula	_	100 stigh efficiency laser #3 W	•	
Masma acceleration and beam	tion 880 in independent national t n triven	wropean facilities			
EuPRAXIA Desig		tion EuPRAXIA Comm. 3 GeV HD +. Ine EPP	EuPRAXIA - HEP test beam and ot	her applications	
opproval and July June			EUPRAXIA - Pilot plasma XFEL (low	rate towards operational P-XFI	IL (high rate)
5-DeV: loser er					
dites - blow	or external	Construction	UPGRADE EuPRAXIA - Plasma Acc e+, pp. effciency	elerator R&D	
injaction-plan	ins solvidage	Plasma eve- or TV U		LC Technical Design & leve- or o	or 17 PLC Construction
	ere or m. pols srarge h	Design	Prototyping		
approval and funded of AIWARE	protiven places accession	performance potential and collider concept for p-driven	PROJECT DECISION & FUNDERIE - Ix leaser driver, anging, been quelity, efficiency, leaser technology (If lease	uni.cost.	
	AWARE Collider Conceptual Design (or exemple op satisfer)				
BELLA, BELLA-İ, İ LWAA, KW power, eti	BELLA-k Idency, intermediate applications, staging		Cine collaboration between fumpear on glora la endesgen end apported in 82	I UT or Adle	
PACET, PACET-B PARA, efficiency, exe					

AC EUPRAXIA

Some Recent Highlights

- Progress on positron acceleration
- Multi-stage acceleration
- Studies of injection schemes


Multi-GeV Acceleration of Positrons

Corde et al., Nature August 2015

Staged LPA: electron spectra vs laser delay

Electron spectra as a function of delay between Laser/I (electron beam) and Laser/2

Periodic regions of acceleration (approx. +100 MeV) in the 2nd LPA stage:

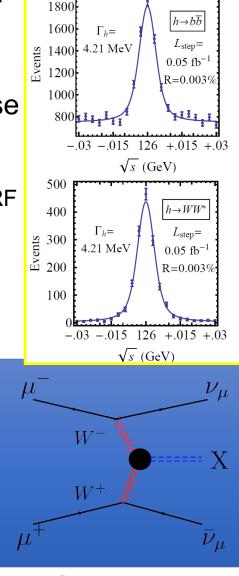
- multiple accelerating buckets
- 80 fs modulation period (24 micron plasma wavelength; consistent with 1.9x10¹⁸/cc)
- quasi-linear wakefield regime (consistent with laser-plasma parameters, $l_2=1.4 \times 10^{18}$ W/cm2)
- bunch length $< \lambda_p/4$

transverse phase space (in laser polarization plane): PRSTAB 2014 and SPIE 2014, normalized emittance = 20 nm

Some Comments

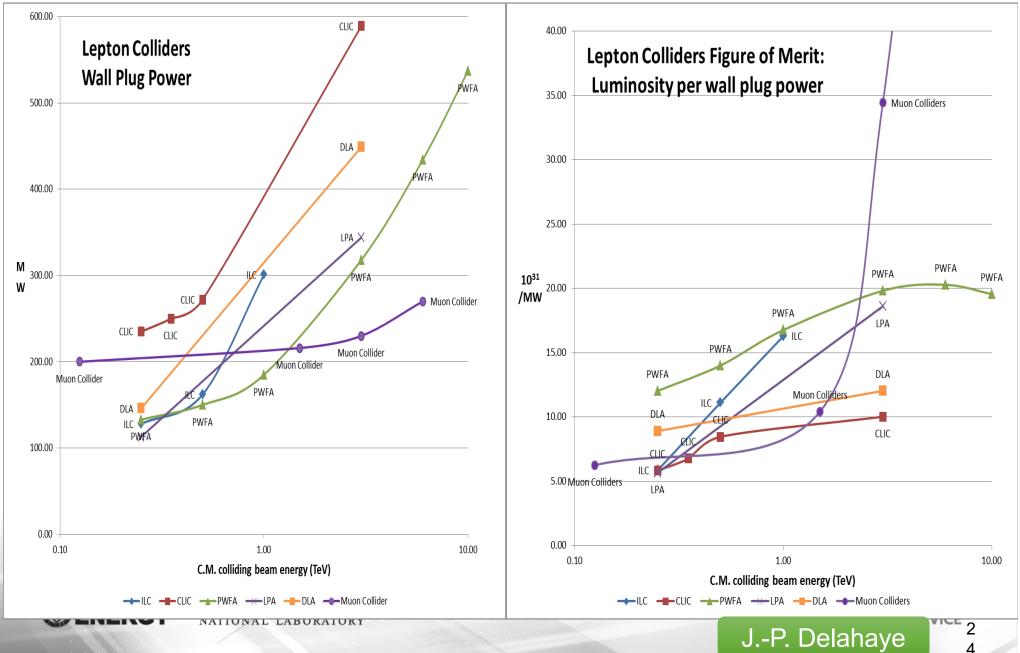
- Research remains focused on studying the physics and executing laboratory demonstrations of basic concepts (i.e., we're at low Technology Readiness Levels)
- In addition to the acceleration techniques research, will need to explore full capability issues to understand the constraints and reach for HEP applications:
 - Beam delivery system
 - Machine detector interface
 - Bunch pattern issues
 - Full systems engineering
 - Multi-system integration
 - Realistic performance with achievable engineering designs
 - Etc.

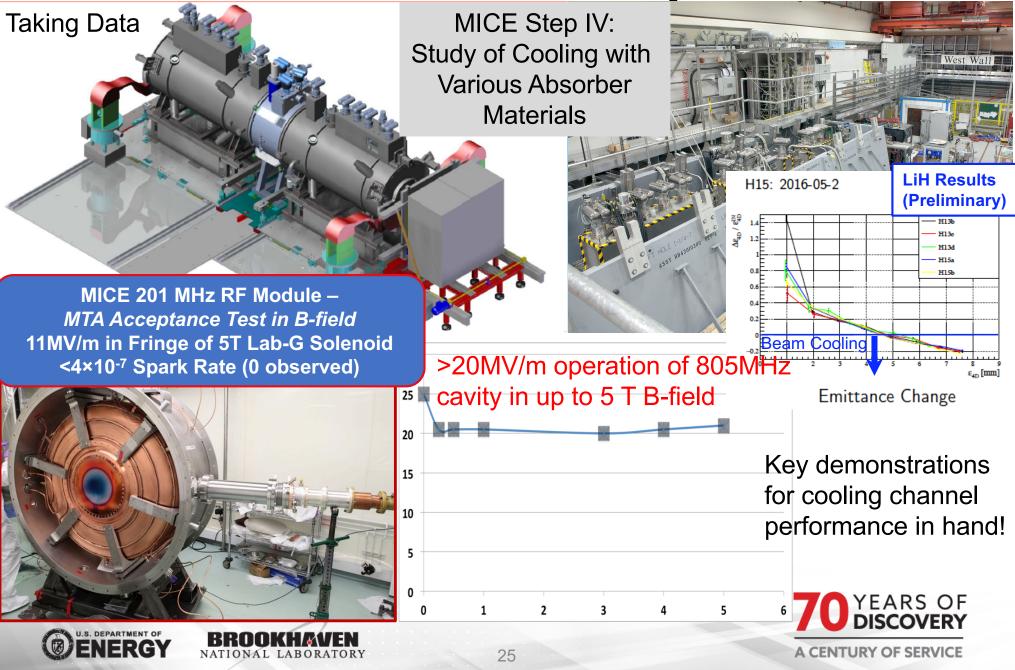
⇒ Much to do before we understand how to build an HEP machine!



Other options

- While the US MAP program will complete its ramp-down this year, muon options offer an alternative path depending on the physics needs
 - European study will contribute to the 2018 European Strategy
- Recent design and R&D efforts continue to show promise
 - The International Muon Ionization Cooling Experiment at Rutherford Appleton Laboratory is currently characterizing the cooling effects of potential absorbers for muon cooling
 - Multiple solutions have now been identified for the challenge of RF in magnetic fields
- A Muon Collider offers:
 - Superb Energy Resolution
 - SM Thresholds and s-channel Higgs Factory operation
 - Multi-TeV Capability (≤ 10TeV):
 - Compact & energy efficient machine (multi-pass RF)
 - Luminosity > 10³⁴ cm⁻² s⁻¹
 - Option for 2 detectors in the ring
 - For √s > 1 TeV: Fusion processes dominate
 ⇒ an Electroweak Boson Collider
 ⇒ a discovery machine complementary to a very high energy pp collider
 - At >5TeV: Higgs self-coupling resolutions of <10%




EARS OF

A CENTURY OF SERVICE

Muon Colliders extending high energy frontier with potential of considerable power savings

R&D Towards Muon Capabilities

Accelerator Capabilities Summary and Conclusions

- Near-Term Collider Capabilities:
 - LHC is running
 - SuperKEKB is commissioning
 - HL-LHC project moving forward
- Mid-Term Capabilities
 - Looming decisions for an electron-positron option
 - Design reports and cost estimates are needed to clarify our hadron machine options
- Long-Term Capabilities
 - Challenges
 - Maintaining funding to conduct the R&D for our future options
 - Moving to TRLs compatible with knowing whether we can actually achieve our desired collider capabilities

