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High Energy Physics and Computing

• Scales	
‣ HEP science covers a number of scales (table-top to the most complex 

experiments in the world) and computing models (laptop to world-wide grid) 
• HEP	Fron0ers	

‣ Energy Frontier (large experiments at colliders, O(1000) researchers/expt) 
‣ Intensity Frontier (small/medium/large, O(10-1000) researchers/expt) 
‣ Cosmic Frontier (small/medium/large scale, O(10-1000) researchers/expt) 

• Data		
‣ Most experimental data requires fine-grained, ‘event’ style analysis 
‣ Data pipelines are complex and need to be run many times (individual 

campaigns can last for months) 
‣ Scale of data — 10s of TB to 100s of PB/year (Exabyte already) 
‣ Multiple IO requirements 

• ASCR/HEP	Exascale	Requirements	Review	(good	place	for	details)	
‣ http://arxiv.org/abs/1603.09303, also http://hepcce.org/resources/reports/

http://hepcce.org/resources/reports/


Computing Paradigm (Cosmic and Energy Frontiers) 
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Simulated Data: 1) Event generation (lists of particles and momenta), 2) 
Simulation (interaction with detector), 3) Reconstruction (presence of particles 
inferred from detector response); Analysis: Comparison with actual data

Simulated Data: 1) Large-scale simulation of the Universe, 2) Synthetic catalogs, 
3) Statistical inference (cosmology); Analysis: Comparison with actual data



Different Flavors of Computing 

• High	Performance	Compu0ng	(‘PDEs’)	
‣ Parallel systems with a fast network 
‣ Designed to run tightly coupled jobs 
‣ “High performance” parallel file system 
‣ Batch processing 

• Data-Intensive	Compu0ng	(‘Interac0ve	Analy0cs’)	
‣ Parallel systems with balanced I/O 
‣ Designed for data analytics 
‣ System level storage model 
‣ Fast Interactive processing 

• High	Throughput	Compu0ng	(‘Events’/‘Workflows’)	
‣ Distributed systems with “slow” networks 
‣ Designed to run loosely coupled jobs 
‣ System level/Distributed data model 
‣ Batch processing

Want more of this — (“Science Cloud”), 
but don’t yet (really) have it  

(Data-Intensive Scalable Computing: DISC)



Timing Example: LSST and Computing

• LSST	compu0ng	(pipeline	+	analysis)	
‣ Estimates of initial computing needs are unclear, 

ranging from 150-350 TFlops/year 
‣ Initial storage needs are ~PB, growing linearly 
‣ Based on this, we would want (at least) the #1 

machine in the Top 500 in 2006 
‣ In 2022 there may be O(1000-10,000) such 

machines in the US alone!  
‣ Storage requirement is already ‘trivial’, LSST is 

NOT ‘Big Data’ 
• So	what’s	the	problem?	

‣ Analyses will be complex (and there will be 
multiple reprocessing steps) 

‣ These tasks will expand to fill available 
computational space 

‣ Programming models may be very different from 
those in use today 

IBM BG/L, Top 500 #1 in 2006
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(Projection)



Computing Science Drivers: Cosmology

Results from the  
Planck satellite 

(2013)

Compilation of results  
(E. Gawiser 1999)

Results compilation (1999)

•Massive increase in 
sensitivity of cosmic 
microwave 
background (CMB) 
observations 

•Cross-correlation 
with galaxy surveys 

•New era of CMB 
modeling/simulations

•Massive increase 
in volume of 
galaxy surveys 

•Next-generation 
galaxy clustering 
simulations 

•Multi-physics 
codes needed to 
meet accuracy 
requirements

Results from BOSS  
(2012)



Cosmology: Simulation Frontiers

Simulation Volume
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Petascale Exascale

•Second-generation 
surveys 

•Multi-probe 
simulations 

•Few precision probes 
• Intermediate accuracy 

parameter estimation

•Next-generation 
surveys 

•End-to-end, multi-
probe survey-scale 
simulations 

•Multiple cross-
calibrated probes 

•UQ-enabled cosmic 
calibration frameworks 

•First-generation 
surveys 

•Single-probe 
simulations

Terascale



Computing Requirements: Energy Frontier
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DOE ASCR 
supercomputing 

completely dwarfs 
all future HEP 

project computing 

Kersevan 2016

• HEP	Requirements	in	compu0ng/storage	will	scale	up	by	~50X	over	5-10	years	
‣ Flat funding scenario fails — must look for alternatives!

HEP current

(SH 2015)



What to Do? Many White Papers and Reports —



Are Supercomputers a Universal Solution?
  

• Dealing with supercomputers is painful! 
• HPC programming is tedious (MPI, OpenMP, CUDA, OpenCL, —) 
• Batch processing ruins interactivity  
• File systems corrupt/eat your data 
• Software suite for HPC work is very limited 
• Analyzing large datasets on HPC systems is painful 
• HPC experts are not user-friendly 
• Downtime and mysterious crashes are common 
• Ability to ‘roll your own’ is limited 



Where is Computing Headed?

• Evolu0on	of	HPC	Systems	
‣ Optimized for raw Flops 
‣ Poor Memory to Flops ratio  
‣ Poor Comm/IO to Flops ratio  
‣ Insufficient storage 
‣ Multiple technology ‘swim lanes’  
‣ Rapid node architecture evolution  
‣ Major lag in software 

development 
• Mi0ga0on	Strategies	

‣ Rethink computer architecture 
and design for science use cases 

‣ Storage caches with direct 
connectivity to compute nodes 

‣ Faster/fatter data pipes to 
compute platforms 

‣ Software strategies for portability
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Example of current supercomputer evolution: 
driven by a number of imperatives — economic 
and technological — leading to specialized nodal 
architectures (end of the ‘PC’ model)

100MB/core



Exascale Computing Project

Major DOE SC and NNSA joint project to arrive at a scientifically usable 
architecture for exascale computing in the early 2020’s — largest science 
project within DOE

HEP community needs to engage!



Connectivity Example: Edge Services

Edge service design must consider a number of factors; security, resource 
flexibility, interaction with HPC schedulers, external databases, 
requirements of the user community — modern supercomputers are once 
again ‘strategic’ resources, not a ‘pile of PCs’!



Boundary Conditions

• What’s	the	Problem?	
‣ Even if solutions can be designed in principle, the resources needed to 

implement them are (usually) not available  
‣ Despite all the evidence of its power, computing still does not get high 

enough priority compared to building “things”  
‣ In part this is due to the success of computing — progress in this area is 

usually much faster than in others, so one can assume that computing 
will just happen (Moore’s Law) — to what extent is this still true?  

• Large-Scale	Compu0ng	Available	to	Scien0sts	
‣ Lots of supercomputing (HPC) available and more on the way  
‣ Not enough data-intensive scalable computing (DISC) available to users, 

hopefully this will change over time 
‣ Publicly funded HTC/Grid computing resources cannot keep pace with 

demand 
‣ Commercial space (Cloud) may be a viable option but is not issue-free 
‣ Storage, networking, and curation are major problems (sustainability)



“Data Meets HPC” — Basic Requirements 

• Software Stack: Ability to run arbitrarily complex software stacks on 
HPC systems (software management) 

• Resilience: Ability to handle failures of job streams, still rudimentary 
on HPC systems (resilience) 

• Resource Flexibility: Ability to run complex workflows with changing 
computational ‘width’, possible but very clunky (elasticity) 

• Wide-Area Data Awareness: Ability to seamlessly move computing 
to the data (and vice versa where possible); access to remote 
databases and data consistency via well-designed and secure edge 
services (integration) 

• Automated Workloads: Ability to run large-scale coordinated 
automated production workflows including large-scale data motion 
(global workflow management) 

• End-to-End Simulation-Based Analyses: Ability to run analysis 
workflows on simulations using a combination of in situ and offline/
co-scheduling approaches (hybrid applications) 



Summary

• Is	HPC	the	solu0on	we	have	been	wai0ng	for?	
‣ Not quite, but — 
‣ It might be a solution we can live with (provided software upgrades are 

doable and straitjacketing is acceptable) 
‣ It might be a (partial) solution we will have to live with (power, funding) 

• Compute/data	model	evolu0on	
‣ What happens when compute is free but data motion and storage are 

both expensive? 
‣ Investment in appropriate networking infrastructure and storage 
‣ Major refactoring of software, especially where the computational payload 

meets the compute platform 
• Will	require	nontradi0onal	cross-office	agreements	

‣ Individual experiments too fine-grained, need a higher-level arrangement 
‣ Will require changes in ASCR’s computing vision (“superfacility” variants) 
‣ ASCR is not a “support science” office, prepare for the bleeding edge!


