APS DPF Meeting, August 4, 2017

SP1

LSST

JVLA

SDSS

HEP-CCE

WFIRST

Next-Generation Computing Challenges: HPC Meets Data

Salman Habib

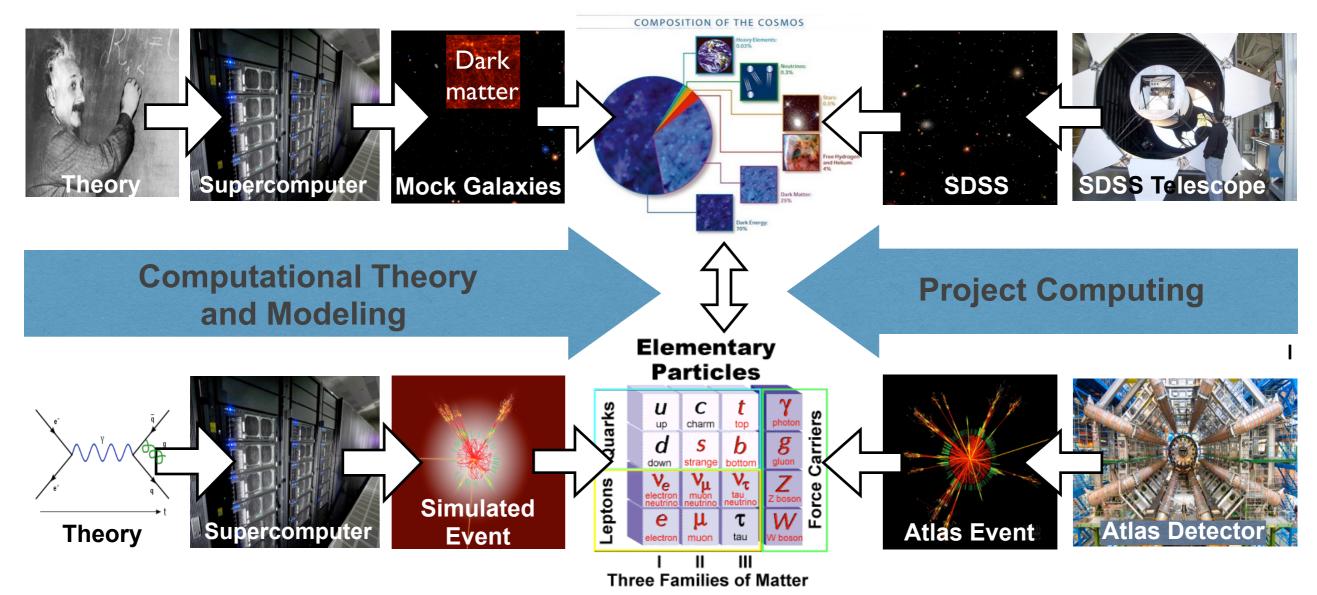
High Energy Physics Division Mathematics & Computer Science Division Argonne National Laboratory

> Computation Institute Argonne National Laboratory The University of Chicago

Kavli Institute for Cosmological Physics The University of Chicago

High Energy Physics and Computing

• Scales


 HEP science covers a number of scales (table-top to the most complex experiments in the world) and computing models (laptop to world-wide grid)

• HEP Frontiers

- Energy Frontier (large experiments at colliders, O(1000) researchers/expt)
- Intensity Frontier (small/medium/large, O(10-1000) researchers/expt)
- Cosmic Frontier (small/medium/large scale, O(10-1000) researchers/expt)
- Data
 - Most experimental data requires fine-grained, 'event' style analysis
 - Data pipelines are complex and need to be run many times (individual campaigns can last for months)
 - Scale of data 10s of TB to 100s of PB/year (Exabyte already)
 - Multiple IO requirements
- ASCR/HEP Exascale Requirements Review (good place for details)
 - http://arxiv.org/abs/1603.09303, also <u>http://hepcce.org/resources/reports/</u>

Computing Paradigm (Cosmic and Energy Frontiers)

Simulated Data: 1) Large-scale simulation of the Universe, 2) Synthetic catalogs, 3) Statistical inference (cosmology); Analysis: Comparison with actual data

Simulated Data: 1) Event generation (lists of particles and momenta), 2) Simulation (interaction with detector), 3) Reconstruction (presence of particles inferred from detector response); **Analysis:** Comparison with actual data

Different Flavors of Computing

• High Performance Computing ('PDEs')

- Parallel systems with a fast network
- Designed to run tightly coupled jobs
- "High performance" parallel file system
- Batch processing

Data-Intensive Computing ('Interactive Analytics')

- Parallel systems with balanced I/O
- Designed for data analytics
- System level storage model
- Fast Interactive processing

High Throughput Computing ('Events'/'Workflows')

- Distributed systems with "slow" networks
- Designed to run loosely coupled jobs
- System level/Distributed data model
- Batch processing

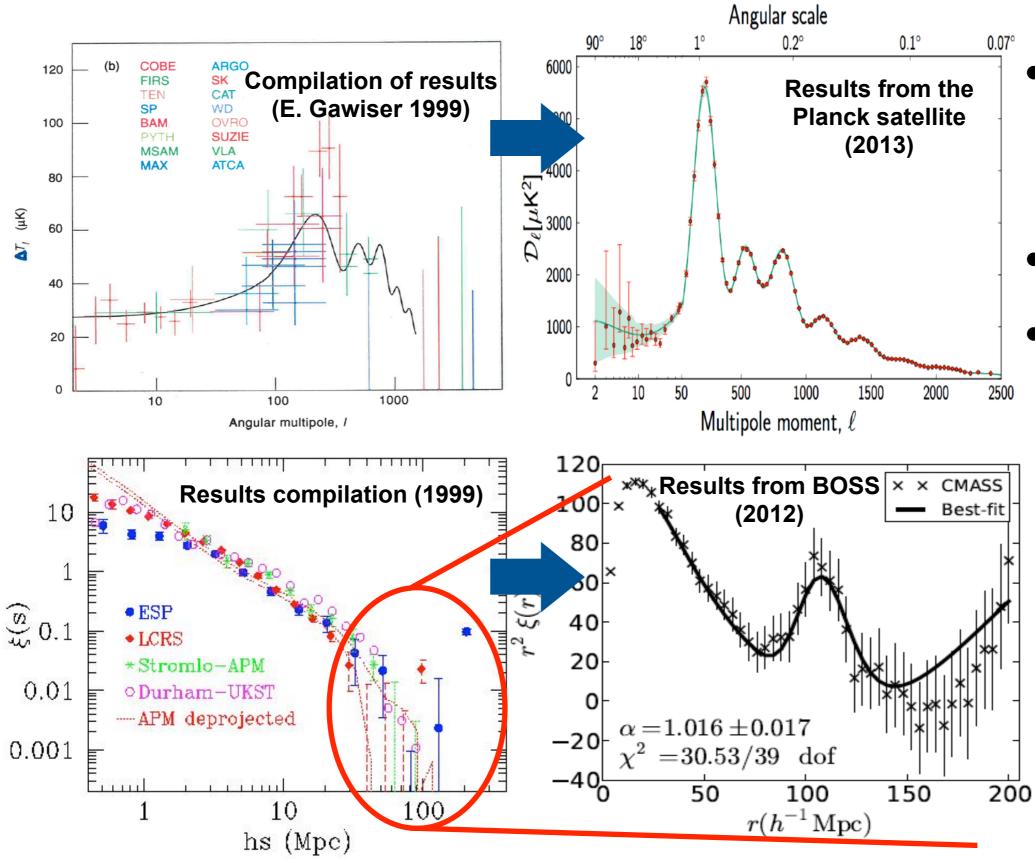
Want more of this — ("Science Cloud"), but don't yet (really) have it (Data-Intensive Scalable Computing: DISC)

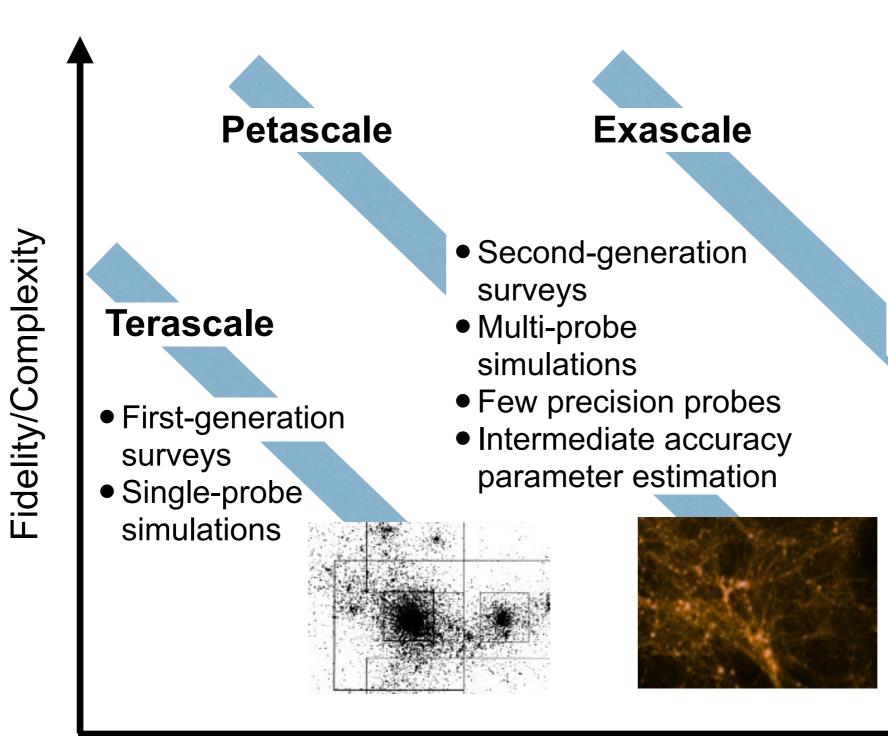
Timing Example: LSST and Computing

• LSST computing (pipeline + analysis)

- Estimates of initial computing needs are unclear, ranging from 150-350 TFlops/year
- Initial storage needs are ~PB, growing linearly
- Based on this, we would want (at least) the #1 machine in the Top 500 in 2006
- In 2022 there may be O(1000-10,000) such machines in the US alone!
- Storage requirement is already 'trivial', LSST is NOT 'Big Data'

• So what's the problem?

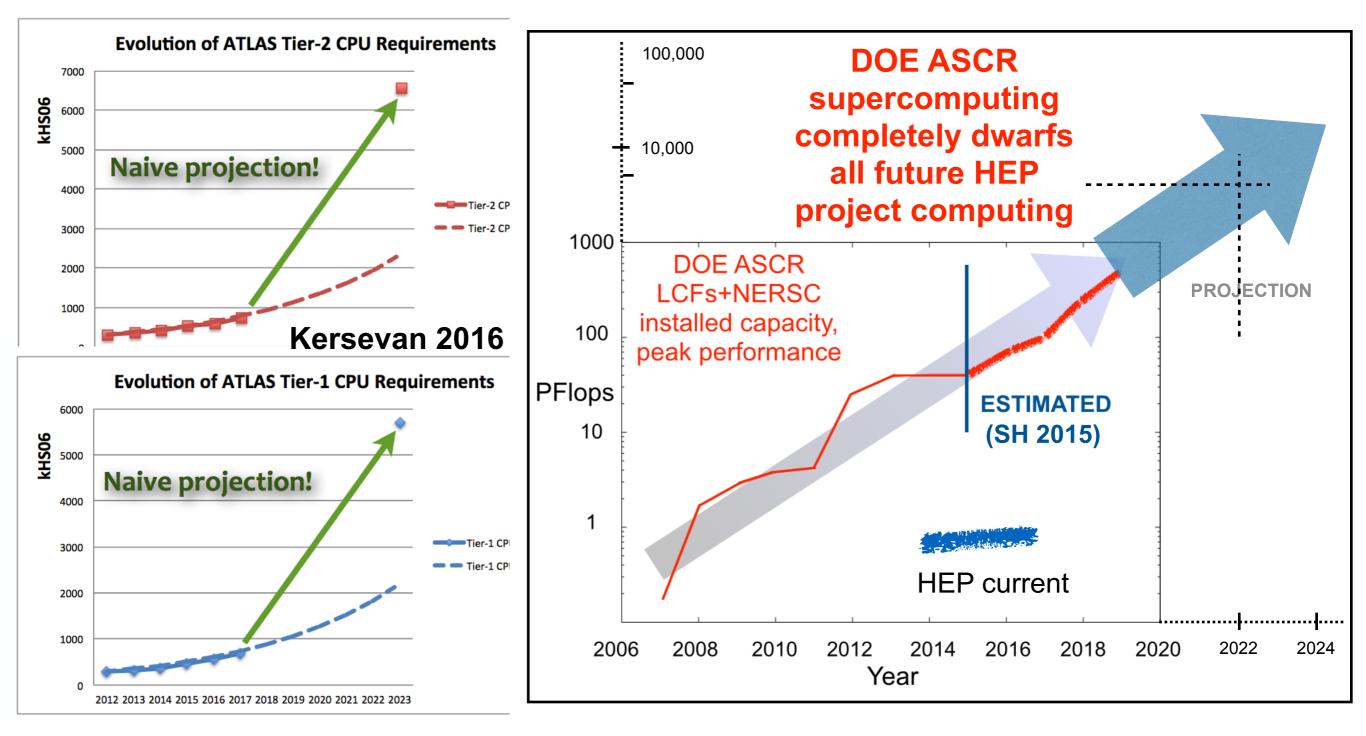

- Analyses will be complex (and there will be multiple reprocessing steps)
- These tasks will expand to fill available computational space
- Programming models may be very different from those in use today


300 TFlops/10PB, 10kW in 2020 (Projection)

Computing Science Drivers: Cosmology

- Massive increase in sensitivity of cosmic microwave background (CMB) observations
- Cross-correlation with galaxy surveys
- New era of CMB modeling/simulations
 - Massive increase in volume of galaxy surveys
 - Next-generation galaxy clustering simulations
 - Multi-physics codes needed to meet accuracy requirements

Cosmology: Simulation Frontiers



- Next-generation surveys
- End-to-end, multiprobe survey-scale simulations
- Multiple crosscalibrated probes
- UQ-enabled cosmic calibration frameworks

Simulation Volume

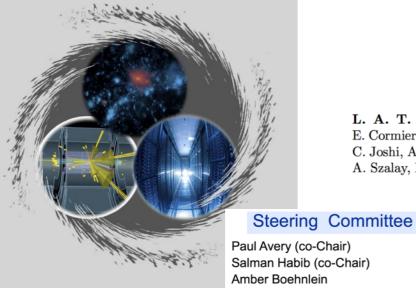
Computing Requirements: Energy Frontier

- HEP Requirements in computing/storage will scale up by ~50X over 5-10 years
 - Flat funding scenario fails must look for alternatives!

What to Do? Many White Papers and Reports —

HEP

HIGH ENERGY PHYSICS



An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics

Lead Authors HEP Salman Habib¹ and Robert Roser²

ASCR Richard Gerber,³ Katie Antypas,³ Katherine Riley, and Tjerk Straatsma⁴

Report from the Topical Panel Meeting on Computing and Simulations in High Energy Physics

Sponsored by the U.S. Department of Energy, Office of Science, High Energy Physics December 9-11, 2013 Rockville Hilton Hotel, Rockvil

Salman Habib (co-Chair) Amber Boehnlein Robert Roser Stephen Sharpe Heidi Schellman Craig Tull Torre Wenaus <complex-block>

HIGH ENERGY PHYSICS FORUM FOR COMPUTATIONAL EXCELLENCE: WORKING GROUP REPORTS

> I. Applications Software II. Software Libraries and Tools III. Systems

Lead Editors: Salman Habib¹ and Robert Roser² (HEP-FCE Co-Directors)

Applications Software Leads: Tom LeCompte¹, Zach Marshall³ Software Libraries and Tools Leads: Anders Borgland⁴, Brett Viren⁵ Systems Lead: Peter Nugent³

Applications Software Team: Makoto Asai⁴, Lothar Bauerdick², Hal Finkel¹, Steve Gottlieb⁶, Stefan Hoeche⁴, Tom LeCompte¹, Zach Marshall³, Paul Sheldon⁷, Jean-Luc Vay³

Software Libraries and Tools Team: Anders Borgland⁴, Peter Elmer⁸, Michael Kirby², Simon Patton³, Maxim Potekhin³, Brett Viren³, Brian Yanny²

Systems Team: Paolo Calafiura³, Eli Dart³, Oliver Gutsche², Taku Izubuchi⁵, Adam Lyon², Peter Nugent³, Don Petravick⁹

Planning the Future of U.S. Particle Physics

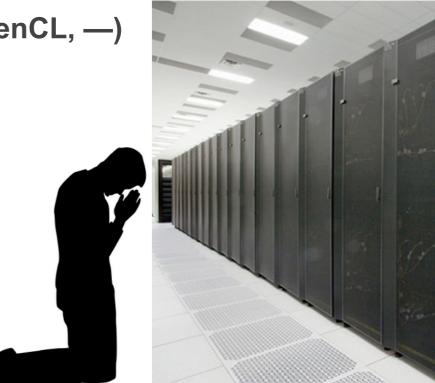
Report of the 2013 Community Summer Study

High Energy Physics and Nuclear Physics Network Requirements

HEP and NP Network Requirements Review Final Report

L. A. T. Bauerdick, S. Gottlieb, G. Bell, K. Bloom, T. Blum, D. Brown, M. Butler Conducted August 20-22, 2013

E. Cormier, P. Elmer, M. Ernst, I. Fisk, G. Fuller, R. Gerber, S. Habib, M. Hildreth, S. Hoeche, C. Joshi, A. Mezzacappa, R. Mount, R. Pordes, B. Rebel, L. Reina, M. C. Sanchez, J. Shank, A. Szalay, R. Van de Water, M. Wobisch, S. Wolbers


Chapter 9: Computing

U Florida Argonne SLAC Fermilab U Washington Northwestern LBNL BNL

Are Supercomputers a Universal Solution?

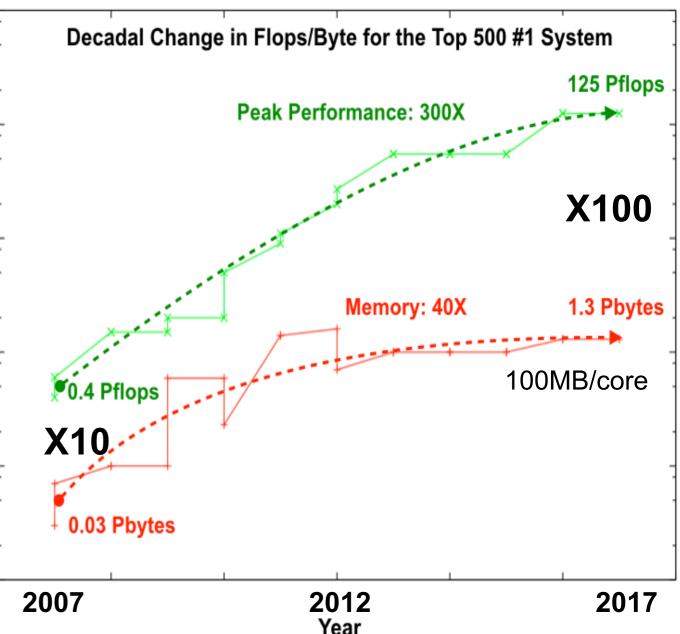
Dealing with supercomputers is painful!

- HPC programming is tedious (MPI, OpenMP, CUDA, OpenCL, —)
- Batch processing ruins interactivity
- File systems corrupt/eat your data
- Software suite for HPC work is very limited
- Analyzing large datasets on HPC systems is painful
- HPC experts are not user-friendly
- Downtime and mysterious crashes are common
- Ability to 'roll your own' is limited

Running Jobs	Queued Jobs	Reservations						
Total Queued Jobs: 172								
Job Id ≎	Project			Walltime 🗘	Queued Time 🗘	Queue	\$	Nodes 🗘
307941	SkySurvey		8351.7	1d 00:00:00	5d 01:10:03	prod-capability		32768
307942	SkySurvey		8350.5	1d 00:00:00	5d 01:09:42	prod-capability		32768
309793	NucStructReact_	2	7069.0	01:00:00	1d 19:13:34	prod-capability		32768
309794	NucStructReact_	2	7065.1	01:00:00	1d 19:12:28	prod-capability		32768
309795	NucStructReact_	2	7056.8	01:00:00	1d 19:10:04	prod-capability		32768
309271	LatticeQCD_2		6121.1	03:00:00	3d 03:40:34	prod-capability		12288
309314	LatticeQCD_2		5036.1	04:50:00	2d 22:51:59	prod-capability		12288
309315	LatticeQCD_2		5034.8	03:00:00	2d 22:51:38	prod-capability		12288
309316	LatticeQCD_2		5034.0	04:50:00	2d 22:51:24	prod-capability		12288
309317	LatticeQCD_2		5033.0	03:00:00	2d 22:51:08	prod-capability		12288
309318	LatticeQCD_2		5032.6	04:50:00	2d 22:51:01	prod-capability		12288

Where is Computing Headed?

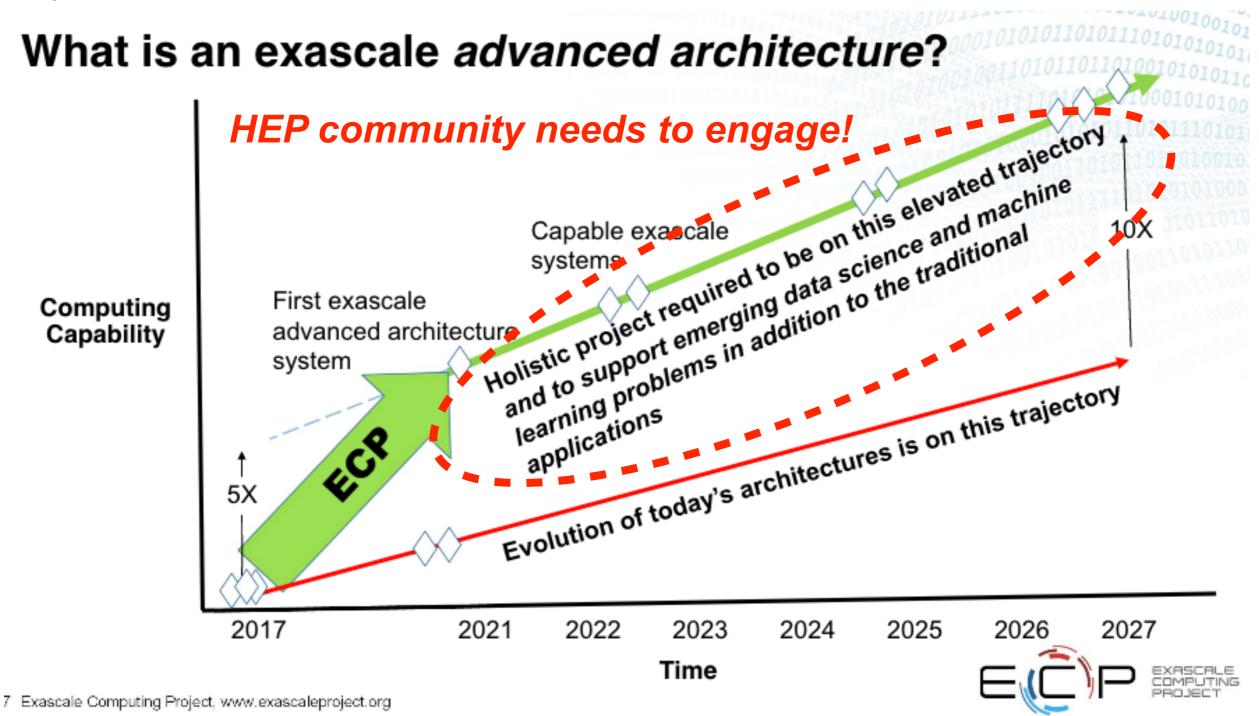
10

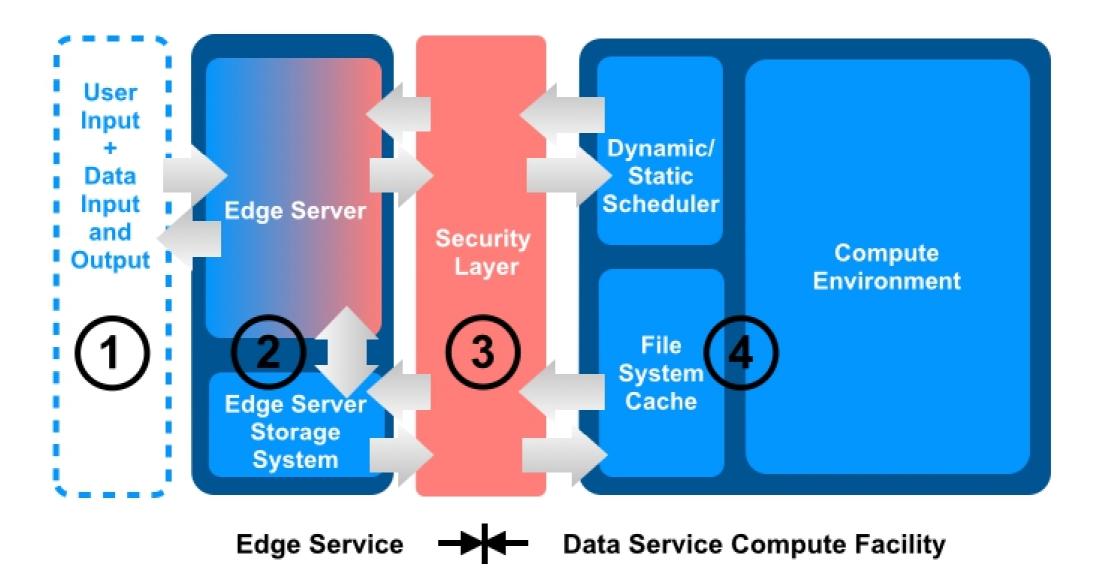

0.1

• Evolution of HPC Systems

- Optimized for raw Flops
- Poor Memory to Flops ratio 100
- Poor Comm/IO to Flops ratio
- Insufficient storage
- Multiple technology 'swim lanes'
- Rapid node architecture evolution ,
- Major lag in software development

Mitigation Strategies


- Rethink computer architecture and design for science use cases
- Storage caches with direct connectivity to compute nodes
- Faster/fatter data pipes to compute platforms
- Software strategies for portability


Example of current supercomputer evolution: driven by a number of imperatives — economic and technological — leading to specialized nodal architectures (end of the 'PC' model)

Exascale Computing Project

Major DOE SC and NNSA joint project to arrive at a scientifically usable architecture for exascale computing in the early 2020's — *largest science project within DOE*

Connectivity Example: Edge Services

Edge service design must consider a number of factors; security, resource flexibility, interaction with HPC schedulers, external databases, requirements of the user community — modern supercomputers are once again 'strategic' resources, not a 'pile of PCs'!

Boundary Conditions

• What's the Problem?

- Even if solutions can be designed *in principle*, the resources needed to implement them are (usually) not available
- Despite all the evidence of its power, computing still does not get high enough priority compared to building "things"
- In part this is due to the success of computing progress in this area is usually much faster than in others, so one can assume that *computing will just happen (Moore's Law)* — to what extent is this still true?
- Large-Scale Computing Available to Scientists
 - Lots of supercomputing (HPC) available and more on the way
 - Not enough data-intensive scalable computing (DISC) available to users, hopefully this will change over time
 - Publicly funded HTC/Grid computing resources cannot keep pace with demand
 - Commercial space (Cloud) may be a viable option but is not issue-free
 - Storage, networking, and curation are major problems (sustainability)

- Software Stack: Ability to run arbitrarily complex software stacks on HPC systems (software management)
- Resilience: Ability to handle failures of job streams, still rudimentary on HPC systems (*resilience*)
- Resource Flexibility: Ability to run complex workflows with changing computational 'width', possible but very clunky (*elasticity*)
- Wide-Area Data Awareness: Ability to seamlessly move computing to the data (and vice versa where possible); access to remote databases and data consistency via well-designed and secure edge services (*integration*)
- Automated Workloads: Ability to run large-scale coordinated automated production workflows including large-scale data motion (global workflow management)
- End-to-End Simulation-Based Analyses: Ability to run analysis workflows on simulations using a combination of in situ and offline/ co-scheduling approaches (*hybrid applications*)

Summary

• Is HPC the solution we have been waiting for?

- Not quite, but —
- It might be a solution we can live with (provided software upgrades are doable and straitjacketing is acceptable)
- It might be a (partial) solution we will *have* to live with (power, funding)

Compute/data model evolution

- What happens when compute is free but data motion and storage are both expensive?
- Investment in appropriate networking infrastructure and storage
- Major refactoring of software, especially where the computational payload meets the compute platform

• Will require nontraditional cross-office agreements

- Individual experiments too fine-grained, need a higher-level arrangement
- Will require changes in ASCR's computing vision ("superfacility" variants)
- ASCR is not a "support science" office, prepare for the bleeding edge!