

Search for Dark Matter with bubble chambers

Orin Harris
Northeastern Illinois University

APS DPF 2017

Bubble chamber: theory

- In a superheated fluid, bubbles will collapse unless they are large enough (r_c) to overcome surface tension: must deposit E_{th} in a radius less than r_c
 → E_{th} & E_{th}/r_c = dE/dx threshold
- Threshold based on theory of Seitz (Phys. of Fluids I, 2 (1958))
 For a given fluid:
 Classical Thermodynamics gives
 Eth, r in terms of P, T

Pressure & temperature → min energy, dE/dx threshold → sensitive to <u>nuclear recoils</u> but not electron recoils

1950s-1970s

Gamma/Beta Backgrounds

Nuclear target

- Big advantage of bubble chambers is the ease of changing nuclear target (lot's of candidate refrigerants)
- Previously used CF₃I
 (I for SI sensitivity,
 F for SD sensitivity),
 now using C₃F₈ (focusing on SD sensitivity, low mass)

Response functions

A. L. Fitzpatrick, see also: 0908.2991, 1203.3542, 1211.2818, 1308.6288

PICO Bubble chamber operation

Pressure expansion puts target fluid in superheated state

Buffer fluid (water) Synthetic silica jar Target fluid (CF_3I/C_3F_8) Hydraulic fluid to hydraulic controller

Wait for particle interaction to nucleate a bubble, recompress

Cameras capture stereoscopic bubble images @ 100 fps (primary trigger)

Acoustic sensors & fast pressure transducer capture sound & pressure rise from bubble growth

Acoustic discrimination of α 's

- Clear acoustic signature of single nuclear recoil (track < ~μm)
- Sound emission peaks at $r_{bubble} \approx 10 \mu m$
- α track much larger (~40 μ m)
 - → separate nucleation sites
 - $\rightarrow \alpha$'s several times louder

The PICO program

- PICO: merger of PICASSO and COUPP collaborations
- PICO-2L C₃F₈ (2014-17)
 C. Amole *et al.*,
 Phys. Rev. Lett. 114, 231302 (2015)
 Phys. Rev. D 93, 061101 (2016)
- PICO-60 CF₃I (2013)
 Phys. Rev. D 93, 061101 (2016)
- PICO-60 C₃F₈ (2016-17)
 Phys. Rev. Lett. 118, 251301 (2017)
- PICO-40L (2017-18)
- PICO-500 (future)

PICO-60 Cleaning

 Every component touching the inner volume was cleaned against MIL-STD-1246C level 50

PICO-60 run with blinded acoustics

- Filled with 52 kg C₃F₈ in June, 2016
 - Blind analysis on data from
 November 2016 and January 2017
 1167-kg-days at 3.3 keV threshold
- 106 bulk singles in WIMP search dataset
 - Consistent with ²²²Rn decay rate
- Expected Neutron Background
 - 3 multiple bubbles in the physics data
 - 3:1 multiples to singles ratio from calibration and simulation
 - 0-3 bulk singles would be consistent with neutrons and no anomalous background

After Opening the Box

Moving forward: PICO-40L

Eliminate buffer fluid

Purpose of buffer liquid is to isolate the active liquid from the stainless parts

PICO-60

PICO-40L

Thermal gradient can ensure that target fluid near stainless parts is not active

Summary

- PICO bubble chambers at the 40L scale are background-free
- PICO dominates the search for spindependent WIMP-proton coupling
- PICO-40L: Design changes expected to further improve bubble chamber stability and lower neutron background, deployment this year
- Ton-scale PICO-500 in engineering stage, goal: data taking in 2019

I. Lawson

M. Ardid, M. Bou-Cabo, I. Felis

NORTHWESTERN UNIVERSITY

CZECH TECHNICAL

UNIVERSITY

IN PRAGUE

D. Baxter, C.E. Dahl, M. Jin, J. Zhang

P. Bhattacharjee. M. Das. S. Seth

R. Filgas, I. Stekl

J.I. Collar. A.E. Robinson Université m de Montréal

F. Debris, M. Fines-Neuschild, F. Girard, C.M. Jackson, M. Lafrenière. M. Laurin. J.-P. Martin, A. Plante, N. Starinski, V. Zacek

R. Neilson

Fermilab

S.J. Brice, D. Broemmelsiek, P.S. Cooper, M. Crisler, W.H. Lippincott, E. Ramberg, M.K. Ruschman, A. Sonnenschein

D. Maurya, S. Priya

O. Harris

E. Vázquez-Jáuregui

C. Amole, M. Besnier, G. Caria, G. Giroux, A. Kamaha, A. Noble

Pacific Northwest NATIONAL LABORATORY

D.M. Asner, J. Hall

S. Fallows, C. Krauss, P. Mitra

K. Clark

J. Farine, A. Le Blanc, R. Podviyanuk, O. Scallon, U. Wichoski

BACKUP

Long term

 Coherent neutrino background much lower for light target compared to Xe

Nucleon Coupling Limits

Limits on neutron vs proton spin-dependent coupling

D.R. Tovey, et al., Phys. Lett. B 488, 17 (2000)

Comparison to Collider

