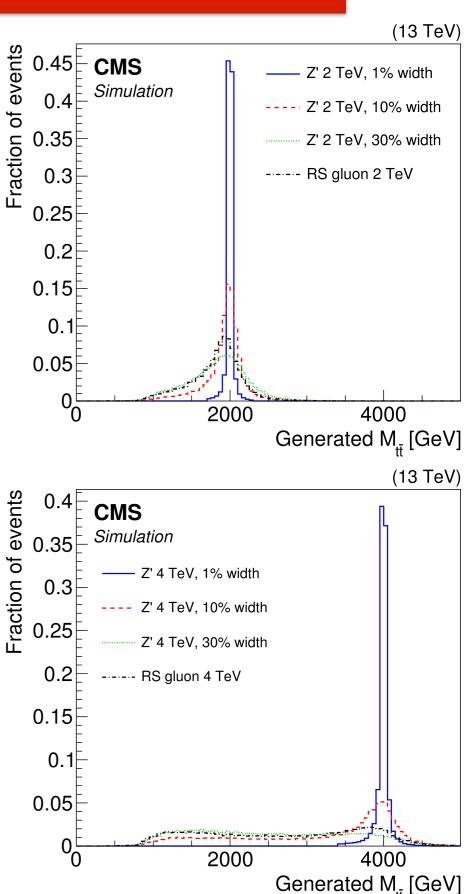

Search for tr Resonances in Boosted Final States in 13 TeV pp Collisions at CMS

Doug Berry On behalf of the CMS Collaboration

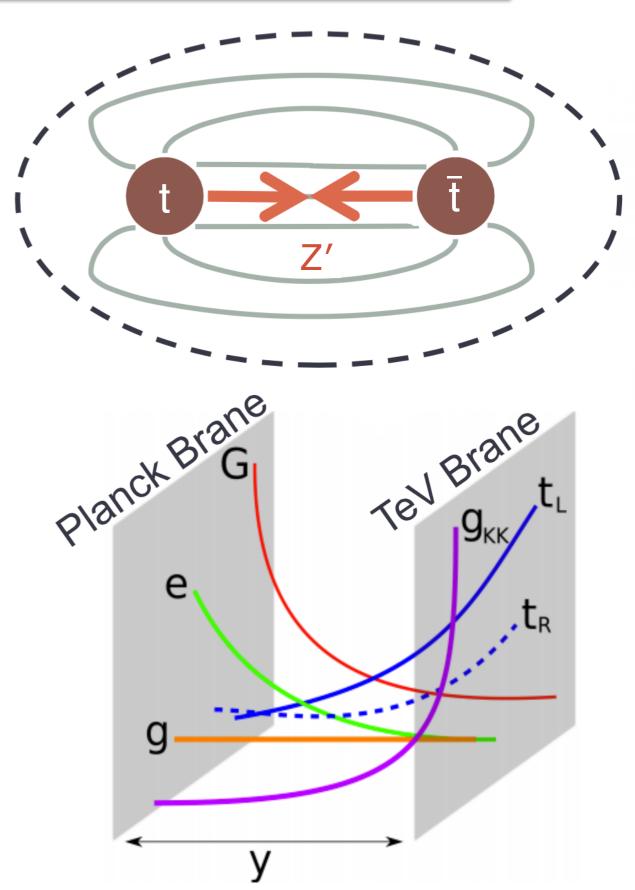
2017 Meeting of the Division of Particles and Fields of the American Physical Society



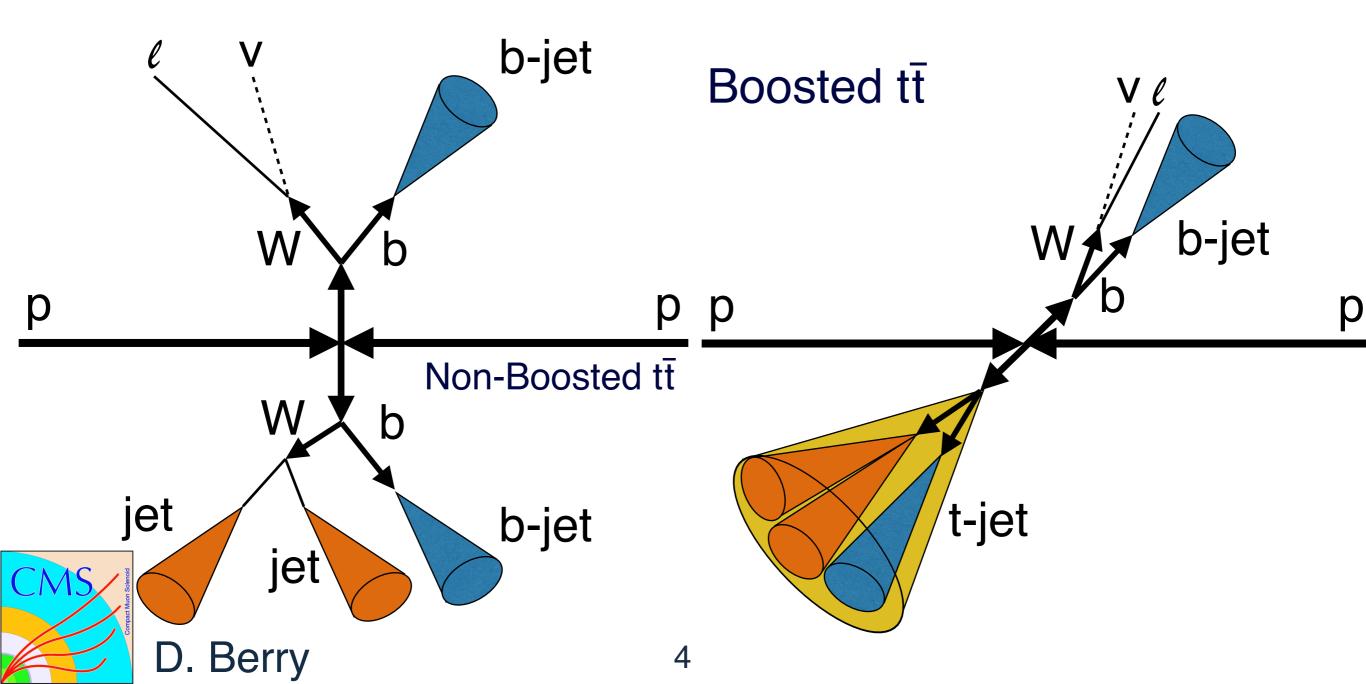
Resonance Search

- Analysis searches for a generic tī resonance in the 2015 13 TeV CMS dataset (2.6fb⁻¹)
- Search channels include semi-leptonic and all hadronic final states
- Uses fitted templates for background and signal modeling
- Analysis sets explicit limits for Z' (1%, 10%, and 30% widths) and RS gluon
- Results can be found in CMS-PAS-B2G-16-015, arXiv 1704.03366, and JHEP 07 (2017) 001

Berry

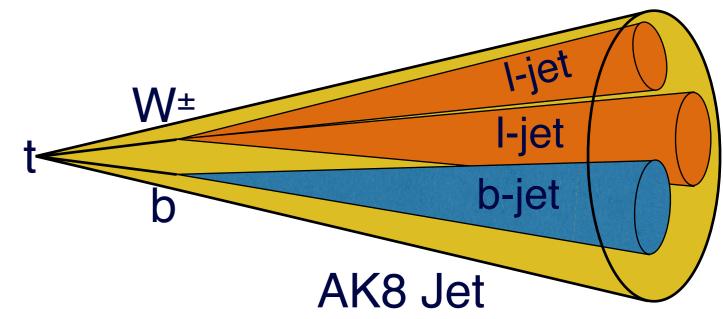

Motivation

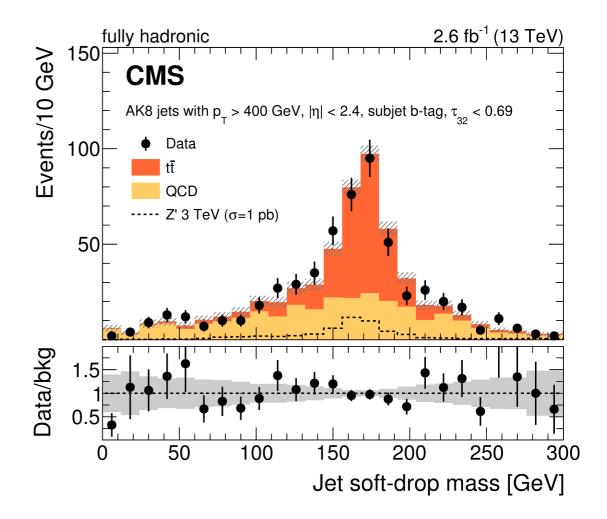
- Top color Z' explains the large mass of the top quark via dynamical symmetry breaking
 - In this case, the model is a broken symmetry of:
 - SU(3)₁ x SU(3)₂ x SU(2)_L x U(1)_{Y1} x U(1)_{Y2} → SU(3)_{QCD} x U(1)_{EM}
- RS Gluons are the lightest Kaluza-Klein excitation of the gluon in a Randall-Sundrum scenario
 - In this case the universe is a 5-D anti-de sitter space bounded by two 3+1-D Branes



Boosted Top Quarks

- A top quark with a large Lorentz boost has a new decay topology
- This requires changes to triggering and reconstruction

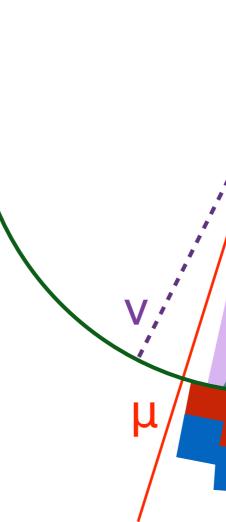

Top Tagging


- Since a boosted top quark produces a single 'fat jet', it is possible to top tag jets
- The CMS top tagging algorithm is used to identify candidate top jets
 - 110 GeV < M_{SD} < 210
 GeV
 - $\tau_{32} < 0.69$

D. Berry

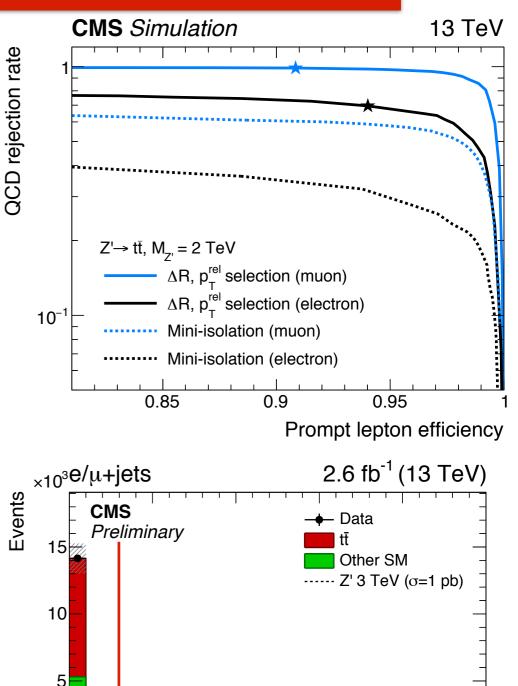
 b-tagging can used on AK4 sub-jets

Semi-Leptonic Channel


AK8

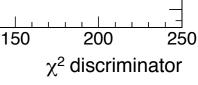
b-iet

- Requires exactly one lepton and at least two high p_{T} jets
- · 2D-isolation cut is applied to the lepton
- MET and lepton p_T+MET cut reduces multi-jet background
- MET may not be collinear with the leading jet or lepton
- χ^2 minimization technique is used to reconstruct the t \overline{t} system
- t-tagging and b-tagging are used for categorization and increased analysis sensitivity
- Veto events with two top tags
- Total of 6 categories


6

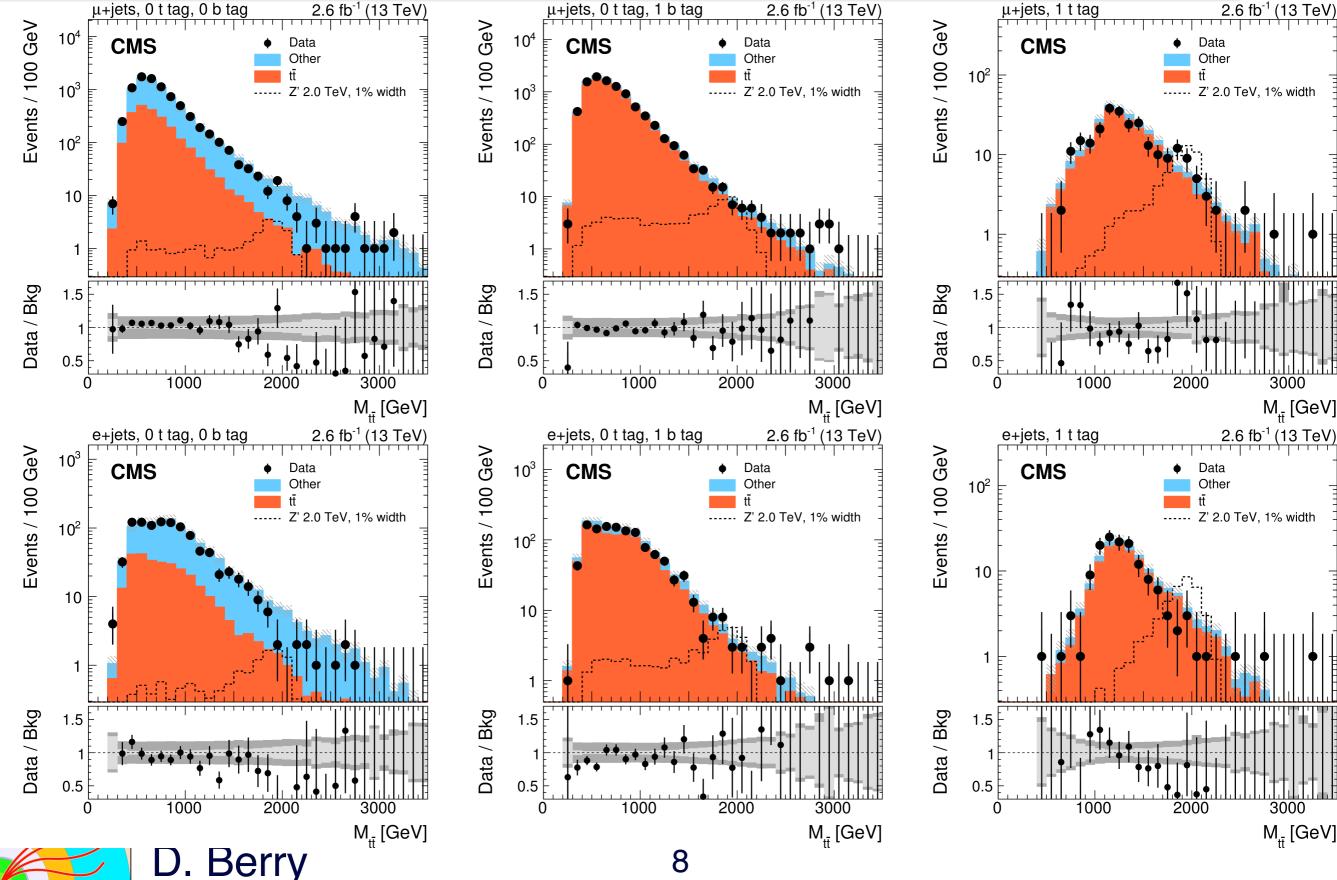
2-D and x² Selection

- Non-isolated lepton trigger used for event selection
- If a lepton is with $\Delta R < 0.4$ to an AK4 jet
 - Then the magnitude of the lepton momentum orthogonal to the axis of jet must be greater than 20 GeV
- - The lepton, MET, W_M , and an AK4 jet used to reconstruct the leptonic leg
 - Either a t-tagged AK8 jet or 3 AK4 jets used to reconstruct the hadronic leg
- Minimum χ^2 used as reconstruction hypothesis
 - Require $\chi^2 < 30$ for signal region

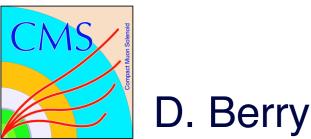

$$\chi^{2} = \left(\frac{M_{lep} - \overline{M}_{lep}}{\sigma_{M_{lep}}}\right)^{2} + \left(\frac{M_{had} - \overline{M}_{had}}{\sigma_{M_{had}}}\right)^{2}$$

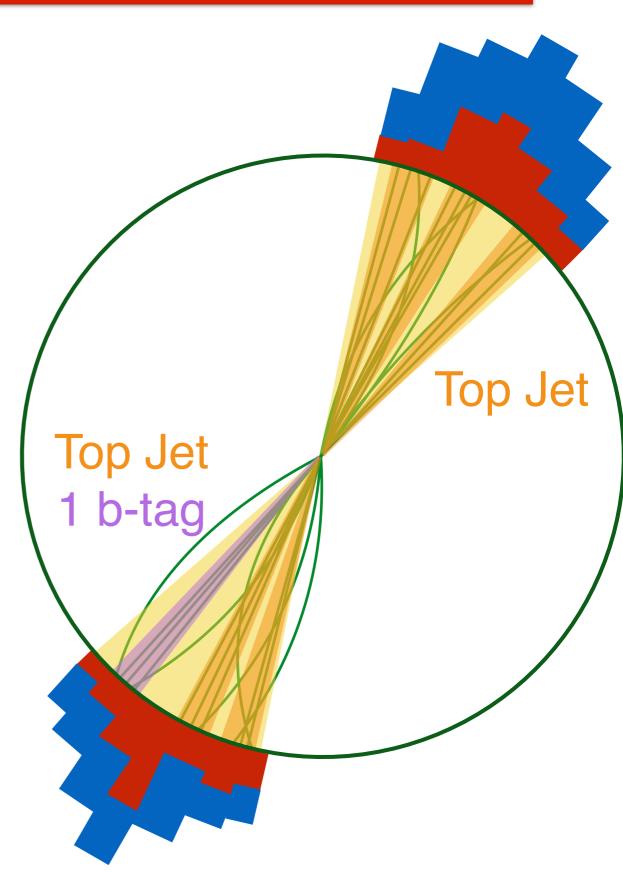
Data/Bkg

50

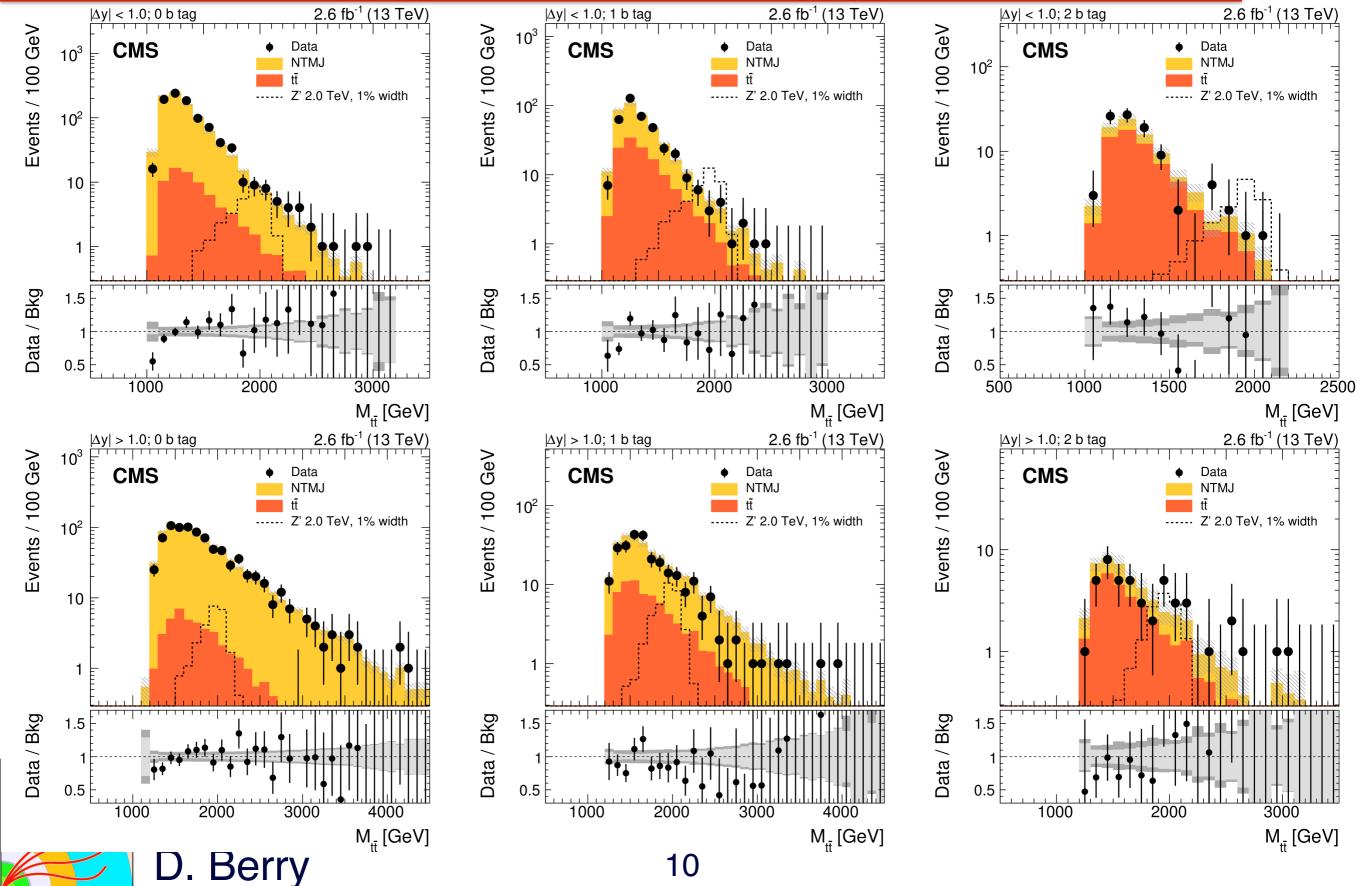

100

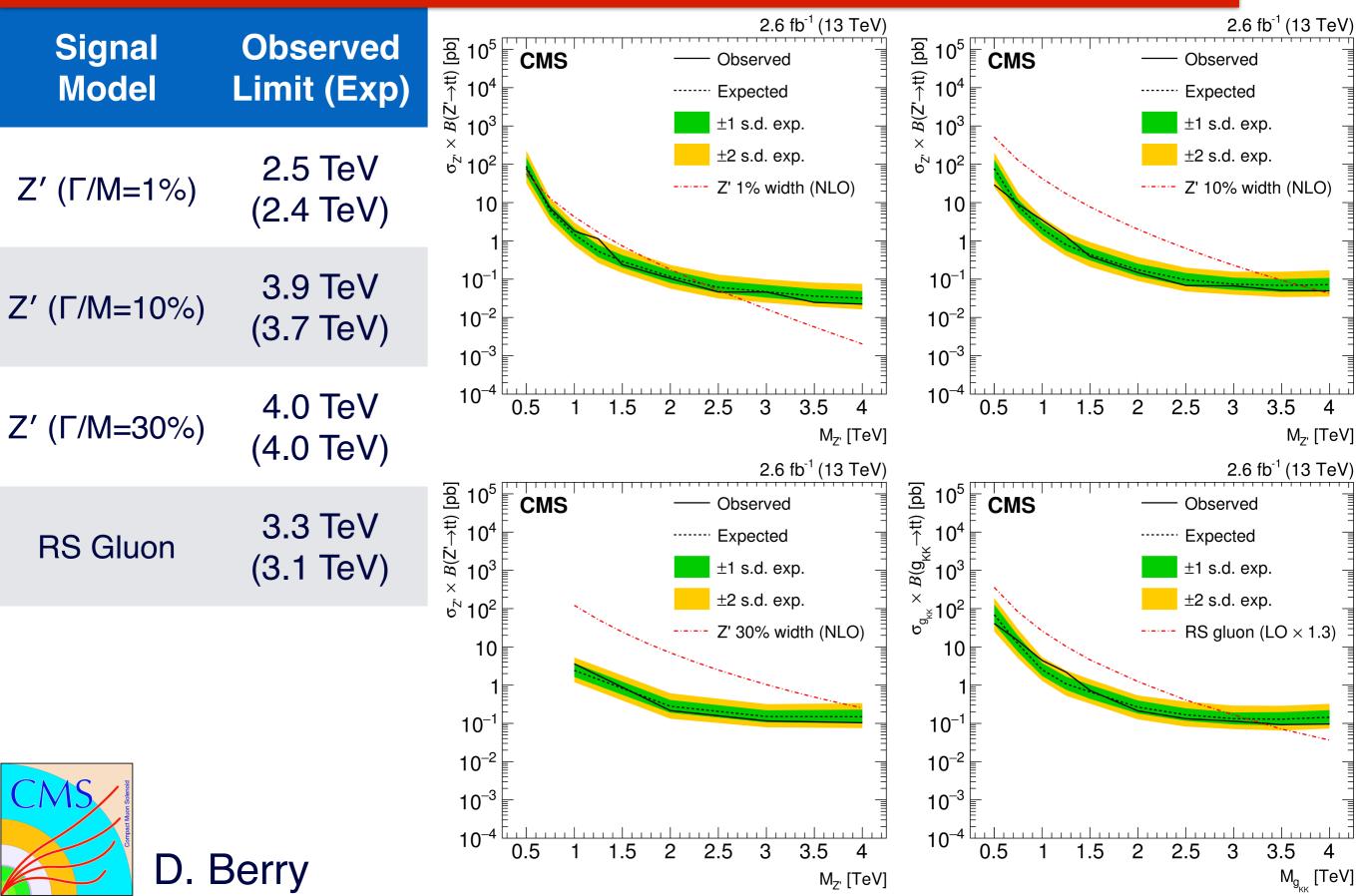
Invariant Mass Distributions

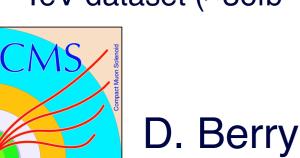

UIC

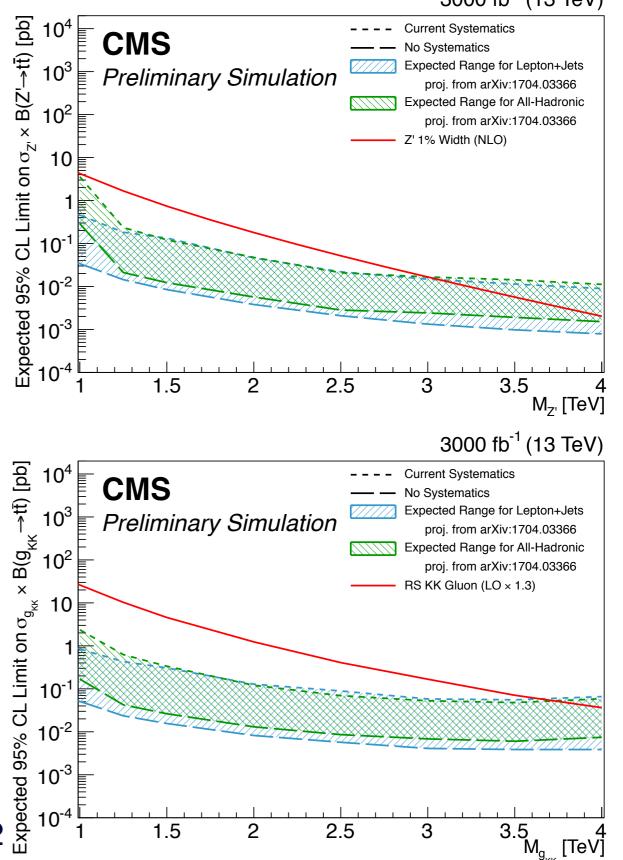

UNIVERSITY OF ILLINOIS AT CHICAGO

All Hadronic Channel


- The Lorentz boost of the top quarks causes this channel to become a di-jet analysis
- At least 1 TeV of H_T in the event
- Both jets are required to be top tagged
- Require jets to be back-to-back $(\Delta \phi > 2.1)$
- Sub-jet b-tagging and I∆yl are used for categorization
- A total of 6 categories


Data Distributions


UNIVERSITY OF ILLINOIS AT CHICAGO


Combined Limits

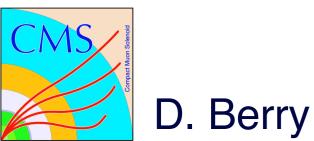
Future Improvements

- If there are no analysis improvements, performance becomes systematics limited very quickly
 - 3 TeV exclusion for narrow Z' and 3.7 TeV exclusion for RS gluon for each channel with 3000 fb⁻¹ (CMS-PAS-FTR-16-005)
- Improvements are currently being implemented for the semi-leptonic channel
 - BDT has been created to separate W+Jet and tt background from tt resonance signal
 - An additional BDT is being created to remove QCD background from the electron channel while keeping tt resonance signal
 - · Extending the search region up to 5 TeV
- Both the semi-leptonic and all hadronic analysis will be repeated with the full 2016 13 TeV dataset (~36fb⁻¹)

3000 fb⁻¹ (13 TeV)

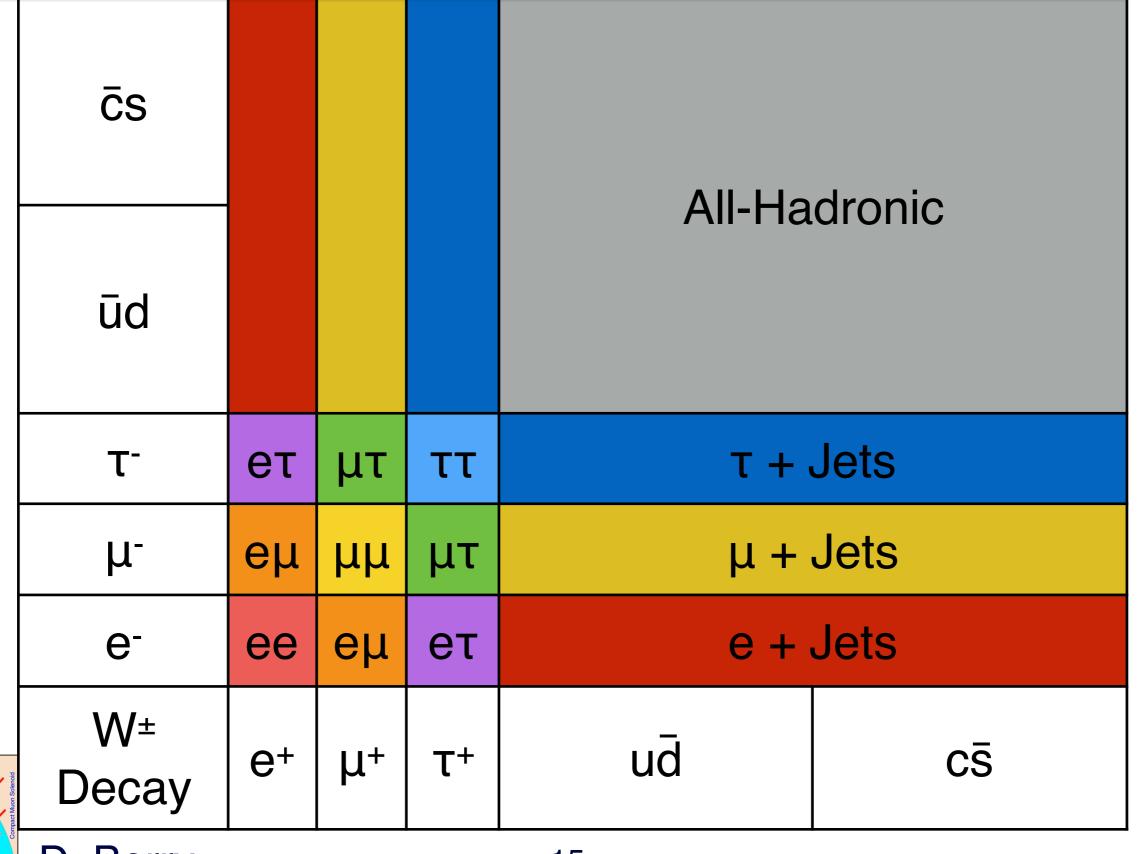
OF ILLINOIS AT CHICAGO

Summary

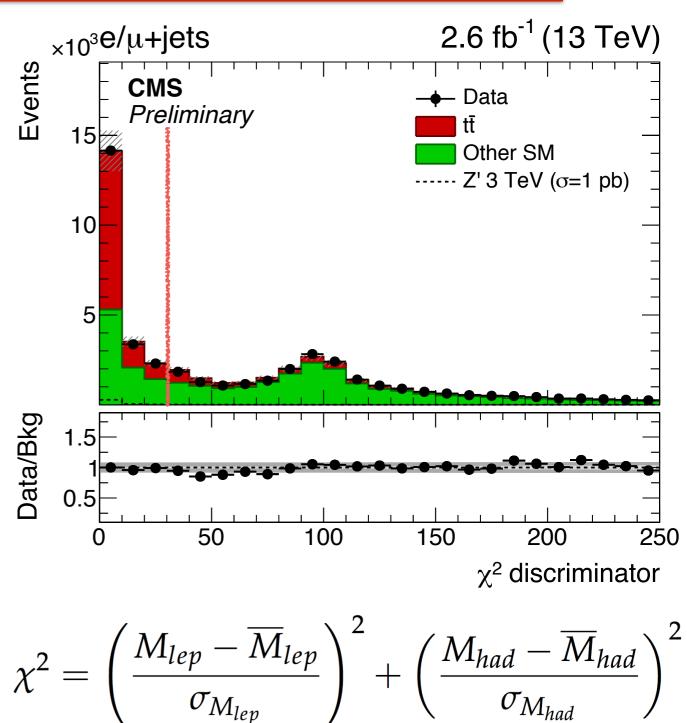


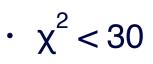
- A search for a tt resonance was presenting using the 2015 13 TeV CMS dataset (2.6 fb⁻¹)
 - No excess was seen, so explicit limits were set on a topcolor Z' boson with three different widths (Γ/M = 1.0%, 10%, and 30%) and an RS Gluon
- An improved semi-leptonic analysis and a repeat of the hadronic analysis using the full 2016 13 TeV dataset (~36fb⁻¹) will be made public soon!

	Excluded mass ranges [TeV]										
	$Z'(\Gamma/M = 1\%)$		$Z'(\Gamma/M)$	(=10%)	$Z'(\Gamma/M)$	(= 30%)	RS KK	Gluon			
Result	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.			
Lepton+jets	0.6 – 2.1	0.6 – 2.3	0.5 – 3.5	0.5 – 3.4	0.5 - 4.0	0.5 - 4.0	0.5 – 2.9	0.5 – 2.9			
Fully hadronic	1.2 - 1.8	1.4 - 1.8	1.0 - 3.2	1.0 - 3.5	1.0 - 3.7	1.0 - 4.0	1.0 - 2.6	1.0 - 2.4			
Combined	0.6 - 2.4	0.6 – 2.5	0.5 - 3.7	0.5 - 3.9	0.5 - 4.0	0.5 - 4.0	0.5 - 3.1	0.5 - 3.3			
CCMS From the compared of the											
D. B	13										


BACKUP

Top Decay


D. Berry

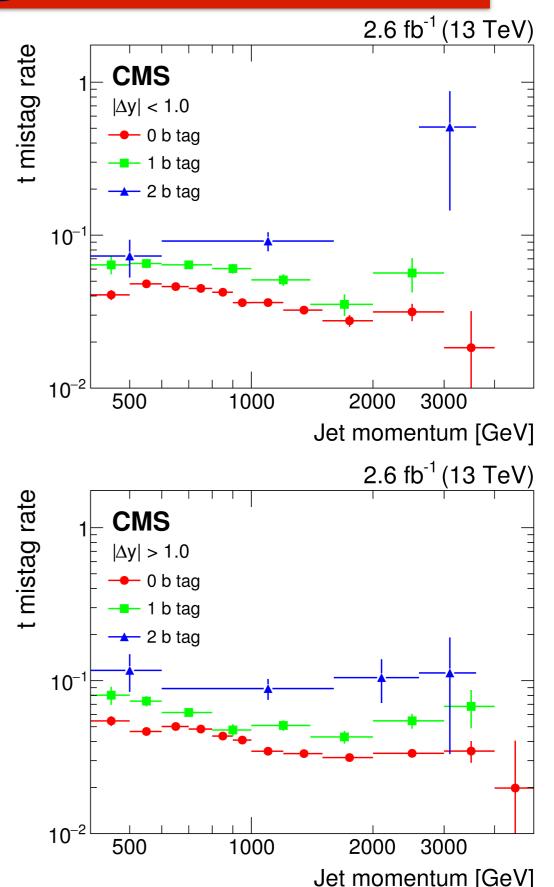

CMS

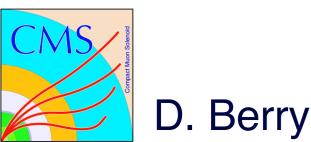
x² Reconstruction

UNIVERSITY OF ILLINOIS AT CHICAGO

- χ^2 technique used to solve t \overline{t} system
- + M_W used to constrain neutrino p_z
 - If both neutrino p_z solutions are complex, then only real part is used
- t-tagged AK8 jet always assigned to hadronic leg
 - Only AK4 jets (ΔR> 0.4) away from the t-tag jet are used for leptonic leg reconstruction
- If no t-tagged jet in the event, then only AK4 jets used in reconstruction in the hadronic leg
- All possible tt combinations in the event are tested, but only the minimum is kept

Top Tagging


UNIVERSITY OF ILLINOIS AT CHICAGO

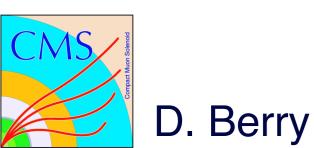


Top Tag Mis-tag Rate

18

- The mis-tag rate is measured using and anti-top tagged and probe selection
- The mis-tag rate is measured in the all hadronic analysis in all 6 categories
- Contamination from tī events is removed by subtracting the simulated tī distribution normalized to the standard model cross section

Systematics


	Uncertainty		Ch	annel
Sou	irce	Prior uncertainty	Lepton+jets	Fully hadronic
tt c	ross section	$\pm 8\%$	\oplus	\oplus
W+	jets cross section	$\pm 6\%$	\odot	
Z+j	ets cross section	$\pm 20\%$	\odot	
Sing	gle-top cross section	$\pm 20\%$	\odot	
Dib	oson cross section	$\pm 20\%$	\odot	
Inte	egrated luminosity	$\pm 2.7\%$	\oplus	\oplus
Pile	eup modeling	$\pm 1\sigma$	\oplus	\oplus
Mu	on identification	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\odot	
Mu	on trigger	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\odot	
Eleo	ctron identification	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\odot	
Eleo	ctron trigger	$\pm 2\%$	\odot	
Jet e	energy scale	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\oplus	\oplus
Jet e	energy resolution	$\pm 1\sigma(\eta)$	\oplus	\oplus
Jet l	b tagging efficiency	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\odot	
Jet l	b mistag rate	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\odot	
	jet b tagging efficiency	$\pm 1\sigma(p_{\mathrm{T}},\eta)$		ullet
Jet	t tagging efficiency	unconstrained	\oplus	\oplus
Lep	oton+jets channel t mistag rate	$\pm 19\%$	\odot	
Ful	ly hadronic channel t mistag rate	$\pm 1\sigma(p)$		\odot
PD	Fs	$\pm 1\sigma$	\oplus	\oplus
tŧ n	natrix element scale	$\pm 1\sigma$	\oplus	\oplus
tŧ p	arton shower scale	$\pm 1\sigma$	\oplus	\oplus
W+	jets matrix element scale	$\pm 1\sigma$	\odot	
NT	MJ background kinematics	$\pm 1\sigma$		\odot
NT	MJ background closure test	$\pm 1\sigma$		\odot
D. B	erry	19		

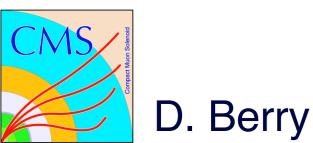
Event Yields

Sem	i-lept	onic Ana	lysis	All Hadronic Analysis						
		μ +jets signal re	0	$ \Delta y > 1.0$ signal region						
Process	1 t tag	0 t tags, 1 b tag	0 t tags, 0 b tags	Process	0 b tags	1 b tag	2 b tags			
tī	218 ± 28	7602 ± 826	1965 ± 229	SM t ī	$\frac{34\pm4.3}{34\pm4.3}$	62 ± 5.8	28 ± 3.8			
W+jets (LF)	27 ± 4	547 ± 54	4675 ± 377							
W+jets (HF)	4 ± 1	333 ± 30	780 ± 65	NTMJ	787 ± 6.2	215 ± 4.7	15 ± 1.9			
Other	9 ± 2	682 ± 111	635 ± 85	Total background	821 ± 7.5	278 ± 7.4	43 ± 4.2			
Total background	258 ± 29	9164 ± 856	8055 ± 541	Data	830	264	46			
Data	252	9230	7966	Data	830	204	40			
		e+jets signal re	gion		$ \Delta y < 1.0$ signal region					
Process	1 t tag	0 t tags, 1 b tag	0 t tags, 0 b tags	Process	0 b tags	1 b tag	2 b tags			
tī	119 ± 15	1016 ± 124	248 ± 32	SM tī	66 ± 7.1	121 ± 10	60 ± 7.0			
W+jets (LF)	13 ± 2	97 ± 10	684 ± 58							
W+jets (HF)	2 ± 1	44 ± 4	84 ± 8	NTMJ	817 ± 8.0	248 ± 7.0	19 ± 1.7			
Other	4 ± 1	103 ± 18	74 ± 10	Total background	882 ± 11	369 ± 12	79 ± 7.3			
Total background	138 ± 16	1260 ± 129	1090 ± 78	Data	925	387	94			
Data	142	1217	1005							

20

Semi-leptonic Cross Section Limits

Z' (Γ/M=1%)


Z' (Γ/M=10%)

	ι							N					
Mass [TeV]	Observed limits [pb]	Expected limits [pb]					Mass [TeV]	Observed limits [pb]	Expected limits [pb]				
		-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$	-		-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$
0.5	77.7	32.1	50	88.2	153	229	0.5	29.1	25.3	42.8	77.4	134	201
0.75	7.14	2.93	4.33	6.14	8.81	12.7	0.75	9.12	3.86	5.57	8.06	11.9	18
1.0	1.8	0.746	1.04	1.47	2.15	3.01	1.0	3.49	1.03	1.46	2.06	3.02	4.15
1.25	1.14	0.264	0.377	0.534	0.778	1.16	1.25	1.31	0.407	0.551	0.789	1.2	1.64
1.5	0.239	0.145	0.202	0.291	0.425	0.617	1.5	0.393	0.209	0.31	0.439	0.651	0.929
2.0	0.104	0.0568	0.08	0.117	0.17	0.235	2.0	0.149	0.0896	0.12	0.176	0.252	0.378
2.5	0.0464	0.0314	0.0443	0.0614	0.09	0.132	2.5	0.0684	0.0478	0.0663	0.0965	0.145	0.2
3.0	0.0462	0.0244	0.033	0.0469	0.0708	0.0992	3.0	0.0667	0.0394	0.0527	0.0739	0.109	0.156
3.5	0.0248	0.0192	0.0257	0.036	0.0554	0.0813	3.5	0.0507	0.0341	0.0467	0.0686	0.101	0.156
4.0	0.0224	0.0163	0.022	0.0318	0.0488	0.0749	4.0	0.0495	0.0351	0.0476	0.0718	0.108	0.171

Z' (Γ/M=30%)

RS Gluon

Mass [TeV]	Observed limits [pb]	Expected limits [pb]					Mass [TeV]	Observed limits [pb]	Expected limits [pb]				
		-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$	-		-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$
1.0	3.61	1.19	1.64	2.43	3.73	5.27	0.5	41	25.6	39.5	69.3	128	190
2.0	0.216	0.133	0.191	0.28	0.409	0.611	0.75	14.4	5	7.34	11.7	19.1	28.5
3.0	0.116	0.079	0.106	0.151	0.22	0.318	1.0	4.41	1.3	1.73	2.54	3.77	5.32
4.0	0.104	0.0754	0.102	0.149	0.228	0.335	1.25	2.18	0.527	0.757	1.08	1.67	2.42
							1.5	0.727	0.329	0.438	0.665	1.02	1.42
							2.0	0.212	0.127	0.182	0.266	0.396	0.536
							2.5	0.132	0.0824	0.117	0.168	0.247	0.368
							3.0	0.114	0.0709	0.094	0.133	0.193	0.291
							3.5	0.093	0.0651	0.0883	0.129	0.197	0.288
							4.0	0.096	0.0732	0.0989	0.144	0.222	0.323

