Search for production of a Higgs boson and a single top quark

Ken Bloom for the CMS Collaboration I August 2017

We all know the five favorite Higgs production mechanisms and tend to forget about another

- The SM cross section for single top plus Higgs production is ~500x smaller than that for gluon fusion
- $\sigma(tHq) = 71 \text{ fb}$
- $\sigma(tHW) = 16 \text{ fb}$
- Why even bother looking?

CMS HIG-15-002, JHEP 08 (2016) 045

Higgs production in pp collisions at 13 TeV

- We all know the five favorite Higgs production mechanisms and tend to forget about another
- The SM cross section for single top plus Higgs production is ~500x smaller than that for gluon fusion than that for gluon fusion
- $\sigma(tHq) = 71 \text{ fb}$
- $\sigma(tHW) = 16 \text{ fb}$
- Why even bother looking?

Discovery through interference

- Small cross section due to destructive interference between two diagrams
- Similar for tHW production
- Most production modes depend on the square of the coupling, insensitive to sign
- If the sign of the top Yukawa coupling is inverted ($\kappa_t = -1$), interference is constructive, and cross section is $\times 10$ larger!
- Bounds on \mathbf{K}_t largely derived from decays
 - Constraints assume no new particles in loops
- Composite Higgs, FCNC processes could enhance cross section further

CMS HIG-14-027, JHEP 06 (2016) 177

- Searches for tH production are even more promising in Run 2
- ► tHq cross section ~x4 larger at 13 TeV than 8 TeV
- Run 2 dataset has already exceeded Run 1 dataset
- Searches now include tHW as signal
- Improved analysis techniques, greater exploration of $\mathbf{K}_t \neq -1$
- CMS has released results for searches in two Higgs decay modes
 - ► H→bb: Largest branching ratio but very large tt background
 - ► H→WW multileptons: small branching ratio but better S/B, nonprompt lepton backgrounds
- Commonalities:
- Both take advantage of top-quark semi-leptonic decay
- Both have tt (including ttH) as their most significant background

$H \rightarrow b\overline{b}$: selection

- One isolated high-pT lepton
- Missing energy from ν
- Three or four b jets
- One additional jet

Lots of tt background!

Sample	S(κ _t = -1)/B
3 b jets	17.9/4051
4 b jets	2.8/177

- Need to assign each of the jets to parent quarks of final state
 - Develop multivariate discriminator based event quantities such as invariant masses, Δ R's, jet η and pT values, jet charges and tagging info
- Choose single best assignment of jets to quarks as reconstruction hypothesis
- Do this separately under two different assumptions of initial state: tHq signal and tt background
- With tHq and tt reconstructions done, form kinematic quantities specific to each of the reconstructions and develop another discriminator based on them that distinguishes the two processes
 - Validated in two-tag event sample, enriched in tt
- Fit distribution of that discriminator to templates from signal and background

$H \rightarrow b\overline{b}$: results

- Expected upper limit: $6.4^{+3.7}_{-2.2} \times \sigma_{tH}(\kappa_t=-1)$ at 95% CL
- Observed upper limit: 6.0 $\times \sigma_{tH}(\kappa_t=-1)$ at 95% CL
- Comparable to 8 TeV result with much less integrated luminosity
 - Inclusion of tHW,
 increased cross section,
 looser b-tag requirement
- Largest systematic uncertainties from jet energy scale and shower modeling

- Trilepton final state
 - $\mu\mu\mu$, $\mu\mu$ e, μ ee, eee
 - Z veto
- Same-sign dilepton final state
 - **μμ**, **μ**e
- Both cases
 - At least one b-tagged jet
 - At least one non-tagged jet
- ~75% H→WW, ~20% H→ZZ,
 ~5% H→ττ
- Significant fraction of selected data events also pass selections for ttH analysis, counted as signal

H→WW→leptons: backgrounds

- Two dominant sources of background
- $t\bar{t}+(W/Z/H/\gamma)$ with prompt leptons
 - Modeled with simulations
- tt with non-prompt leptons
 - Modeled with data using loose-totight extrapolation from control regions
- Separate multivariate discriminators for two main backgrounds, using info on jet and b-jet multiplicities, forward jet activity and kinematic properties of leptons
- Combine information from two discriminators into one variable

Prediction	eµ	μμ	31
Signal (κ _t = -1)	39	26	15
ttH (κ _t ² = 1)	35	24	18
Background	443	211	106

$H \rightarrow WW \rightarrow leptons: results$

- Simultaneous maximum likelihood fit for all three channels, separately for different values of $\kappa_{\rm t}/\kappa_{\rm V}$
- Uncertainties dominated by background estimates, lepton ID
- Assume $\kappa_{tau} = \kappa_t$ and all other parameters at SM values, and then combined tH+ttH signal strength is uniquely defined by κ_t/κ_V

- $\kappa_t/\kappa_v = -1$: set limit of 1.4 x expected tH+ttH cross section
- $\kappa_t/\kappa_v = 1$: set limit of 3.1 x expected tH+ttH cross section
- $\mathbf{K}_{t}/\mathbf{K}_{V}$ constrained to about [-1.25, 1.60]

Scenario	Channel	Obs. Limit	Exp. Limit (pb)			-
		(pb)	Median	$\pm 1\sigma$	$\pm 2\sigma$	0.2
$\kappa t/\kappa_V = -1$	μμ	1.00	0.58	[0.42, 0.83]	[0.31, 1.15]	-
	eμ	0.84	0.54	[0.39, 0.76]	[0.29, 1.03]	_
	lll	0.70	0.38	[0.26, 0.56]	[0.19, 0.79]	0.0
	Combined	0.64	0.32	[0.22, 0.46]	[0.16, 0.64]	
$\kappa t/\kappa_V = 1$	μμ	0.87	0.41	[0.29, 0.58]	[0.22, 0.82]	-
(SM-like)	eμ	0.59	0.37	[0.26, 0.53]	[0.20, 0.73]	
	$\ell\ell\ell$	0.54	0.31	[0.22, 0.43]	[0.16, 0.62]	
	Combined	0.56	0.24	[0.17, 0.35]	[0.13, 0.49]	_

- tH production rate is sensitive to the sign of the top Yukawa couplings and other new physics
- CMS has searched for tH production in Run 2 data with two final states
 - Results are already superseding those of Run 1 thanks to larger cross section at 13 TeV and improved analysis techniques
- Still to do:
 - Increase $H \rightarrow b\overline{b}$ statistics $\times 10$ with 2016 dataset
 - Complete $H \rightarrow \gamma \gamma$ analysis, should be most sensitive final state
- **)** Obtain limits in the $(\mathbf{K}_t, \mathbf{K}_V)$ plane
- Use same process to search for admixture of CP-odd Higgs boson
- Search for Higgs-mediated FCNC process tHq with q = u, c
- Combine results from all channels, publish...
- Many interesting opportunities ahead!