Analytic resummation for TMD observables

Varun Vaidya ${ }^{1}$

${ }^{1}$ Los Alamos National Lab
In collaboration with D. Kang and C. Lee

DPF 2017

Factorization in SCET

- $\mathrm{P}+\mathrm{P} \rightarrow \mathrm{H}+\mathrm{X}, \mathrm{P}+\mathrm{P} \rightarrow I^{+}+I^{-}+\mathrm{X}$.

$$
\mathrm{p} \sim \mathrm{Q}(1,1, \lambda)
$$

Motivation

- Resum large logs of $q T / Q$ by setting renormalization scales in momentum space
- Obtain, for the first time, an analytic expression for resummed cross section.

Factorization

Transverse momentum cross section

$$
\begin{aligned}
& \frac{d \sigma}{d q_{T}^{2} d y} \propto H\left(\frac{\mu}{Q}\right) \times \int d^{2} \vec{q}_{T_{s}} d^{2} \vec{q}_{T_{1}} d^{2} \vec{q}_{T_{2}} S\left(\vec{q}_{s}, \mu, \nu\right) \times \\
& f_{1}^{\perp}\left(x_{1}, q \vec{T}_{1}, \mu, \nu, Q\right) f_{2}^{\perp}\left(x_{2}, q \vec{T}_{2}, \mu, \nu, Q\right) \delta^{2}\left(\overrightarrow{q_{T}}-q \vec{T}_{s}-q \vec{T}_{1}-q \vec{T}_{2}\right)
\end{aligned}
$$

- The function ${f_{i}}^{\perp}$ along with the soft function S forms the TMDPDF.
- RG equations in two scales, μ, ν.
- RG equations in momentum space are convolutions of distribution functions and hard to solve directly.

$$
\nu \frac{d}{d \nu} G_{i}\left(\vec{q}_{T i}, \nu\right)=\gamma_{\nu}^{i}\left(\vec{q}_{T i}\right) \otimes G_{i}\left(\vec{q}_{\vec{T} i}, \nu\right)
$$

Factorization

b space formulation

$$
\frac{d \sigma}{d q_{T}^{2} d y} \propto H\left(\frac{\mu}{Q}\right) \int b d b J_{0}\left(b q_{T}\right) S(b, \mu, \nu) f_{1}^{\perp}\left(x_{1}, b, \mu, \nu, Q\right) f_{2}^{\perp}\left(x_{2}, b, \mu, \nu, Q\right)
$$

RG equations in b space are simple

$$
\begin{array}{r}
\mu \frac{d}{d \mu} F_{i}(\mu, \nu, b)=\gamma_{\mu}^{i} F_{i}(\mu, \nu, b), \quad F_{i} \in\left(H, S, f_{i}^{\perp}\right) \\
\nu \frac{d}{d \nu} G_{i}(\mu, \nu, b)=\gamma_{\nu}^{i} G_{i}(\mu, \nu, b), \quad G_{i} \in\left(S, f_{i}^{\perp}\right) \\
\sum_{F_{i}} \gamma_{\mu}^{i}=\sum_{G_{i}} \gamma_{\nu}^{i}=0
\end{array}
$$

Resummation schemes

Figure: Choice of resummation path.

- b space resummation: Default choice of $\mu=\nu=1 / b, 1007.2351$ De Florian et.al., 1503:00005 V. Vaidya et. al
- Momentum space resummation:Both μ, ν in momentum space, distributional scale setting, 1611.08610 Tackmann et.al., 1604.02191 P. Monni et. al.
- Hybrid: μ in momentum space(1007.4005, 1109.6027 Becher et=al.)

Scale choice in momentum space

- Can we choose scales in momentum space for μ and ν ?
- Naively, we expect, $\mu_{H}, \nu_{H} \sim Q, \mu_{L}, \nu_{L} \sim q T$.
- Assume a power counting $\alpha_{s} \log \left(Q / \mu_{L}\right), \log \left(\mu_{L} b_{0}\right), \alpha_{s} \log \left(Q / \nu_{L}\right), \log \left(\nu_{L} b_{0}\right) \sim 1$

Attempt at NLL \rightarrow running Soft function in ν^{a}
${ }^{a} b_{0}=b e^{-\gamma_{E}} / 2$

$$
\begin{aligned}
& \frac{d \sigma}{d q_{t}^{2}} \propto U_{H}^{N L L}\left(H, \mu_{L}\right) \int d b b J_{0}\left(b q_{t}\right) U_{S}\left(\nu_{H}, \nu_{L}, \mu_{L}\right) \\
= & U_{H}^{N L L}\left(H, \mu_{L}\right) \int d b b J_{0}\left(b q_{t}\right) e^{\int_{\nu_{L}}^{\nu_{H}} d \ln \nu\left(\gamma_{\nu}^{(0) S}\right)} \\
= & U_{H}^{N L L}\left(H, \mu_{L}\right) \int d b b J_{0}\left(b q_{t}\right) e^{-\Gamma_{0} \frac{\alpha_{S}}{\pi} \log \left(\frac{\nu_{H}}{\nu_{L}}\right) \log \left(\mu_{L} b_{0}\right)}
\end{aligned}
$$

- Cross section is singular due to divergence at small b.

Scale choice in momentum space

- Resum all logarithms of the form $\alpha_{s} \log ^{2}\left(\mu_{L} b_{0}\right)$

A choice for ν in b space \rightarrow include sub-leading terms

$$
\nu_{L}=\frac{\mu_{L}^{n}}{b_{0}^{1-n}}, \quad n=\frac{1}{2}\left(1-\alpha\left(\mu_{L}\right) \frac{\beta_{0}}{2 \pi} \log \left(\frac{\nu_{H}}{\mu_{L}}\right)\right)
$$

Soft exponent at NLL \rightarrow Quadratic in $\log \left(\mu_{L} b_{0}\right)$

$$
\begin{aligned}
& \log \left(U_{S}^{N L L}\left(\nu_{H}, \nu_{L}, \mu_{L}\right)\right)=-2 \Gamma_{0} \frac{\alpha\left(\mu_{L}\right)}{2 \pi} \times \\
& \left(\log \left(\frac{\nu_{H}}{\mu_{L}}\right) \log \left(\mu_{L} b_{0}\right)+\frac{1}{2} \log ^{2}\left(\mu_{L} b_{0}\right)+\alpha\left(\mu_{L}\right) \frac{\beta_{0}}{4 \pi} \log ^{2}\left(\mu_{L} b_{0}\right) \log \left(\frac{\nu_{H}}{\mu_{L}}\right)\right)
\end{aligned}
$$

Scale choice in momentum space

A choice for μ_{L} in momentum space

- A choice that justifies the power counting $\log \left(\mu_{L} b_{0}\right) \sim 1$
- Scale shifted away from q_{T} due to the scale Q in b space exponent.

Analytical expression for cross section

Mellin-Barnes representation of Bessel function

- Polynomial integral representation for Bessel function is needed

$$
J_{0}(z)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d t \frac{\Gamma[-t]}{\Gamma[1+t]}\left(\frac{1}{2} z\right)^{2 t}
$$

b space integral

$$
\begin{aligned}
& U_{S}=C_{1} E x p\left[-A \log ^{2}(U b)\right] \\
& I_{b}=\int_{0}^{\infty} d b b J_{0}\left(b q_{T}\right) U_{S} \quad \text { No Landau pole } \\
= & C_{1} \int_{-i \infty}^{i \infty} d t \frac{\Gamma[-t]}{\Gamma[1+t]} \int_{0}^{\infty} d b b\left(\frac{b q_{T}}{2}\right)^{2 t} \operatorname{Exp}\left[-A \log ^{2}(U b)\right]
\end{aligned}
$$

Analytical expression for cross section

$$
\begin{aligned}
I & =\frac{2 C_{1}}{i q_{T}^{2}} \frac{1}{\sqrt{4 \pi A}} \int_{c-i \infty}^{c+i \infty} d t \frac{\Gamma[-t]}{\Gamma[1+t]} \operatorname{Exp}\left[\frac{1}{A}\left(t-t_{0}\right)^{2}\right] \\
t_{0} & =-1+A \log \left(2 U / q_{T}\right) \rightarrow \text { saddle point }
\end{aligned}
$$

- Path of steepest descent is parallel to the imaginary axis
- Suppression controlled by $1 / \mathrm{A} \sim \frac{4 \pi}{\alpha_{s}} 1 / \Gamma_{\text {cusp }}^{(0)}$
- $t=c+i x, \Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin (\pi z)}$.,

$$
I=\frac{2 C_{1}}{q_{T}^{2}} \frac{1}{\sqrt{4 \pi A}} \int_{-\infty}^{\infty} d x \Gamma[-c-i x]^{2} \sin [\pi(c+i x)] \operatorname{Exp}\left[-\frac{1}{A}\left(x-i\left(c-t_{0}\right)\right)^{2}\right]
$$

Analytical expression for cross section

An expansion for $\Gamma[1-i x]^{2}$ in weighted Hermite polynomials

$$
\Gamma(1-i x)^{2}=\left[\sum_{n=0}^{\infty} c_{2 n} H_{2 n}(\alpha x) e^{-a_{0} x^{2}}+\frac{i \gamma_{E}}{\beta} \sum_{n=0}^{\infty} d_{2 n+1} H_{2 n+1}(\beta x) e^{-b_{0} x^{2}}\right]
$$

Figure: Expansion in Hermite polynomials

Analytical expression for cross section

Expression for resummed Soft function

$$
I_{b}=\frac{2 C}{\pi q_{T}^{2}} \sum_{n=0}^{\infty} \operatorname{lm}\left\{c_{2 n} \mathcal{H}_{2 n}\left(\alpha, a_{0}\right)+\frac{i \gamma_{E}}{\beta} d_{2 n+1} \mathcal{H}_{2 n+1}\left(\beta, b_{0}\right)\right\}
$$

\mathcal{H}_{n} to all orders

$$
\mathcal{H}_{n}\left(\alpha, a_{0}\right)=\mathcal{H}_{0}\left(\alpha, a_{0}\right) \frac{(-1)^{n} n!}{\left(1+a_{0} A\right)^{n}}
$$

$\times \sum_{m=0}^{\text {Floor }[n / 2]} \frac{1}{m!} \frac{1}{(n-2 m)!}\left\{\left[A\left(\alpha^{2}-a_{0}\right)-1\right]\left(1+a_{0} A\right)\right\}^{m}\left(2 \alpha z_{0}\right)^{n-2 m}$
with $\quad \mathcal{H}_{0}\left(\alpha, a_{0}\right)=e^{\frac{-A(L-i \pi / 2)^{2}}{1+a_{0} A}} \frac{1}{\sqrt{1+a_{0} A}}, \quad z_{0}=i A(L-i \pi / 2)$

Analytical expression for cross section

Fixed order terms

- I_{b} acts as a generating function for residual fixed order logs

$$
\begin{aligned}
I_{\text {even }} & =C_{1} \int b d b J_{0}\left(b q_{T}\right) \log ^{2 n}(U b) \operatorname{Exp}\left[-A \log ^{2}(U b)\right] \\
& =(-1)^{n} \frac{d^{n}}{d A^{n}} I_{b}(A, L) \\
I_{\text {odd }} & =C_{1} \int b d b J_{0}\left(b q_{T}\right) \log ^{2 n+1}(U b) \operatorname{Exp}\left[-A \log ^{2}(U b)\right] \\
& =(-1)^{n} \frac{d^{n}}{d A^{n}} \frac{(-1)}{2 A} \frac{d}{d L} I_{b}(A, L)
\end{aligned}
$$

Comparison with b space resummation

Figure: comparison of nnll cross section in two schemes

- Difference of the order of sub-leading terms.
- More reliable perturbative error estimation in the absence of Landau pole.

Matching to fixed order

- Implement profiles in μ and ν to turn off resummation

$$
S=S_{L}^{\left(1-z\left(q_{T}\right)\right)} Q^{z\left(q_{T}\right)} \quad S \in \mu, \nu
$$

- Soft exponent scales as $\left(1-z\left(q_{T}\right)\right)$

$$
U_{S}=\operatorname{Exp}\left[(1-z) \gamma_{S}^{\nu} \log \left(\frac{Q}{\nu_{L}}\right)\right]
$$

- This is equivalent to $A \rightarrow A(1-z)$ in $I_{b}(A, L)$

Summary

- Implementation momentum space resummation for transverse spectra of gauge bosons
- Rapidity choice in impact parameter space
- Virtuality choice in momentum space.
- Analytical expression for cross section across the entire range of q_{T} obtained for the first time.
- Numerical accuracy controlled by the accuracy of the expansion for process independent function $\frac{\Gamma[-t]}{\Gamma[1+t]}$
- Outlook
- Promising approach for other observables with similar factorization structure.
- Non-perturbative effects need to be included for low Q as well as the low q_{T} regime.

Backup

Analytical expression for cross section

- What choice do we make for c ? Obvious choice $c=t_{0}$? c depends on A and hence on the details of the process.
- For percent level accuracy, we need info about $F(x)=\frac{\Gamma[-c-i x]}{\Gamma[1+c+i x]}$ out to $x_{\text {I }} \sim \sqrt{2 A \log (10)}$
- Worst case scenario $A \sim 0.5 \Longrightarrow x_{I} \sim 1.5$
- A Taylor series expansion around the saddle point is not enough.
- Choose $\mathrm{c}=-1$, the saddle point in the limit $A \rightarrow 0$ for all observables and use a more suitable basis for expanding $F(x)$

Analytical expression for cross section

Guidelines for choosing a basis for expansion

- Fixed order cross section

$$
I_{\text {exact }}^{O\left(\alpha_{s}\right)}=-2 \Gamma_{\text {cusp }}^{(0)} \frac{\alpha\left(\mu_{L}\right)}{4 \pi} \frac{2}{q_{T}^{2}}\left(F^{\prime}[0] \log \left(\frac{\mu_{L} e^{-\gamma_{E}}}{q_{T}}\right)+\frac{F^{\prime \prime}[0]}{4}\right)
$$

- To correctly reproduce the fixed order cross section upto α_{s}^{n}, we need $2 n^{t h}$ derivative of the expansion to match the exact function $F(x)$
- We need the expansion in a basis to be accurate upto $x \sim 1.5$
- The basis functions for the expansion should be chosen so as to yield a rapidly converging and analytical result.

(A more accurate) Analytical expression for cross section

An expansion for $F(x)=\Gamma[-1-i x] / \Gamma[i x]$

A general basis $x^{n} e^{\alpha x^{2}+\beta x}$ for expansion

$$
\begin{array}{r}
\hat{F}_{R}(x)=g_{1}\left(E x p\left[-g_{2} x^{2}\right]-\cos \left[g_{3} x\right]\right)+g_{4} x^{2} \operatorname{Exp}\left[-g_{5} x^{2}\right] \\
\hat{F}_{I}(x)=f_{1} \sin \left[f_{2} x^{2}\right]+f_{3} \sinh \left(f_{4} x\right)
\end{array}
$$

Figure: (Expansion for real and imaginary parts of $f(t)$, c is chosen to be $\overline{-1}$

Numerical results

- Easily extended to NNLL, b space exponent kept quadratic in $\log (\mu b)$

Figure: Resummation in momentum space.

- Excellent convergence for both the Higgs and Drell-Yan spectrum
- No arbitrary b space cut-off while estimating perturbative errors.

