

Prospects for rare B decays at Belle II

Sam Cunliffe

on behalf of the Belle II radiative and electroweak penguin physics group

APS DPF meeting, FNAL, 31 July - 4 August 2017

This talk

- Why rare B decays?
- The next generation B-factory
 - SuperKEKB
 - Belle II
- Prospects at Belle II
 - Inclusive analyses in general, and B→X_{s,d}γ
 - Lepton (non) universality
 - **■** B→K(*)νν
 - $\blacksquare B_{(s)} \rightarrow \tau \tau; B \rightarrow K^{(*)} \tau \tau$
- Conclusions

This talk

Why rare B decays?

- ► The next generation B-factory
 - SuperKEKB
 - Belle II
- Prospects at Belle II
 - Inclusive analyses in general, and $B \rightarrow X_{s,d} \gamma$
 - Lepton (non) universality
 - B→K(*)vv
 - \blacksquare $B_{(s)} \rightarrow \tau \tau; B \rightarrow K^{(*)} \tau \tau$
- Conclusions

Why rare B decays?

Why rare B decays?

Proudly Operated by Battelle Since 1965

b \rightarrow s $\ell\ell$ $\ell=e\mu\tau\nu$ b \rightarrow (s,d) γ

Why rare B decays?

Why rare B decays?

Why rare B decays?

Wilson Coefficient, C₁

model-independent coupling in the effective field theory of b quark transitions. Paired with an operator, \mathcal{O}_i .

- Consists of a SM bit and a new physics bit: C_i = C_iSM + C_i^{NP}.
- C₉, C₁₀: vector and axial vector Wilson Coefficients.
- C₇: radiative photon Wilson Coefficient.

Why rare B decays?

arxiv:1705.05802; LHCb-PAPER-2017-017

- We've heard from LHCb. Hopefully this slide does not steal their thunder.
- Stay tuned after lunch to hear from Belle (S. Sandilya)

SuperKEKB

Second generation B factory

SuperKEKB

Second generation B factory

Belle II

Interaction point region

So when do you start taking data?

So when do you start taking data?

This talk

▶ Why rare B decays?

- ► The next generation B-factory
 - SuperKEKB
 - Belle II
- Prospects at Belle II
 - Inclusive analyses in general, and B→X_{s,d}γ
 - Lepton (non) universality
 - B→K(*)vv
 - $\blacksquare B_{(s)} \rightarrow \tau \tau; B \rightarrow K^{(*)} \tau \tau$
- Conclusions

Inclusive analysis strategies

1. Fully inclusive

- Exploit clean decay environment at Belle II *c.f.* LHCb.
- Can be fully hadronic tag (have full event information)
- ...or semi-leptonic tag (don't have full event)

2. Sum-of-exclusives

- Reconstruct, the 'X' from many exclusive decays:
 X_s→Knπ, 3Kmπ, Kηmπ
 (n>1, m≥1).
- Specify flavour if X (X_s or X_d).
- Know flavour of B.
- Know isospin.

Tag	FR ² @ Belle	FEI @ Belle MC	FEI @ Belle II MC
Hadronic B^+	0.28%	0.49~%	0.61~%
Semileptonic B^+	0.67%	1.42~%	1.45~%
Hadronic B^+0	0.18%	0.33%	0.34~%
Semileptonic B^0	0.63%	1.33%	1.25~%

Inclusive analysis strategies

 $B {\longrightarrow} X_{s,d}(\gamma,\ell\ell)$

1. Fully inclusive

2. Sum-of-exclusives

- ► Belle II 'golden channel'.
 - High yield. Usually good S/B ratio.
- ► Sub-percent level uncertainties for A_{CP} , ΔA_{CP} , Isospin asymmetry (Δ_{0+}) w/ 50ab⁻¹
- Percent level uncertainties for branching fraction, and time-dependent CPV (S_{CP}), and | V_{td} / V_{ts} |

reco. method	tagging	effi.	S/B	q	p_B	$A_{\rm CP}$	Δ_{0+}	$\Delta A_{ m CP}$
sum-of-exclusive	none	high	moderate	s or d	yes	yes	yes	yes
fully-inclusive	had. B	very low	very good	s and d	yes	yes	yes	yes
	SL B	very low	very good	s and d	no	yes	yes	yes
	${ m L}$	moderate	good	s and d	no	yes	no	no
	none	very high	very bad	s and d	no	no	no	no

- Belle II 'golden channel'.
 - High yield. Usually good S/B ratio.
- ► Sub-percent level uncertainties for A_{CP} , ΔA_{CP} , Isospin asymmetry (Δ_{0+}) w/ 50ab⁻¹
- Percent level uncertainties for branching fraction, and time-dependent CPV (S_{CP}), and | V_{td} / V_{ts} |

reco. method	tagging	effi.	S/B	q	p_B	$A_{\rm CP}$	Δ_{0+}	$\Delta A_{ m CP}$
sum-of-exclusive	none	high	moderate	s or d	yes	yes	yes	yes
fully-inclusive	had. B	very low	very good	s and d	yes	yes	yes	yes
	SL B	very low	very good	s and d	no	yes	yes	yes
	${ m L}$	moderate	good	s and d	no	yes	no	no
	none	very high	very bad	s and d	no	no	no	no

- Belle II 'golden channel'.
 - High yield. Usually good S/B ratio.
- Sub-percent level uncertainties for A_{CP}, ΔA_{CP} , Isospin asymmetry (Δ_{0+}) w/ 50ab⁻¹
- Percent level uncertainties for branching fraction, and time-dependent CPV (S_{CP}), and | V_{td} / V_{ts} |

reco. method	tagging	effi.	S/B	q	p_B	$A_{\rm CP}$	Δ_{0+}	$\Delta A_{ m CP}$
sum-of-exclusive	none	high	moderate	s or d	yes	yes	yes	yes
fully-inclusive	had. B	very low	very good	s and d	yes	yes	yes	yes
	SL B	very low	very good	s and d	no	yes	yes	yes
	${ m L}$	moderate	good	s and d	no	yes	no	no
	none	very high	very bad	s and d	no	no	no	no

Belle II

Proudly Operated by Battelle Since 1965

Lepton (non) universality; b→sℓℓ

- Not a Belle II golden channel (silver, bronze?).
- Independent verification strongly desired, since this is a hot topic.
- Ratio built from inclusive decays
 " R_{Xs}" only^[?] possible at Belle II.
- Better electron recovery at Belle II than LHCb.

Belle II

Lepton (non) universality; b→sℓℓ

- Not a Belle II golden channel (silver, bronze?).
- Independent verification strongly desired, since this is a hot topic.
- Ratio built from inclusive decays
 " R_{Xs}" only^[?] possible at Belle II.
- Better electron recovery at Belle II than LHCb.

- Another Belle II 'golden channel'
- Observable at Belle II (if SM)
 - 10-12% uncertainty w/ 50ab⁻¹
- Use full event reconstruction
 - Exploit the missing energy + sum of missing 3 momentum in CoM frame (E*_{miss}+cp*_{miss})

Mode	$\mathcal{B}[10^{-6}]$	Efficiency	$N_{\text{Backg.}}$	$N_{\text{Sig-exp.}}$	$N_{\text{Backg.}}$	$N_{\text{Sig-exp.}}$	Statistical	Total
		Belle	$711 {fb}^{-1}$	711 fb^{-1}	$50 ab^{-1}$	50 ab^{-1}	error	Error
		$[10^{-4}]$	Belle	Belle	Belle II	Belle II	50 ab^{-1}	
$B^+ \to K^+ \nu \bar{\nu}$	4.68	5.68	21	3.5	2960	245	20%	22%
$B^0 o K^0_{ m S} u ar{ u}$	2.17	0.84	4	0.24	560	22	94%	94%
$B^+ \to K^{*+} \nu \bar{\nu}$	10.22	1.47	7	2.2	985	158	21%	22%
$B^0 o K^{*0} u ar{ u}$	9.48	1.44	5	2.0	704	143	20%	22%
$B \to K^* \nu \bar{\nu}$ combined	_						15%	17%

Predictions: D. Straub + Belle II

- Very challenging to measure at LHCb.
- ► Rare + missing energy: not observable in Belle II assuming SM.
- Limit on branching fraction of B→K^(*)ττ @ 10⁻⁶ with 50ab⁻¹.
 - c.f. SM 10⁻⁷.
- ► Limit on branching fraction of $B \rightarrow \tau \tau$ @ 10⁻⁵ with 50ab⁻¹.
 - c.f. SM 10⁻⁷. Enhanced by LH currents to 10⁻⁶.
 - B_s mode dependent on SuperKEKB running schedule: Y(5S)→B_sB_s
- ► Interesting case for R&D, tagging improvements, reconstruction improvements. Recall tagging efficiencies <2%.
- Other interesting possible LFV, LNU searches only possible at Belle II with full event reconstruction: B→(K^(*))eτ, B→(K^(*))μτ.

Conclusions

- Commissioning collisions 2018.
- Full detector physics data expected to start in 2019.
 - Quickly overtake Belle dataset.
- Target data sample 50ab-1
 - Roughly 1G[BB pairs] per ab⁻¹ @ Y(4S)

$B{ ightarrow} X_{s,d} \gamma$	improve precision		?
B→K ^(*) νν	will observe if SM		×
$B_{(s)} \rightarrow \tau \tau; B \rightarrow K^{(*)} \tau \tau$	limit if SM, possible in some NP scenarios	0	×
B→Xℓℓ; R _{Xs}	independent check of LHCb, strong C ₉ ^{NP} constraints	0	?
$B{\to} K^{(*)}\ell\ell; \; R_{K,K^*}$	check of LHCb's indications of LNU		

Conclusions

- Commissioning collisions 2018.
- Full detector physics data expected to start in 2019.
 - Quickly overtake Belle dataset.
- Target data sample 50ab-1
 - Roughly 1G[BB pairs] per ab⁻¹ @ Y(4S)

$B{ ightarrow} X_{s,d} \gamma$	improve precision	11	?
B→K ^(*) νν	will observe if SM	//	×
$B_{(s)} \rightarrow \tau \tau; B \rightarrow K^{(*)} \tau \tau$	limit if SM, possible in some NP scenarios	✓	×
B→Xℓℓ; R _{Xs}	independent check of LHCb, strong C ₉ ^{NP} constraints	✓	?
$B{\to} K^{(*)}\ell\ell; \ R_{K,K^*}$	check of LHCb's indications of LNU		//

http://www.pnnl.gov/particle_physics

samuel.cunliffe@pnnl.gov

http://belle2.jp http://belle2.org

Extra material

SuperKEKB

Second generation B factory

Inclusive b→sℓℓ

Proudly Operated by Battelle Since 1965

- ► (Obviously) detailed angular analysis not possible in inclusive scheme (hadron fragments).
- ► Percent level uncertainty for dB/dq², forward-backward asymmetry of leptons, A_{FB}.

Assume **C**₉^{NP}, add Belle II inclusive measurements into exclusion plot.

Will push the 'discrepancy' way into 'observation' land (i.e. <6σ)

$B \rightarrow D^{(*)} \tau \nu$

- Percent level uncertainties on (individual) ratio of branching fractions $B \rightarrow D^{(*)} \tau \nu$ to $B \rightarrow D^{(*)} \ell \nu$, $R(D^{(*)})$, and polarisations of D^* and τ .
- ► Becomes **systematics limited** before 5ab⁻¹.

Current R&D: machine learning

Benchmarking with B→K*γ

- Improvements seen with TensorFlow neural networks c.f. TMVA [https://www.tensorflow.org]
- Becoming industry standard, actively maintained / improved.
- ▶ Benchmarking in 'easy' mode: precursor to trying out with more complex analysis (e.g. B→K(*)ττ).

