Search for heavy ZZ resonances in the $\ell \ell v v$ and 4ℓ final states

Xiangyang Ju
Meeting of APS Division of Particles and Fields
FNAL, August 32017

Measurements of the SM Higgs boson.

- Excellent agreement entails the success of the SM and places stringent constraint on theories beyond SM.
- Current experimental results cannot rule out the possibility that it is part of an extended Higgs sector.
- Typical benchmark model is CP-conserved 2HDM (two-Higgs-doublet-models).

2HDM interpretation

- Introduce two Higgs doublets: ϕ_{1} and Φ_{2}.
- Spontaneous symmetry breaking results in 5 Higgs bosons: - CP-even (h, H); CP-odd (A), charged Higgs (H^{+-}).
- Free parameters in the physics basis:
- masses of all Higgs bosons.

	ϕ_{1}	ϕ_{2}
Type I	$\mathrm{u}, \mathrm{d}, \mathrm{I}$	
Type II	u	d, I
flipped	u, I	d
lepton-specific	u, d	I

- ratio of vacuum expectation values: $\tan \beta=\mathrm{v}_{2} / \mathrm{v}_{1}$.
- Higgs mixing angle in the CP-even sector $\alpha, H^{S M}=\sin (\beta-\alpha) h+\cos (\beta-\alpha) H$.
- $\mathrm{m}_{\mathrm{A}}, \mathrm{m}_{\mathrm{H}+/- \text {, }}$ is assumed to be heavy enough that H won't decay to them.
- Coupling modifiers:

○ $k(h, V)=\sin (\beta-a), k(H, V)=\cos (\beta-a)$.
○ $k(H, t)=-\sin (\beta-a) / \tan \beta+\cos (\beta-a)$.

- Typel: $k(H, b)=k(H, t)$
- Typell: $\kappa(H, b)=\sin (\beta-\alpha) \tan \beta+\cos (\beta-\alpha)$.

General analysis strategy in event selections

- First define an inclusive signal region.
- To enhance the sensitivity on the VBF production, VBF-like category is defined by looking for VBF signatures: two forward jets, leading to large m_{jj} and $\Delta \eta_{\mathrm{ij}}$.
- Ilvv: $m_{j j}>550 \mathrm{GeV}$ and $\Delta \eta_{\mathrm{ij}}>4.4$.

ATLAS-CONF-2017-058 $\circ 4 \mathrm{I}: \mathrm{m}_{\mathrm{jj}}>400 \mathrm{GeV}$ and $\Delta \eta_{\mathrm{jj}}>3.3$.

- Events in inclusive SR containing the VBF signatures are classified to VBF-like category, otherwise to the ggF-like category.

\&८v analysis

- Search for the events with two leptons originating from a onshell Z and large missing transverse momentum E_{T} miss.
- Interesting signature, can result from different phenomena, depending on the origin of E_{\top} miss.
- Dark matter: mono-Z, Tnvisible Higgs ${ }^{\swarrow}(\mathrm{ZH})$ or $\mathrm{Z} \rightarrow v v$.
- Large branching ratio, good sensitivity in the high mass region.
- Due to different resolution and background composition of electrons and muons, the events are classified into ee and mm channels.
- Look for excesses in the transverse mass:

$$
m_{T} \equiv \sqrt{\left[\sqrt{m_{Z}^{2}+\left(p_{\mathrm{T}}^{\ell \ell}\right)^{2}}+\sqrt{m_{Z}^{2}+\left(E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2}}\right]^{2}-\left|\vec{p}_{\mathrm{T}}^{\ell \ell}+\vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}}
$$

Inclusive signal regions

Single electron/muon trigger, $\varepsilon \sim 99 \%$.

Background composition

1. qqZZ ($\sim 55 \%)$: simulated by PowHeg, corrected to NNLO QCD and NLO EW calculation.
2. ggZZ ($\sim 4 \%)$: simulated by gg2VV in LO QCD calculation, corrected with NLO k-factor of 1.7 ± 1.0.
3. WZ ($\sim 2 \%$): simulated by PowHeg, using a k-factor of 1.29 derived from 31 control region (CR) to correct the overall normalization predicted by MC simulation.
4. $Z+j e t s(\sim 6 \%)$: data-driven, use Boolean ABCD method.
5. WW/tt/Zтt ($\sim 3 \%)$: data-driven using the $\mathbf{e} \mu$ control region.

Results for $\ell \ell v v$

- mT distributions in inclusive signal region before the fit.
- Expected background: 612.6 ± 36.7 while observed: 681, compatibility is about 1.5σ.
- In VBF category, expected 4.6 ± 1.0, while observed 9, compatibility is about 1.6σ.

4ℓ analysis

- Search for the events with four leptons originating from two onshell Zs.
- Events are classified into $4 \mathrm{e}, 4 \mu, 2 \mathrm{e} 2 \mu$ and VBF-like categories.
- Experimental features include:
- Excellent mass resolution:
- $38 \mathrm{GeV}(4 \mu)$ and $16 \mathrm{GeV}(4 \mathrm{e})$ for $\mathrm{m}_{\mathrm{H}}=1 \mathrm{TeV}$.
o Challenge is to maximize the acceptance.
- Look for excesses in the four-lepton invariant mass.
- Search range for mH is $[200,1200] \mathrm{GeV}$.

Inclusive signal regions

Fire electron/muon triggers, $\varepsilon=98 \%$.
only one quadruplet: lepton pair closest $\left(m_{12}\right)$ and second closest (m_{34}) to the pole mass of Z.
$50<\mathrm{m}_{12}<106 \mathrm{GeV}, 50<\mathrm{m}_{34}<115 \mathrm{GeV}$ for $m_{41}>190 \mathrm{GeV}$
J / Ψ veto, isolation and small impactparameters criteria on leptons, $\mathrm{x} 2 / \mathrm{NDF}$ in the vertex fit.

Further improvement on mass resolution:

1. Add final-state-radiation photons
$\cdots \rightarrow 15 \%$ improvement.
2. Apply Z-mass constraint on both Zs.

Background composition

1. $q q Z Z$ ($\sim 85 \%$): simulated by Sherpa (NLO for $0 / 1$ jet, LO for $2 / 3$ jets), with NLO EW corrections applied.
2. $g g Z Z$ ($\sim 10 \%$): simulated by Sherpa in LO QCD, apply NLO correction of 1.7 ± 1.0.
3. qqZZjj EW (~2\%): simulated by Sherpa, important for VBF-like category (15\%).
4. Z+jets/tt/WZ (~2\%). from data-driven methods. The uncertainty is about 20%.
5. ttV/VVV(~1\%): from MC simulations.

Results for 4ℓ

- A 3.6 (2.2) o local (global) excess at $\sim 240 \mathrm{GeV}$ (mostly from 4 e channel).
- A 3.6 (2.2) o local (global) excess at $\sim 700 \mathrm{GeV}$ (excluded at 95\% CL by llvv).
- In VBF category, expected 19.5 ± 8.0 while observed 31 events, compatibility: 1.2σ.

Combination of 4ℓ and $\ell \ell v v$

- correlation schemes for systematic uncertainties:
o the uncertainties coming from the same source are either fully correlated or anti-correlated.
- Combined yields:
- expected events: 1643 ± 164, observed 1870, 1.3σ.
- Interpretations:
- Narrow width approximation (NWA)
o Large width assumption (LWA)

NWA interpretation

- When setting limits on ggF (VBF), VBF (ggF) is profiled.
- Compared to the limits published in Run 1 EPJC(2016), the expected limit is significantly extended depending on m_{H}.
- A ~2 (<1) o local (global) excess is observed at about 700 GeV .

2HDM interpretation: $\tan \beta$ vs $\cos (\beta-\alpha), m_{H}=200 \mathrm{GeV}$

ATLAS-CONF-2017-058

- For a given $\cos (\beta-\alpha)$ and $\tan \beta$, the relative rate of $\sigma_{g g F}$ and $\sigma_{V B F}$ is difference, therefore the limits are re-evaluated accordingly.

2 HDM interpretation: $\tan \beta$ vs $\mathrm{m}_{\mathrm{H}}, \cos (\beta-\alpha)=-0.1$

ATLAS-CONF-2017-058

- Below 300 GeV only 4 I contributes, above 300 GeV both 4 I and Ilvv contribute.
- Exclusion region in 13 TeV is about 2 times better than the one in Run 1.

LWA interpretation

- Consider only the gluon-fusion production.
- Take into account the interferences, but limits are on the "signal only" cross section of the ggF production times BR(ZZ).
- Set limits on three benchmark scenarios for the width of $1,5,10 \%$ of the m_{H}.

Conclusion

- A search for heavy $Z Z$ resonances in the $\ell \ell v v$ and 4ℓ final states has been presented.
- The maximum deviation in data is observed at around 700 GeV with a local (global) significance of about $2(<1) \sigma$.
- Current exclusion limits in context of 2HDM are twice stringent than the one published in Run 1.
- Other interesting studies can be found in the conference note ATLAS-CONF-2017-058

Additional Materials

CMS

Signal modeling for NWA

- 4 ℓ : analytical function (Crystal-Ball + Gaussian) as a function of m_{H}.
- $\ell \ell v v$, templates obtained from MC simulation and interpolated with moment morphing for any other mass.

ATLAS-CONF-2017-058

Modeling of signal and interferences.

yields

Table 4: $\ell^{+} \ell^{-} \ell^{+} \ell^{-}$search: Number of expected and observed events for $m_{4 \ell}>130 \mathrm{GeV}$, together with their statistical and systematic uncertainties, for the ggF- and VBF-enriched categories.

Process	4μ channel	ggF-enriched categories $2 e 2 \mu$ channel	$4 e$ channel	VBF-enriched category					
$Z Z$	$297 \pm 1 \pm 40$	$480 \pm 1 \pm 60$	$193 \pm 1 \pm 25$	$15 \pm 0.1 \pm 6.0$					
$Z Z(\mathrm{EW})$	$1.92 \pm 0.11 \pm 0.19$	$3.36 \pm 0.14 \pm 0.33$	$1.88 \pm 0.12 \pm 0.20$	$3.0 \pm 0.1 \pm 2.2$					
$Z+$ jets $/ t \bar{t} / W Z$	$3.7 \pm 0.1 \pm 0.8$	$7.8 \pm 0.1 \pm 1.1$	$4.4 \pm 0.1 \pm 0.8$	$0.37 \pm 0.01 \pm 0.05$					
Other backgrounds	$5.1 \pm 0.1 \pm 0.6$	$8.7 \pm 0.1 \pm 1.0$	$4.0 \pm 0.1 \pm 0.5$	$0.80 \pm 0.02 \pm 0.30$					
Total background	$308 \pm 1 \pm 40$	$500 \pm 1 \pm 60$	$203 \pm 1 \pm 25$	$19.5 \pm 0.2 \pm 8.0$					
Observed	1 ± 7						545	256	31

Table 5: $\ell^{+} \ell^{-} v \bar{v}$ search: Number of expected and observed events together with their statistical and systematic uncertainties, for the ggF- and VBF-enriched categories.

Process	ggF-enriched categories			VBF-enriched category
	$e^{+} e^{-}$channel	$\mu^{+} \mu^{-}$channel		
$Z Z$	177 ± 3	± 21	180 ± 3	± 21
$W Z$	93 ± 2	± 4	$99.5 \pm 2.3 \pm 3.2$	$1.29 \pm 0.2 \pm 0.7 \pm 0.27$
$W W / t \bar{t} / W t / Z \rightarrow \tau \tau$	$9.2 \pm 2.2 \pm 1.4$	$10.7 \pm 2.5 \pm 0.9$	$0.39 \pm 0.24 \pm 0.26$	
$Z+$ jets	17 ± 1	± 11	$19 \pm 1 \quad \pm 17$	$0.8 \pm 0.1 \pm 0.5$
Other backgrounds	$1.12 \pm 0.04 \pm 0.08$	$1.03 \pm 0.04 \pm 0.08$	$0.03 \pm 0.01 \pm 0.01$	
Total background	297 ± 4	424	311 ± 5	± 27
Observed	320			

ATLAS-CONF-2017-058

Limits on LWA

ATLAS-CONF-2017-058

Modeling for Large Width Assumption

The Modeling for signal-only.

$4 \ell:$ use analytical function to describe the truth line-shape, convolved with detector resolution.

$$
\sigma_{p p \rightarrow H \rightarrow Z Z}\left(m_{4 \ell}\right)=2 \cdot m_{4 \ell} \cdot \mathcal{L}_{g g} \cdot \frac{1}{\left|s-s_{H}\right|^{2}} \cdot \Gamma_{H \rightarrow g g}\left(m_{4 \ell}^{2}\right) \cdot \Gamma_{H \rightarrow Z Z}\left(m_{4 \ell}^{2}\right)
$$

The difference in the line-shape at another mass and width comes from the propagator. $1 / \mathrm{ls}-\mathrm{SH}^{2}$
$\ell \ell v v$: Reweight full-simulated signal samples to obtain mT distribution in reco. for any mass and width.

Modeling for Large Width Assumption

The Modeling for interference of ($\mathrm{h}-\mathrm{H}$), described by.

$$
\sigma_{p p}\left(m_{4 \ell}\right)=4 \cdot m_{4 \ell} \cdot \mathcal{L}_{g g} \cdot \operatorname{Re}\left[\frac{1}{s-s_{H}} \cdot \frac{1}{\left(s-s_{h}\right)^{*}}\right] \cdot \Gamma_{H \rightarrow g g}\left(m_{4 \ell}\right) \cdot \Gamma_{H \rightarrow Z Z}\left(m_{4 \ell}\right)
$$

obtained from signal only samples by applying the following weight:

$$
w\left(m_{4 \ell}\right)=\frac{2 \cdot \operatorname{Re}\left[\frac{1}{s-s_{H}} \cdot \frac{1}{\left(s-s_{h}\right)^{*}}\right]}{\frac{1}{\left|s-s_{H}\right|^{2}}}
$$

at truth-level for 4ℓ and at reco-level for $\ell \ell v v$. For 4ℓ, it then convolves with detector resolution.

Modeling for Large Width Assumption

The Modeling for interference of ($\mathrm{H}-\mathrm{B}$), similar in 4ℓ and $\ell \ell v v$.

- Generated truth samples for SBI using gg2VV for $\ell \ell v v$ and MCFM for 4ℓ. From that subtract the S and B to get the interference.
- Fit the interference with following formula in $\mathrm{m}_{z z}$ with to obtain its line-shape in truth:

$$
\sigma_{p p}\left(m_{4 \ell}\right)=\mathcal{L}_{g g} \cdot \frac{1}{m_{4 \ell}} \cdot \operatorname{Re}\left[\frac{1}{s-s_{H}} \cdot\left(\left(a_{0}+a_{1} \cdot m_{4 \ell}+\ldots\right)+i \cdot\left(b_{0}+b_{1} \cdot m_{4 \ell}+\ldots\right)\right)\right]
$$

For 4ℓ, it convolves with detector resolution;
For $\ell \ell v v$, a 'c-factor' is applied to obtain the shape at reco. level.

Limits on Graviton

- Ilvv excludes the region of $\mathrm{mG}^{*}<\sim 1.3 \mathrm{TeV}$.
- llqq+vvqq excludes the region of $m G^{*}<\sim 1.3 \mathrm{TeV}$.

