What does a non-vanishing neutrino mass have to say about the strong CP problem?

P. Q. Hung

UNIVERSITY OF VIRGINIA

DPF 2017, Fermilab, July 31- August 4, 2017

• A brief summary of the Strong CP problem: What is it? The Peccei-Quinn solution and alternatives.

- A brief summary of the Strong CP problem: What is it? The Peccei-Quinn solution and alternatives.
- It all amounts to the question of why $\bar{\theta} = \theta_{QCD} + \theta_{non-QCD} < 10^{-10}$. Strategy: Find a symmetry so that $\theta_{QCD} = 0$ and see if the calculated $\theta_{non-QCD} < 10^{-10}$.

- A brief summary of the Strong CP problem: What is it? The Peccei-Quinn solution and alternatives.
- It all amounts to the question of why $\bar{\theta} = \theta_{QCD} + \theta_{non-QCD} < 10^{-10}$. Strategy: Find a symmetry so that $\theta_{QCD} = 0$ and see if the calculated $\theta_{non-QCD} < 10^{-10}$.
- A new solution with testable experimental implications at the LHC (and beyond): smallness of neutrino masses \Rightarrow smallness of the CP-violating parameter $\bar{\theta}$, below the experimental bound $\bar{\theta} < 10^{-10}$.

- A brief summary of the Strong CP problem: What is it? The Peccei-Quinn solution and alternatives.
- It all amounts to the question of why $\bar{\theta} = \theta_{QCD} + \theta_{non-QCD} < 10^{-10}$. Strategy: Find a symmetry so that $\theta_{QCD} = 0$ and see if the calculated $\theta_{non-QCD} < 10^{-10}$.
- A new solution with testable experimental implications at the LHC (and beyond): smallness of neutrino masses \Rightarrow smallness of the CP-violating parameter $\bar{\theta}$, below the experimental bound $\bar{\theta} < 10^{-10}$.
- Model: A model of fertile right-handed neutrinos at the electroweak scale (EW- ν_R model) involving mirror fermions. All the ingredients for a strong CP solution already contained in the EW- ν_R model. Mixing between mirror quarks and SM quarks via a Higgs singlet \Rightarrow contribution to $\bar{\theta}$ proportional to the neutrino masses \Rightarrow naturally small! Experimental implications in the search for mirror quarks!

• The QCD vacuum is very complicated. The gauge-invariant vacuum is the so-called θ -vacuum ('t Hooft, Polyakov): $|\theta\rangle = \sum_{n} \exp(-in\theta)|n\rangle$. n: "winding number".

- The QCD vacuum is very complicated. The gauge-invariant vacuum is the so-called θ -vacuum ('t Hooft, Polyakov): $|\theta\rangle = \sum_{n} \exp(-\imath n\theta) |n\rangle$. n: "winding number".
- This induces an Effective Lagrangian:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{QCD+...} + \theta_{QCD} \left(g_3^2/32\pi^2\right) G_a^{\mu\nu} \tilde{G}_{\mu\nu}^{a}.$$

- The QCD vacuum is very complicated. The gauge-invariant vacuum is the so-called θ -vacuum ('t Hooft, Polyakov): $|\theta\rangle = \sum_{n} \exp(-in\theta)|n\rangle$. n: "winding number".
- This induces an Effective Lagrangian:

$$\mathcal{L}_{eff} = \mathcal{L}_{QCD+...} + \theta_{QCD} \left(g_3^2/32\pi^2\right) G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a.$$

• Last term is CP violating! So? What's the problem?

- The QCD vacuum is very complicated. The gauge-invariant vacuum is the so-called θ -vacuum ('t Hooft, Polyakov): $|\theta\rangle = \sum_{n} \exp(-in\theta)|n\rangle$. n: "winding number".
- This induces an Effective Lagrangian:

$$\mathcal{L}_{eff} = \mathcal{L}_{QCD+...} + heta_{QCD} \left(g_3^2/32\pi^2\right) G_a^{\mu\nu} \tilde{G}_{\mu\nu}^{\tilde{a}}.$$

- Last term is CP violating! So? What's the problem?
- Jackiw and Rebbi: A chiral rotation \hat{Q}_5 can change θ : $\exp(\imath\alpha \tilde{Q}_5)|\theta\rangle = |\theta + \alpha\rangle$.

- The QCD vacuum is very complicated. The gauge-invariant vacuum is the so-called θ -vacuum ('t Hooft, Polyakov): $|\theta\rangle = \sum_{n} \exp(-in\theta)|n\rangle. \ n: \text{ "winding number"}.$
- This induces an Effective Lagrangian:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{QCD+...} + heta_{QCD} \left(g_3^2/32\pi^2\right) G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a.$$

- Last term is CP violating! So? What's the problem?
- Jackiw and Rebbi: A chiral rotation \hat{Q}_5 can change θ : $\exp(\imath\alpha \tilde{Q}_5)|\theta\rangle = |\theta + \alpha\rangle$.
- If there is a chiral symmetry (e.g. Peccei-Quinn $U(1)_{PQ}$), one can rotate θ_{QCD} away by $\exp(-i\theta_{QCD}\tilde{Q}_5)|\theta_{QCD}\rangle = |0\rangle$. No more $\mathscr{L}P!$

- The QCD vacuum is very complicated. The gauge-invariant vacuum is the so-called θ -vacuum ('t Hooft, Polyakov): $|\theta\rangle = \sum_{n} \exp(-in\theta)|n\rangle. \ n: \text{ "winding number"}.$
- This induces an Effective Lagrangian:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{QCD+...} + heta_{QCD} \left(g_3^2/32\pi^2\right) G_a^{\mu\nu} \tilde{G}_{\mu\nu}^{\tilde{a}}.$$

- Last term is CP violating! So? What's the problem?
- Jackiw and Rebbi: A chiral rotation \hat{Q}_5 can change θ : $\exp(\imath\alpha \tilde{Q}_5)|\theta\rangle = |\theta + \alpha\rangle$.
- If there is a chiral symmetry (e.g. Peccei-Quinn $U(1)_{PQ}$), one can rotate θ_{QCD} away by $\exp(-i\theta_{QCD}\tilde{Q}_5)|\theta_{QCD}\rangle = |0\rangle$. No more $\mathscr{L}^p!$
- However, diagonalization of quark mass matrices introduces another chiral rotation that shifts the θ by an additional amount ArgDetM so that one now has $\bar{\theta} = \theta_{QCD} + ArgDetM$. So?

- The QCD vacuum is very complicated. The gauge-invariant vacuum is the so-called θ -vacuum ('t Hooft, Polyakov): $|\theta\rangle = \sum_{n} \exp(-in\theta)|n\rangle$. n: "winding number".
- This induces an Effective Lagrangian:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{QCD+...} + \theta_{QCD} \left(g_3^2/32\pi^2\right) G_a^{\mu\nu} \tilde{G}_{\mu\nu}^{\tilde{a}}.$$

- Last term is CP violating! So? What's the problem?
- Jackiw and Rebbi: A chiral rotation \hat{Q}_5 can change θ : $\exp(\imath\alpha \tilde{Q}_5)|\theta\rangle = |\theta + \alpha\rangle$.
- If there is a chiral symmetry (e.g. Peccei-Quinn $U(1)_{PQ}$), one can rotate θ_{QCD} away by $\exp(-i\theta_{QCD}\tilde{Q}_5)|\theta_{QCD}\rangle = |0\rangle$. No more $\mathcal{LP}!$
- However, diagonalization of quark mass matrices introduces another chiral rotation that shifts the θ by an additional amount ArgDetM so that one now has $\bar{\theta} = \theta_{OCD} + ArgDetM$. So?
- This contributes to the Electric Dipole Moment of the neutron: $d_n \approx 2.5 \times 10^{-16} \bar{\theta} e cm$. Experimentally: $|d_n| < 2.9 \times 10^{-26} e cm$!

• $\bar{\theta} < 10^{-10}$: known as the Strong CP problem. Why should it be so small?

- $\bar{\theta} < 10^{-10}$: known as the Strong CP problem. Why should it be so small?
- Peccei-Quinn: Introduction of a extra chiral symmetry $U(1)_{PQ}$ to the SM such that (simplified summary here)

- $\bar{\theta} < 10^{-10}$: known as the Strong CP problem. Why should it be so small?
- Peccei-Quinn: Introduction of a extra chiral symmetry $U(1)_{PQ}$ to the SM such that (simplified summary here)
 - $\bar{q}_L g_Y \phi q_R + \bar{q}_R g_Y^* \phi^* q_L$ invariant under a chiral rotation $q \to \exp(\imath \alpha \gamma_5) q$, $\phi \to \exp(-\imath 2\alpha) \phi$

- $\bar{\theta} < 10^{-10}$: known as the Strong CP problem. Why should it be so small?
- Peccei-Quinn: Introduction of a extra chiral symmetry $U(1)_{PQ}$ to the SM such that (simplified summary here)
 - $\bar{q}_L g_Y \phi q_R + \bar{q}_R g_Y^* \phi^* q_L$ invariant under a chiral rotation $q \to \exp(\imath \alpha \gamma_5) q$, $\phi \to \exp(-\imath 2\alpha) \phi$
 - $\theta_{QCD} \rightarrow \theta_{QCD} 2\alpha$. Can be rotated to zero!

- $\bar{\theta} < 10^{-10}$: known as the Strong CP problem. Why should it be so small?
- Peccei-Quinn: Introduction of a extra chiral symmetry $U(1)_{PQ}$ to the SM such that (simplified summary here)
 - $\bar{q}_L g_Y \phi q_R + \bar{q}_R g_Y^* \phi^* q_L$ invariant under a chiral rotation $q \to \exp(\imath \alpha \gamma_5) q$, $\phi \to \exp(-\imath 2\alpha) \phi$
 - $\theta_{QCD} \rightarrow \theta_{QCD} 2\alpha$. Can be rotated to zero!
 - However, if $U(1)_{PQ}$ is spontaneously broken $(\langle \phi \rangle \neq 0)$ then $ArgDet\ g_Y \langle \phi \rangle \neq 0!$

- $\bar{\theta} < 10^{-10}$: known as the Strong CP problem. Why should it be so small?
- Peccei-Quinn: Introduction of a extra chiral symmetry $U(1)_{PQ}$ to the SM such that (simplified summary here)
 - $\bar{q}_L g_Y \phi q_R + \bar{q}_R g_Y^* \phi^* q_L$ invariant under a chiral rotation $q \to \exp(\imath \alpha \gamma_5) q$, $\phi \to \exp(-\imath 2\alpha) \phi$
 - $\theta_{QCD} \rightarrow \theta_{QCD} 2\alpha$. Can be rotated to zero!
 - However, if $U(1)_{PQ}$ is spontaneously broken $(\langle \phi \rangle \neq 0)$ then $ArgDet\ g_Y \langle \phi \rangle \neq 0!$
 - A pseudo-Nambu-Goldstone boson, the Axion, dynamically drives $\bar{\theta}$ to zero even if $\langle \phi \rangle \neq 0$. Is it necessary to do so?

- $\bar{\theta} < 10^{-10}$: known as the Strong CP problem. Why should it be so small?
- Peccei-Quinn: Introduction of a extra chiral symmetry $U(1)_{PQ}$ to the SM such that (simplified summary here)
 - $\bar{q}_L g_Y \phi q_R + \bar{q}_R g_Y^* \phi^* q_L$ invariant under a chiral rotation $q \to \exp(\imath \alpha \gamma_5) q$, $\phi \to \exp(-\imath 2\alpha) \phi$
 - $\theta_{QCD} \rightarrow \theta_{QCD} 2\alpha$. Can be rotated to zero!
 - However, if $U(1)_{PQ}$ is spontaneously broken $(\langle \phi \rangle \neq 0)$ then $ArgDet g_Y \langle \phi \rangle \neq 0!$
 - A pseudo-Nambu-Goldstone boson, the Axion, dynamically drives $\bar{\theta}$ to zero even if $\langle \phi \rangle \neq 0$. Is it necessary to do so?
 - Experimental searches for the Axion (in particular Beam dump: $K^+ \to \pi^+ a$) empty handed \Rightarrow Invisible axion. Severe constraints on the Axion from astrophysics although it is still considered to be a DM candidate.

- $\bar{\theta} < 10^{-10}$: known as the Strong CP problem. Why should it be so small?
- Peccei-Quinn: Introduction of a extra chiral symmetry $U(1)_{PQ}$ to the SM such that (simplified summary here)
 - $\bar{q}_L g_Y \phi q_R + \bar{q}_R g_Y^* \phi^* q_L$ invariant under a chiral rotation $q \to \exp(\imath \alpha \gamma_5) q$, $\phi \to \exp(-\imath 2\alpha) \phi$
 - $\theta_{QCD} \rightarrow \theta_{QCD} 2\alpha$. Can be rotated to zero!
 - However, if $U(1)_{PQ}$ is spontaneously broken $(\langle \phi \rangle \neq 0)$ then $ArgDet\ g_Y \langle \phi \rangle \neq 0!$
 - A pseudo-Nambu-Goldstone boson, the Axion, dynamically drives θ to zero even if $\langle \phi \rangle \neq 0$. Is it necessary to do so?
 - Experimental searches for the Axion (in particular Beam dump: $K^+ \to \pi^+ a$) empty handed \Rightarrow Invisible axion. Severe constraints on the Axion from astrophysics although it is still considered to be a DM candidate.
 - Several axion-less scenarios were proposed.

The EW-scale ν_R model: Model in which ν_R's are FERTILE,
 EW-scale masses ⇒ They can be detected at the LHC and the seesaw mechanism directly tested!

- The EW-scale ν_R model: Model in which ν_R's are FERTILE,
 EW-scale masses ⇒ They can be detected at the LHC and the seesaw mechanism directly tested!
- Does not require a new gauge group: Same old $SU(3)_c \times SU(2)_W \times U(1)_Y!$

- The EW-scale ν_R model: Model in which ν_R's are FERTILE,
 EW-scale masses ⇒ They can be detected at the LHC and the seesaw mechanism directly tested!
- Does not require a new gauge group: Same old $SU(3)_c \times SU(2)_W \times U(1)_Y!$
- Requires: (Start out with one family for simplification. Similar results for 3 generations.)

- The EW-scale ν_R model: Model in which ν_R's are FERTILE,
 EW-scale masses ⇒ They can be detected at the LHC and the seesaw mechanism directly tested!
- Does not require a new gauge group: Same old $SU(3)_C \times SU(2)_W \times U(1)_Y!$
- Requires: (Start out with one family for simplification. Similar results for 3 generations.)
 - Fermions: SM: $(q_L, I_L, u_R, d_R, e_R)$; Mirror: $(q_R^M, I_R^M, u_L^M, d_L^M, e_L^M)$. Scalars: Doublets: Φ_2 , Φ_{2M} ; Triplets: $\tilde{\chi}$, ξ ; Singlet: ϕ_5 .

- The EW-scale ν_R model: Model in which ν_R's are FERTILE,
 EW-scale masses ⇒ They can be detected at the LHC and the seesaw mechanism directly tested!
- Does not require a new gauge group: Same old $SU(3)_C \times SU(2)_W \times U(1)_Y!$
- Requires: (Start out with one family for simplification. Similar results for 3 generations.)
 - Fermions: SM: $(q_L, l_L, u_R, d_R, e_R)$; Mirror: $(q_R^M, l_R^M, u_L^M, d_L^M, e_L^M)$. Scalars: Doublets: Φ_2 , Φ_{2M} ; Triplets: $\tilde{\chi}$, ξ ; Singlet: ϕ_5 .
 - Right-handed Majorana neutrino masses: $g_M \nu_R^{\bar{T}} \sigma_2 \nu_R \chi^0$. $\langle \chi^0 \rangle = v_M \Rightarrow M_R = g_M v_M (v_M \sim O(\Lambda_{EW}))$.

- The EW-scale ν_R model: Model in which ν_R's are FERTILE,
 EW-scale masses ⇒ They can be detected at the LHC and the seesaw mechanism directly tested!
- Does not require a new gauge group: Same old $SU(3)_C \times SU(2)_W \times U(1)_Y!$
- Requires: (Start out with one family for simplification. Similar results for 3 generations.)
 - Fermions: SM: $(q_L, l_L, u_R, d_R, e_R)$; Mirror: $(q_R^M, l_R^M, u_L^M, d_L^M, e_L^M)$. Scalars: Doublets: Φ_2 , Φ_{2M} ; Triplets: $\tilde{\chi}$, ξ ; Singlet: ϕ_5 .
 - Right-handed Majorana neutrino masses: $g_M \nu_R^T \sigma_2 \nu_R \chi^0$. $\langle \chi^0 \rangle = \nu_M \Rightarrow M_R = g_M \nu_M (\nu_M \sim O(\Lambda_{EW}))$.
 - Neutrino Dirac mass: $\mathcal{L}_S = g_{SI} \bar{l}_L \phi_S l_R^M + H.c. \langle \phi_S \rangle = v_S \Rightarrow m_D = g_{SI} v_S$

- The EW-scale ν_R model: Model in which ν_R's are FERTILE,
 EW-scale masses ⇒ They can be detected at the LHC and the seesaw mechanism directly tested!
- Does not require a new gauge group: Same old $SU(3)_C \times SU(2)_W \times U(1)_Y!$
- Requires: (Start out with one family for simplification. Similar results for 3 generations.)
 - Fermions: SM: $(q_L, l_L, u_R, d_R, e_R)$; Mirror: $(q_R^M, l_R^M, u_L^M, d_L^M, e_L^M)$. Scalars: Doublets: Φ_2 , Φ_{2M} ; Triplets: $\tilde{\chi}$, ξ ; Singlet: ϕ_5 .
 - Right-handed Majorana neutrino masses: $g_M \nu_R^T \sigma_2 \nu_R \chi^0$. $\langle \chi^0 \rangle = \nu_M \Rightarrow M_R = g_M \nu_M (\nu_M \sim O(\Lambda_{EW}))$.
 - Neutrino Dirac mass: $\mathcal{L}_S = g_{SI} \bar{l}_L \phi_S l_R^M + H.c. \langle \phi_S \rangle = v_S \Rightarrow m_D = g_{SI} v_S$
 - Seesaw: $m_{\nu} \sim m_D^2/M_R$; M_R .

• Yukawa interactions with quarks:

$$\mathcal{L}_{\textit{mass}} = g_u \bar{q}_L \tilde{\Phi}_2 u_R + g_d \bar{q}_L \Phi_2 d_R + g_{u^M} q^{\bar{M}}_R \tilde{\Phi}_{2M} u_L^M + g_{d^M} q^{\bar{M}}_R \Phi_{2M} d_L^M + H.c. \ \Big]$$

$$\mathcal{L}_{\text{mixing}} = g_{Sq} \bar{q}_L \phi_S q^{\bar{M}}_R + g_{Su} \bar{u}_L^M \phi_S u_R + g_{Sd} \bar{d}_L^M \phi_S d_R + H.c.$$

• Yukawa interactions with quarks:

$$\mathcal{L}_{mass} = g_u \bar{q}_L \tilde{\Phi}_2 u_R + g_d \bar{q}_L \Phi_2 d_R + g_{u^M} q^{\overline{M}}_R \tilde{\Phi}_{2M} u_L^M + g_{d^M} q^{\overline{M}}_R \Phi_{2M} d_L^M + H.c.$$

$$\mathcal{L}_{\text{mixing}} = g_{Sq} \bar{q}_L \phi_S q^{\bar{M}}_R + g_{Su} \bar{u}_L^M \phi_S u_R + g_{Sd} \bar{d}_L^M \phi_S d_R + H.c.$$

• Extra global symmetries: $U(1)_{SM} \times U(1)_{MF}$ (to prevent some unwanted couplings for consistency). These contain the chiral symmetries: $U(1)_{A,SM} \times U(1)_{A,MF} \Rightarrow \mathcal{L}_{mixing}$ is invariant under: $q \rightarrow \exp(\imath \alpha_{SM} \gamma_5) q; q^M \rightarrow \exp(\imath \alpha_{MF} \gamma_5) q^M; \phi_S \rightarrow \exp(-\imath (\alpha_{SM} + \alpha_{MF})) \phi_S$.

• Chiral rotations: $\theta_{QCD} \rightarrow \theta_{QCD} - (\alpha_{SM} + \alpha_{MF})$. Can be rotated to zero! Next, compute ArgDetM (actually $\theta_{Weak} = ArgDet(\mathcal{M}_u\mathcal{M}_d)$)

- Chiral rotations: $\theta_{QCD} \rightarrow \theta_{QCD} (\alpha_{SM} + \alpha_{MF})$. Can be rotated to zero! Next, compute ArgDetM (actually $\theta_{Weak} = ArgDet(\mathcal{M}_u\mathcal{M}_d)$)
- Mass matrices: $\mathcal{M}_u = \begin{pmatrix} m_u & |g_{Sq}| v_S \exp(\imath \theta_q) \\ |g_{Su}| v_S \exp(\imath \theta_u) & M_u \end{pmatrix}$, $\mathcal{M}_d = \begin{pmatrix} m_d & |g_{Sq}| v_S \exp(\imath \theta_q) \\ |g_{Sd}| v_S \exp(\imath \theta_d) & M_d \end{pmatrix}$.

$$\mathcal{M}_d = \left(\begin{array}{cc} m_d & |g_{Sq}| v_S \exp(i\theta_q) \\ |g_{Sd}| v_S \exp(i\theta_d) & M_d \end{array} \right)$$

- Chiral rotations: $\theta_{QCD} \rightarrow \theta_{QCD} (\alpha_{SM} + \alpha_{MF})$. Can be rotated to zero! Next, compute ArgDetM (actually $\theta_{Weak} = ArgDet(\mathcal{M}_u\mathcal{M}_d)$)
- Mass matrices: $\mathcal{M}_u = \begin{pmatrix} m_u & |g_{Sq}|v_S \exp(\imath\theta_q) \\ |g_{Su}|v_S \exp(\imath\theta_u) & M_u \end{pmatrix}$,

$$\mathcal{M}_d = \left(egin{array}{cc} m_d & |g_{Sq}|v_S \exp(\imath heta_q) \ |g_{Sd}|v_S \exp(\imath heta_d) & M_d \end{array}
ight).$$

• Straightforward calculations give:

$$ar{ heta} = heta_{ extsf{Weak}} pprox rac{-(r_u \sin(heta_q + heta_u) + r_d \sin(heta_q + heta_d))}{1 - r_u \cos(heta_q + heta_u) - r_d \sin(heta_q + heta_d)}$$

$$r_u = \frac{|g_{Sq}||g_{Su}|v_S^2}{m_u M_u} = (\frac{|g_{Sq}||g_{Su}|}{g_{Sl}^2})(\frac{m_D^2}{m_u M_u})$$

$$r_d = \frac{|g_{Sq}||g_{Sd}|v_S^2}{m_d M_d} = (\frac{|g_{Sq}||g_{Sd}|}{g_{Sl}^2})(\frac{m_D^2}{m_d M_d})$$

$$\theta_{Weak} \approx -(r_u \sin(\theta_q + \theta_u) + r_d \sin(\theta_q + \theta_d))$$

$$\theta_{Weak} \approx -(r_u \sin(\theta_q + \theta_u) + r_d \sin(\theta_q + \theta_d))$$

• With $r_{u,d} \propto v_S^2 \propto m_D^2$, $\theta_{Weak} \to 0$ as $v_S \to 0$ regardless of the \mathcal{LP} phases $\theta_q + \theta_{u,d}$.

$$\theta_{Weak} \approx -(r_u \sin(\theta_q + \theta_u) + r_d \sin(\theta_q + \theta_d))$$

- With $r_{u,d} \propto v_S^2 \propto m_D^2$, $\theta_{Weak} \to 0$ as $v_S \to 0$ regardless of the \mathscr{L} phases $\theta_q + \theta_{u,d}$.
- But $m_{\nu} \sim m_D^2/M_R \neq 0$ and tiny! One expects θ_{Weak} to be very small also! We do not need to drive θ_{Weak} dynamically to zero!

$$\theta_{Weak} \approx -(r_u \sin(\theta_q + \theta_u) + r_d \sin(\theta_q + \theta_d))$$

- With $r_{u,d} \propto v_S^2 \propto m_D^2$, $\theta_{Weak} \to 0$ as $v_S \to 0$ regardless of the \mathscr{L} phases $\theta_q + \theta_{u,d}$.
- But $m_{\nu} \sim m_D^2/M_R \neq 0$ and tiny! One expects θ_{Weak} to be very small also! We do not need to drive θ_{Weak} dynamically to zero!
- Putting in some reasonable numbers

$$\theta_{\textit{Weak}} < -10^{-8} \{ (\frac{|g_{\textit{Sq}}||g_{\textit{Su}}|}{g_{\textit{Sl}}^2}) \sin(\theta_{\textit{q}} + \theta_{\textit{u}}) + (\frac{|g_{\textit{Sq}}||g_{\textit{Sd}}|}{g_{\textit{Sl}}^2}) \sin(\theta_{\textit{q}} + \theta_{\textit{d}}) \}$$

• The EW-scale ν_R model: (a) satisfies the EW-precision data, e.g. positive contributions to S from mirror fermions get cancelled by negative contributions from triplet scalars; (b) Two very distinct scenarios (Dr Jekyll and Mr Hyde) that can accommodate, in terms of signal strengths, the 125-GeV scalar; (c) Constraints from $\mu \to e \gamma$ and $\mu 2e$ conversion imply $g_{SI} < 10^{-4} \Rightarrow$ Decays of mirror leptons at DISPLACED VERTICES!

- The EW-scale ν_R model: (a) satisfies the EW-precision data, e.g. positive contributions to S from mirror fermions get cancelled by negative contributions from triplet scalars; (b) Two very distinct scenarios (Dr Jekyll and Mr Hyde) that can accommodate, in terms of signal strengths, the 125-GeV scalar; (c) Constraints from $\mu \to e \gamma$ and $\mu 2e$ conversion imply $g_{Sl} < 10^{-4} \Rightarrow$ Decays of mirror leptons at DISPLACED VERTICES!
- To satisfy $\bar{\theta} < 10^{-10}$, one requires $|g_{Sq}| \sim |g_{Su}| \sim |g_{Sd}| \sim 0.1 g_{Sl} \Rightarrow$ Decays of mirror quarks at DISPLACED VERTICES!

- The EW-scale ν_R model: (a) satisfies the EW-precision data, e.g. positive contributions to S from mirror fermions get cancelled by negative contributions from triplet scalars; (b) Two very distinct scenarios (Dr Jekyll and Mr Hyde) that can accommodate, in terms of signal strengths, the 125-GeV scalar; (c) Constraints from $\mu \to e \gamma$ and $\mu 2e$ conversion imply $g_{SI} < 10^{-4} \Rightarrow$ Decays of mirror leptons at DISPLACED VERTICES!
- To satisfy $\bar{\theta} < 10^{-10}$, one requires $|g_{Sq}| \sim |g_{Su}| \sim |g_{Sd}| \sim 0.1 g_{Sl} \Rightarrow$ Decays of mirror quarks at DISPLACED VERTICES!
- Another important collider implication: Like-sign dileptons from ν_R decays at DISPLACED VERTICES.

- The EW-scale ν_R model: (a) satisfies the EW-precision data, e.g. positive contributions to S from mirror fermions get cancelled by negative contributions from triplet scalars; (b) Two very distinct scenarios (Dr Jekyll and Mr Hyde) that can accommodate, in terms of signal strengths, the 125-GeV scalar; (c) Constraints from $\mu \to e \gamma$ and $\mu 2e$ conversion imply $g_{Sl} < 10^{-4} \Rightarrow$ Decays of mirror leptons at DISPLACED VERTICES!
- To satisfy $\bar{\theta} < 10^{-10}$, one requires $|g_{Sq}| \sim |g_{Su}| \sim |g_{Sd}| \sim 0.1 g_{Sl} \Rightarrow$ Decays of mirror quarks at DISPLACED VERTICES!
- Another important collider implication: Like-sign dileptons from ν_R decays at DISPLACED VERTICES.
- Other implications are under investigation.

What does the EW-scale ν_R model accomplish?

What does the EW-scale ν_R model accomplish?

• Nielsen-Ninomiya theorem: The SM cannot be put on the lattice. Tough to investigate the phase transition of the EW sector. The EW-scale ν_R model evades the N-N theorem and one can now study the phase transition on the lattice.

What does the EW-scale ν_R model accomplish?

- Nielsen-Ninomiya theorem: The SM cannot be put on the lattice. Tough to investigate the phase transition of the EW sector. The EW-scale ν_R model evades the N-N theorem and one can now study the phase transition on the lattice.
- The EW-scale ν_R model provides a test of the seesaw mechanism at collider energies since ν_R 's are now fertile and "light"! Rich studies involving the search for the mirror sector at the LHC with in particular characteristic signals such as DISPLACED VERTICES.

What does the EW-scale ν_R model accomplish?

- Nielsen-Ninomiya theorem: The SM cannot be put on the lattice. Tough to investigate the phase transition of the EW sector. The EW-scale ν_R model evades the N-N theorem and one can now study the phase transition on the lattice.
- The EW-scale ν_R model provides a test of the seesaw mechanism at collider energies since ν_R 's are now fertile and "light"! Rich studies involving the search for the mirror sector at the LHC with in particular characteristic signals such as DISPLACED VERTICES.
- There seems to be a collusion between neutrino physics and QCD to make Strong CP great again! Stay tune!

• EW-scale *nu_R* model; PQH, Phys. Lett. B **649**, 275 (2007).

- EW-scale *nu_R* model; PQH, Phys. Lett. B **649**, 275 (2007).
- EW precision: V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 877, 190 (2013) doi:10.1016/j.nuclphysb.2013.10.002 [arXiv:1303.0428 [hep-ph]].

- EW-scale *nu_R* model; PQH, Phys. Lett. B **649**, 275 (2007).
- EW precision: V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 877, 190 (2013) doi:10.1016/j.nuclphysb.2013.10.002
 [arXiv:1303.0428 [hep-ph]].
- 125-GeV scalar: V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 896, 611 (2015) doi:10.1016/j.nuclphysb.2015.05.007 [arXiv:1412.0343 [hep-ph]].

- EW-scale *nu_R* model; PQH, Phys. Lett. B **649**, 275 (2007).
- EW precision: V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 877, 190 (2013) doi:10.1016/j.nuclphysb.2013.10.002
 [arXiv:1303.0428 [hep-ph]].
- 125-GeV scalar: V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 896, 611 (2015) doi:10.1016/j.nuclphysb.2015.05.007 [arXiv:1412.0343 [hep-ph]].
- Rare decays: P. Q. Hung, T. Le, V. Q. Tran and T. C. Yuan, JHEP 1512, 169 (2015) doi:10.1007/JHEP12(2015)169 [arXiv:1508.07016 [hep-ph]].

- EW-scale *nu_R* model; PQH, Phys. Lett. B **649**, 275 (2007).
- EW precision: V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 877, 190 (2013) doi:10.1016/j.nuclphysb.2013.10.002
 [arXiv:1303.0428 [hep-ph]].
- 125-GeV scalar: V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 896, 611 (2015) doi:10.1016/j.nuclphysb.2015.05.007 [arXiv:1412.0343 [hep-ph]].
- Rare decays: P. Q. Hung, T. Le, V. Q. Tran and T. C. Yuan, JHEP 1512, 169 (2015) doi:10.1007/JHEP12(2015)169 [arXiv:1508.07016 [hep-ph]].
- Searches: S. Chakdar, K. Ghosh, V. Hoang, P. Q. Hung and S. Nandi, Phys. Rev. D 93, no. 3, 035007 (2016) doi:10.1103/PhysRevD.93.035007 [arXiv:1508.07318 [hep-ph]], S. Chakdar, K. Ghosh, V. Hoang, P. Q. Hung and S. Nandi, Phys. Rev. D 95, no. 1, 015014 (2017) doi:10.1103/PhysRevD.95.015014

- EW-scale *nu_R* model; PQH, Phys. Lett. B **649**, 275 (2007).
- EW precision: V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 877, 190 (2013) doi:10.1016/j.nuclphysb.2013.10.002
 [arXiv:1303.0428 [hep-ph]].
- 125-GeV scalar: V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 896, 611 (2015) doi:10.1016/j.nuclphysb.2015.05.007 [arXiv:1412.0343 [hep-ph]].
- Rare decays: P. Q. Hung, T. Le, V. Q. Tran and T. C. Yuan, JHEP 1512, 169 (2015) doi:10.1007/JHEP12(2015)169 [arXiv:1508.07016 [hep-ph]].
- Searches: S. Chakdar, K. Ghosh, V. Hoang, P. Q. Hung and S. Nandi, Phys. Rev. D 93, no. 3, 035007 (2016) doi:10.1103/PhysRevD.93.035007 [arXiv:1508.07318 [hep-ph]], S. Chakdar, K. Ghosh, V. Hoang, P. Q. Hung and S. Nandi, Phys. Rev. D 95, no. 1, 015014 (2017) doi:10.1103/PhysRevD.95.015014

• Gauge group: $SU(3)_C \times SU(2) \times U(1)_Y$

- Gauge group: $SU(3)_C \times SU(2) \times U(1)_Y$
- Lepton doublets:

SM:
$$I_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$$
; Mirror: $I_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix}$

- Gauge group: $SU(3)_C \times SU(2) \times U(1)_Y$
- Lepton doublets:

SM:
$$I_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$$
; Mirror: $I_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix}$

Lepton singlets:

SM: e_R ; Mirror: e_L^M

- Gauge group: $SU(3)_C \times SU(2) \times U(1)_Y$
- Lepton doublets:

SM:
$$I_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$$
; Mirror: $I_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix}$

- Lepton singlets:
 - SM: e_R ; Mirror: e_L^M
- Quark doublets:

SM:
$$q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$
; Mirror: $q_R^M = \begin{pmatrix} u_R^M \\ d_R^M \end{pmatrix}$

- Gauge group: $SU(3)_C \times SU(2) \times U(1)_Y$
- Lepton doublets:

SM:
$$I_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$$
; Mirror: $I_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix}$

- Lepton singlets:
 - SM: e_R ; Mirror: e_L^M
- Quark doublets:

SM:
$$q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$
; Mirror: $q_R^M = \begin{pmatrix} u_R^M \\ d_R^M \end{pmatrix}$

Quark singlets:

SM: u_R , d_R ; Mirror: u_L^M , d_L^M

• How to obtain $M_R \nu_R^T \sigma_2 \nu_R$: From (lepton-number violating) $I_R^{M,T} \sigma_2 I_R^M$ coupled to a triplet Higgs, $\tilde{\chi}$ with Y/2 = 1.

• How to obtain $M_R \nu_R^T \sigma_2 \nu_R$: From (lepton-number violating) $I_R^{M,T} \sigma_2 I_R^M$ coupled to a triplet Higgs, $\tilde{\chi}$ with Y/2 = 1.

$$\bullet \ \tilde{\chi} = \frac{1}{\sqrt{2}} \vec{\tau} \cdot \vec{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \chi^+ & \chi^{++} \\ \chi^0 & -\frac{1}{\sqrt{2}} \chi^+ \end{pmatrix}$$

- How to obtain $M_R \nu_R^T \sigma_2 \nu_R$: From (lepton-number violating) $I_R^{M,T} \sigma_2 I_R^M$ coupled to a triplet Higgs, $\tilde{\chi}$ with Y/2 = 1.
- $\bullet \ \tilde{\chi} = \frac{1}{\sqrt{2}} \vec{\tau} \cdot \vec{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \chi^+ & \chi^{++} \\ \chi^0 & -\frac{1}{\sqrt{2}} \chi^+ \end{pmatrix}$
- Look at the Yukawa term: $g_M \nu_R^T \sigma_2 \nu_R \chi^0$. $\langle \chi^0 \rangle = v_M \Rightarrow M_R = g_M v_M$.

- How to obtain $M_R \nu_R^T \sigma_2 \nu_R$: From (lepton-number violating) $I_R^{M,T} \sigma_2 I_R^M$ coupled to a triplet Higgs, $\tilde{\chi}$ with Y/2 = 1.
- $\bullet \ \tilde{\chi} = \frac{1}{\sqrt{2}} \vec{\tau} \cdot \vec{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \chi^+ & \chi^{++} \\ \chi^0 & -\frac{1}{\sqrt{2}} \chi^+ \end{pmatrix}$
- Look at the Yukawa term: $g_M \nu_R^T \sigma_2 \nu_R \chi^0$. $\langle \chi^0 \rangle = \nu_M \Rightarrow M_R = g_M \nu_M$.
- Z width constraint (3 light neutrinos) $\Rightarrow M_R > M_Z/2 \sim 46 \ GeV$.

- How to obtain $M_R \nu_R^T \sigma_2 \nu_R$: From (lepton-number violating) $I_R^{M,T} \sigma_2 I_R^M$ coupled to a triplet Higgs, $\tilde{\chi}$ with Y/2 = 1.
- $\bullet \ \tilde{\chi} = \frac{1}{\sqrt{2}} \vec{\tau} \cdot \vec{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \chi^+ & \chi^{++} \\ \chi^0 & -\frac{1}{\sqrt{2}} \chi^+ \end{pmatrix}$
- Look at the Yukawa term: $g_M \nu_R^T \sigma_2 \nu_R \chi^0$. $\langle \chi^0 \rangle = \nu_M \Rightarrow M_R = g_M \nu_M$.
- Z width constraint (3 light neutrinos) $\Rightarrow M_R > M_Z/2 \sim 46 \text{ GeV}$.
- $v_M \sim O(\Lambda_{EW}) \Rightarrow$ A "large" triplet VEV would spoil $\rho=1$ at tree level!

- How to obtain $M_R \nu_R^T \sigma_2 \nu_R$: From (lepton-number violating) $I_R^{M,T} \sigma_2 I_R^M$ coupled to a triplet Higgs, $\tilde{\chi}$ with Y/2 = 1.
- $\bullet \ \tilde{\chi} = \frac{1}{\sqrt{2}} \vec{\tau} \cdot \vec{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \chi^+ & \chi^{++} \\ \chi^0 & -\frac{1}{\sqrt{2}} \chi^+ \end{pmatrix}$
- Look at the Yukawa term: $g_M \nu_R^T \sigma_2 \nu_R \chi^0$. $\langle \chi^0 \rangle = v_M \Rightarrow M_R = g_M v_M$.
- Z width constraint (3 light neutrinos) $\Rightarrow M_R > M_Z/2 \sim 46 \text{ GeV}$.
- $v_M \sim O(\Lambda_{EW}) \Rightarrow$ A "large" triplet VEV would spoil $\rho=1$ at tree level!
- Need to restore the Custodial Symmetry! Another triplet Higgs scalar $\xi = (3, Y/2 = 0)$ such that

$$\chi = \begin{pmatrix} \chi^0 & \xi^+ & \chi^{++} \\ \chi^- & \xi^0 & \chi^+ \\ \chi^{--} & \xi^- & \chi^{0*} \end{pmatrix}$$

• The potential has a global $SU(2)_L \times SU(2)_R$ symmetry and χ transforms as (3,3). (Chanowitz, Golden; Georgi, Machazek)

- The potential has a global $SU(2)_L \times SU(2)_R$ symmetry and χ transforms as (3,3). (Chanowitz, Golden; Georgi, Machazek)
- Vacuum alignment dictates $\langle \chi \rangle = \left(\begin{array}{ccc} v_M & 0 & 0 \\ 0 & v_M & 0 \\ 0 & 0 & v_M \end{array} \right)$ and

$$\langle \Phi \rangle = \begin{pmatrix} v_2/\sqrt{2} & 0 \\ 0 & v_2/\sqrt{2} \end{pmatrix} \Rightarrow SU(2)_L \times SU(2)_R \rightarrow SU(2)_D$$
 (custodial).

- The potential has a global $SU(2)_L \times SU(2)_R$ symmetry and χ transforms as (3,3). (Chanowitz, Golden; Georgi, Machazek)
- Vacuum alignment dictates $\langle \chi \rangle = \left(\begin{array}{ccc} v_M & 0 & 0 \\ 0 & v_M & 0 \\ 0 & 0 & v_M \end{array} \right)$ and

$$\langle \Phi \rangle = \begin{pmatrix} v_2/\sqrt{2} & 0 \\ 0 & v_2/\sqrt{2} \end{pmatrix} \Rightarrow SU(2)_L \times SU(2)_R \rightarrow SU(2)_D$$
 (custodial).

• $M_Z = M_W/\cos\theta_W$, with $v = \sqrt{v_2^2 + 8 v_M^2} \approx 246 \ GeV$

- The potential has a global $SU(2)_L \times SU(2)_R$ symmetry and χ transforms as (3,3). (Chanowitz, Golden; Georgi, Machazek)
- Vacuum alignment dictates $\langle \chi \rangle = \left(\begin{array}{ccc} v_M & 0 & 0 \\ 0 & v_M & 0 \\ 0 & 0 & v_M \end{array} \right)$ and

$$\langle \Phi \rangle = \begin{pmatrix} v_2/\sqrt{2} & 0 \\ 0 & v_2/\sqrt{2} \end{pmatrix} \Rightarrow SU(2)_L \times SU(2)_R \rightarrow SU(2)_D$$
 (custodial).

- $M_Z = M_W/\cos\theta_W$, with $v = \sqrt{v_2^2 + 8 v_M^2} \approx 246 \text{ GeV}$
- Lots of Higgses! Questions which are BSM ⇒ More scalars!

- The potential has a global $SU(2)_L \times SU(2)_R$ symmetry and χ transforms as (3,3). (Chanowitz, Golden; Georgi, Machazek)
- Vacuum alignment dictates $\langle \chi \rangle = \left(\begin{array}{ccc} v_M & 0 & 0 \\ 0 & v_M & 0 \\ 0 & 0 & v_M \end{array} \right)$ and

$$\langle \Phi \rangle = \begin{pmatrix} v_2/\sqrt{2} & 0 \\ 0 & v_2/\sqrt{2} \end{pmatrix} \Rightarrow SU(2)_L \times SU(2)_R \rightarrow SU(2)_D$$
 (custodial).

- $M_Z = M_W/\cos\theta_W$, with $v = \sqrt{v_2^2 + 8 v_M^2} \approx 246 \text{ GeV}$
- Lots of Higgses! Questions which are BSM ⇒ More scalars!
- What about the Dirac mass m_D ? It will come from a product of 2 doublets i.e. $m_D(\nu_l^{\dagger}\nu_R + h.c.)$. What Higgs?

• Simplest choice: A singlet scalar ϕ_S with $\mathcal{L}_S = g_{Sl} \bar{l}_L \phi_S l_R^M + H.c.$ $\Rightarrow m_D = g_{Sl} v_S$

- Simplest choice: A singlet scalar ϕ_S with $\mathcal{L}_S = g_{Sl} \, \bar{l}_L \, \phi_S \, l_R^M + H.c.$ $\Rightarrow m_D = g_{Sl} \, v_S$
- ullet If $g_{SI}\sim O(1)$, this implies that $v_S\sim O(10^5~eV)$

- Simplest choice: A singlet scalar ϕ_S with $\mathcal{L}_S = g_{Sl} \, \bar{l}_L \, \phi_S \, l_R^M + H.c.$ $\Rightarrow m_D = g_{Sl} \, v_S$
- If $g_{SI} \sim O(1)$, this implies that $v_S \sim O(10^5 \, eV)$
- The very light ($\sim 100 keV$ or so) singlet scalar could have interesting cosmological implications.

- Simplest choice: A singlet scalar ϕ_S with $\mathcal{L}_S = g_{Sl} \bar{l}_L \phi_S l_R^M + H.c.$ $\Rightarrow m_D = g_{Sl} v_S$
- If $g_{SI} \sim O(1)$, this implies that $v_S \sim O(10^5 \ eV)$
- The very light (~ 100keV or so) singlet scalar could have interesting cosmological implications.
- Before mentioning the phenomenology of the model, the model has
 to satisfy the electroweak precision data because extra chiral
 doublets can do damage to the S parameter for example! This is
 where the Higgs sector of the model comes in.

- Simplest choice: A singlet scalar ϕ_S with $\mathcal{L}_S = g_{Sl} \bar{l}_L \phi_S l_R^M + H.c.$ $\Rightarrow m_D = g_{Sl} v_S$
- If $g_{SI} \sim O(1)$, this implies that $v_S \sim O(10^5 \, eV)$
- The very light (~ 100keV or so) singlet scalar could have interesting cosmological implications.
- Before mentioning the phenomenology of the model, the model has
 to satisfy the electroweak precision data because extra chiral
 doublets can do damage to the S parameter for example! This is
 where the Higgs sector of the model comes in.
- Note: The magnitude of the magnetic moment for the electron or muon is $\mu=(1+a)\frac{q}{2m}$ where $a=\frac{g-2}{2}$. $a^{(4)}\sim\frac{1}{45}(\frac{m}{m_{heavy}})^2(\frac{\alpha}{\pi})^2$. For $m_{heavy}\sim 200$ GeV, $a_e^{(4)}\sim 10^{-18}$ and $a_\mu^{(4)}\sim 10^{-14}$.

ullet The EW-scale u_R model contains one Higgs doublet, two Higgs triplet and one Higgs singlet.

- The EW-scale ν_R model contains one Higgs doublet, two Higgs triplet and one Higgs singlet.
- With respect to SU(2), the two triplets and one doublet sum up to 13 degrees of freedom, 3 of which are Nambu-Goldstone bosons absorbed by W's and Z \Rightarrow 10 physical degrees of freedom. Which are they?

- The EW-scale ν_R model contains one Higgs doublet, two Higgs triplet and one Higgs singlet.
- With respect to SU(2), the two triplets and one doublet sum up to 13 degrees of freedom, 3 of which are Nambu-Goldstone bosons absorbed by W's and Z \Rightarrow 10 physical degrees of freedom. Which are they?
- Under the custodial symmetry group $SU(2)_D$, these 10 physical degrees of freedom decompose as

five-plet (quintet)
$$\rightarrow$$
 $H_5^{\pm\pm},~H_5^{\pm},~H_5^{0};$ triplet \rightarrow $H_3^{\pm},~H_3^{0};$ two singlets \rightarrow $H_1^{0},~H_1^{0\prime}$

• These scalars are expressed in terms of the original fields as

$$\begin{split} H_5^{++} &= \chi^{++}, \ H_5^+ = \zeta^+, \ H_3^+ = c_H \psi^+ - s_H \phi^+, \\ H_5^0 &= \frac{1}{\sqrt{6}} \Big(2\xi^0 - \sqrt{2}\chi^{0r} \Big), \ H_3^0 = \imath \Big(c_H \chi^{0\imath} + s_H \phi^{0\imath} \Big), \\ H_1^0 &= \phi^{0r}, \ H_1^{0\prime} = \frac{1}{\sqrt{3}} \Big(\sqrt{2}\chi^{0r} + \xi^0 \Big) \end{split}$$

• These scalars are expressed in terms of the original fields as

$$\begin{split} H_5^{++} &= \chi^{++}, \ H_5^{+} = \zeta^{+}, \ H_3^{+} = c_H \psi^{+} - s_H \phi^{+}, \\ H_5^{0} &= \frac{1}{\sqrt{6}} \Big(2\xi^{0} - \sqrt{2}\chi^{0r} \Big), \ H_3^{0} = i \Big(c_H \chi^{0i} + s_H \phi^{0i} \Big), \\ H_1^{0} &= \phi^{0r}, \ H_1^{0r} = \frac{1}{\sqrt{3}} \Big(\sqrt{2}\chi^{0r} + \xi^{0} \Big) \end{split}$$

$$\bullet \ s_H = \frac{2\sqrt{2} \ v_M}{v}, \qquad c_H = \frac{v_2}{v}$$

• The phenomenology of this sector has been studied by Aranda, Hernandez-Sanchez, PQH and will be updated.

- The phenomenology of this sector has been studied by Aranda, Hernandez-Sanchez, PQH and will be updated.
- These scalars make important contributions to the electroweak precision parameters which offset those of the mirror fermions!