

The FIFE Project: Computing for Experiments

Ken Herner for the FIFE Project DPF 2017 3 August 2017

Introduction to FIFE

• The Fabric for Frontier Experiments aims to:

-Lead the development of the computing model for non-LHC experiments

-Provide a robust, common, modular set of tools for experiments, including

•Job submission, monitoring, and management software

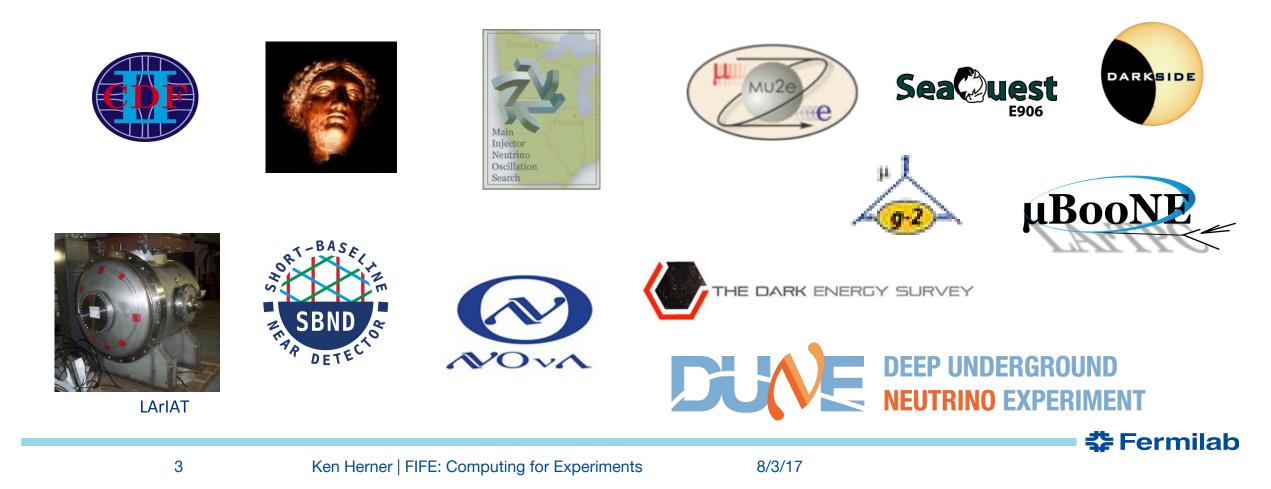
•Data management and transfer tools

•Database and conditions monitoring

2

•Collaboration tools such as electronic logbooks, shift schedulers

–Work closely with experiment contacts during all phases of development and testing; standing meetings w/developers

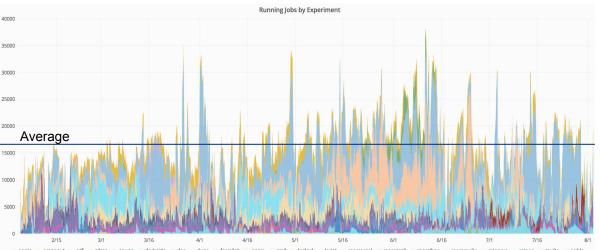

<u>https://web.fnal.gov/project/FIFE/SitePages/Home.aspx</u>

A Wide Variety of Stakeholders

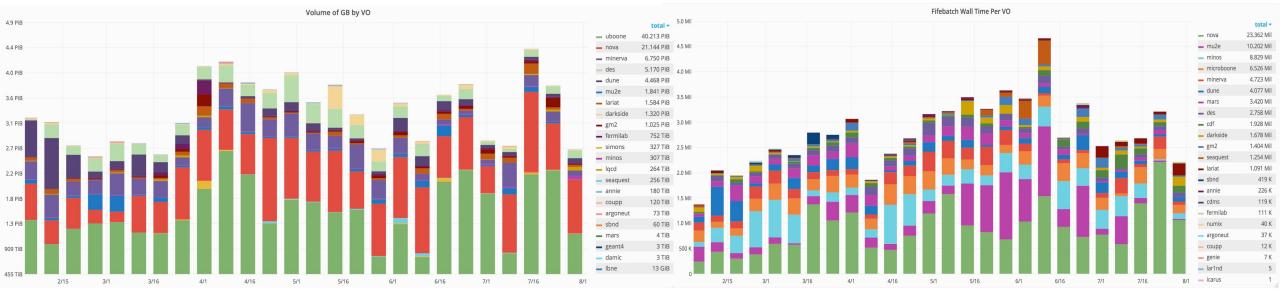
- At least one experiment in energy, intensity, and cosmic frontiers, studying all physics drivers from the P5 report, uses some or all of the FIFE tools
- Experiments range from those built in 1980s to fresh proposals

Common problems, common solutions

- FIFE experiments on average are 1-2 orders of magnitude smaller than LHC experiments; often lack sufficient expertise or time to tackle all problems, e.g. software frameworks or job submission tools
 - Also much more common to be on multiple experiments in the neutrino world
- By bringing experiments under a common umbrella, can leverage each other's expertise and lessons learned
 - Greatly simplifies life for those on multiple experiments
- Common modular software framework is also available (ART, based on CMSSW) for most experiments
- Example of a common problem: large auxiliary files needed by many jobs
 - Provide storage solution with a combination of dCache+CVMFS


Common, modular services available from FIFE

- Submission to distributed computing: JobSub
 - GlideinWMS frontend
- Workflow monitors, alarms, and automated job submission
- Data handling and distribution
 - Sequential Access Via Metadata (SAM)
 - dCache/Enstore (data caching and transfer/long-term tape storage)
 - Fermilab File Transfer Service
 - Intensity Frontier Data Handling Client (data transfer)
- Software stack distribution via CVMFS
- User authentication, proxy generation, and security
- Electronic logbooks, databases, and beam information
- Integration with new technologies and projects, e.g. GPUs and HEPCloud


🌫 Fermilah

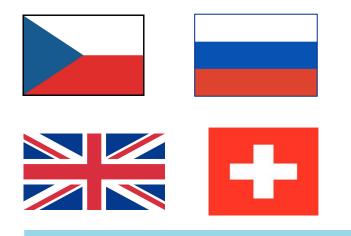
FIFE Experiment Data and Job volumes

- Nearly 7.4 PB new data catalogued over past 6 months across all expts
- Average throughput of 3.3 PB/wk through FNAL dCache
- Typically 16K concurrent running jobs; peak over 36K
- Combined numbers approaching scale of LHC (factor of 6-7 wrt ATLAS+CMS)

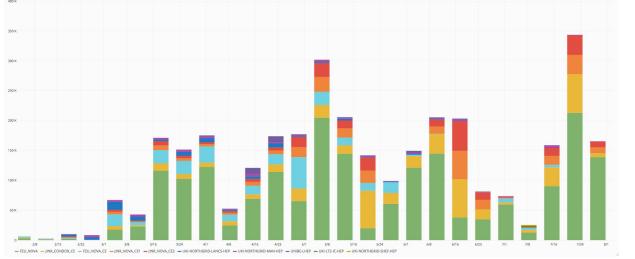
- annie - argoneut - cdf - cdms - coupp - darkside - des - dune - fermilab - genie - gm2 - lar1nd - lariat - marsaccel - marsgm2 - marsibne - marsmu2e - minerva - minos - mu2e - noble - noble - nova - numix - sbnd - seaquest - uboone

Fifebatch (Liser Joh

FNAL dCache throughput by experiment, last 6 months


Total wall time by experiment, last 6 months

‡ Fermilab

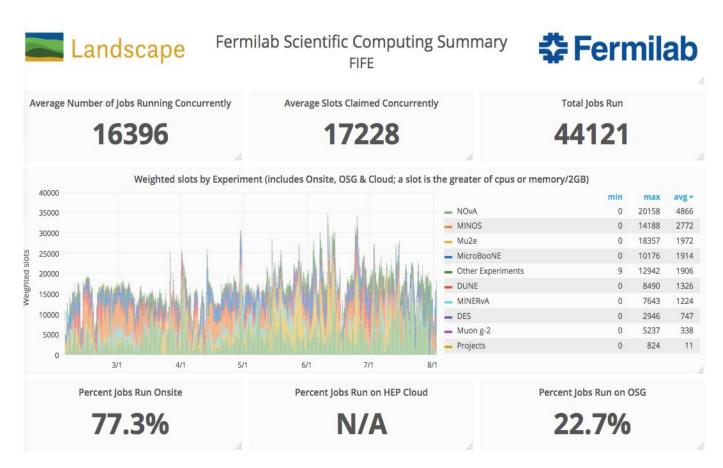

Running jobs by experiment, last 6 months

Going global with user jobs

- International collaborators can often bring additional computing resources to bear; users want to be able to seamlessly run at all sites with unified submission command
 - First International location was for NOvA at FZU in Prague. Now have expanded to JINR for NOvA;
 Manchester, Lancaster, and Bern for Microboone; Imperial College, FZU, Sheffield, CERN Tier 0 for DUNE/protoDUNE
- Following OSG prescription (OSG is NOT disappearing) makes it easy to have sites around the globe communicate with a common interface, with a variety of job management systems underneath
- Integration times as short as 1-2 weeks; all accessible via standard submission tools. Record set-up time is just 2 hours!

7

FIFE jobs at non-US sites, past 6 months


FZU/FZU JINR/JINR/JINR Lancaster Manchester Bern-LHEP Imperial Sheffield

口 Fermilab

FIFE Monitoring of resource utilization

- Extremely important to understand performance of system
- Critical for responding to downtimes and identifying inefficiencies
- Focused on improving the real time monitoring of distributed jobs, services, and user experience
- Enter <u>FIFEMON</u>: project built on open source tools (ELK stack, Graphite; Grafana for visualization)

 Access to historical information using same toolset

Code in <u>https://fifemon.github.io</u>

Full workflow management

- Now combining job submission, data management, databases, and monitoring tools into complete workflow management system
 - Production Operations Management Service (POMS)
- Can specify user-designed "campaigns" via GUI describing job dependencies, automatic resubmission of failed jobs, complete monitoring and progress tracking in DR Home / Campaigns
 - Visible in standard job monitoring tools
- Usable for production-level ٠ running and user analysis
- **REST API for data I/O** ٠
- Command line tools for needed ٠ operations
- Supports POMS launching jobs, ٠ or experimenters launching jobs and using POMS only for tracking

Campaigns 🕜 Ê

Active Campaigns

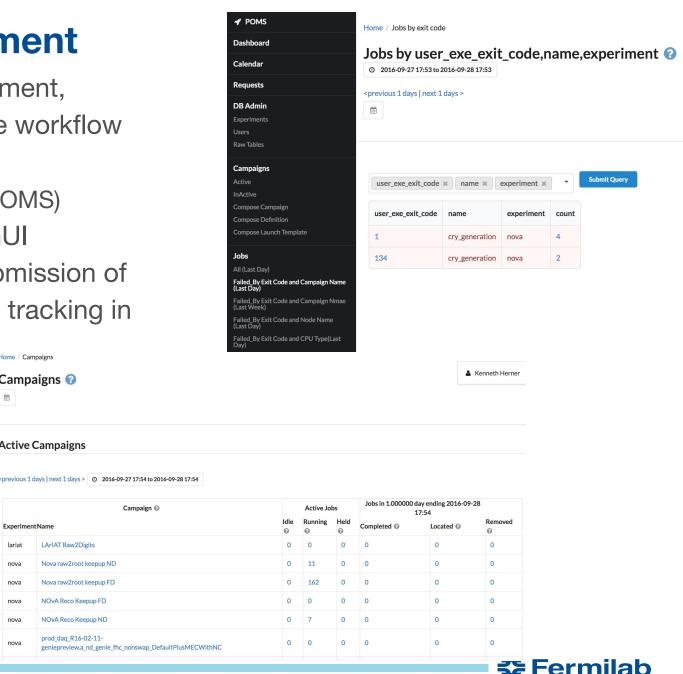
ExperimentName

lariat

nova

nova

LArIAT Raw2Digits


Nova raw2root keepup NE

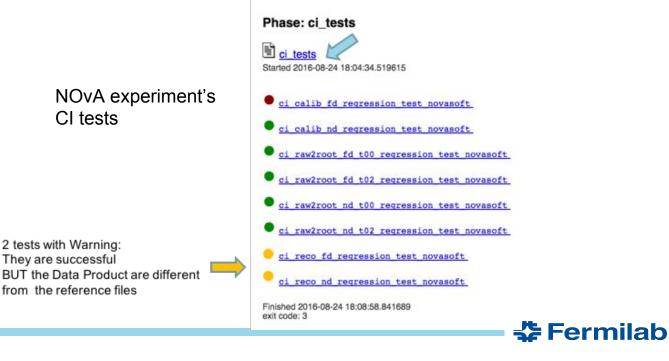
Nova raw2root keepup FD

NOvA Reco Keepup FD

NOvA Reco Keepup ND

prod_daq_R16-02-11-

Ken Herner | FIFE: Computing for Experiments


8/3/17

Improving Productivity with Continuous Integration

- Have built up a Jenkins-based Continuous Integration system designed for both common software infrastructure (e.g. Art) and experiment-specific software, full web UI
- In addition to software builds, can also perform physics validation tests of new code (run specific datasets as grid jobs and compare to reference plots)
- Supporting SL6/7, working on OSX and Ubuntu support, experiments free to choose any combination of platforms
- Targeted email notifications for failures

Multiplatform continuous	integration	for Art
--------------------------	-------------	---------

	Build	Start Time	Platform	Build Type	checkout	pullProducts	build	unit_test	Install	Progress Legens
elect builds:		2016-08-24 18:20:30.084410	Darwin 14.5.0	d14-s35:e10:nu:debug	1	0	0	0	0	Running
rom build: (huikherte 🛛	05 11				1					Pending
f of builds: number	art_cl/195	2016-08-24 18:19:53.538640	Darwin 14.5.0	d14-s35:e10:nu:prof	-		0	0	0	Failed
	(Art)	2016-08-24 18:19:04.143585	Linux 2.6.32-573.26.1.el6.x86_64	slf6-s35:e10:nu:prof	1	1	0	0	0	Skipped
Select platforms:		2016-08-24 18:19:04.601685	Linux 2.6.32-573.26.1.el6.x86_64	slf6-s35:e10:nu:debug	1	~	0	0	0	
Darwin 13.4.0 Darwin 14.5.0		2016-08-24 18:09:00.921544	Linux 2.6.32-573.26.1.el6.x86_64	sl%5-s35:e10:debug	~	~	~	~	~	
Unux 2.5.32-573.25.1.el6.x85_64 Unux 3.10.0-327.18.2.el7.x85_64		2016-08-24 18:08:49.644149	Linux 2.6.32-573.26.1.el6.x86_64	sif6-s35:e10:prof	~	~	~	~	~	
elect build types:	art_ci/194	2016-08-24 18:08:59.198921	121 Darwin 14.5.0 d14-s35:e10:prof 🗸 🏑 🌖 🔞 🎯							
d13-s35.x10.debug	(Art)	2016-08-24 18:08:59.098807	Darwin 14.5.0	d14-s35:e10:debug	1	~	0	0	0	
 d13-s35:e10.muldebug d13-s35:e10.mu.prof 		2016-08-24 18:08:45.978269	8:45.978269 Linux 3.10.0-327.18.2.el7.x86_64 slf7-s35:e10:prof 🗸 🏑 🌖	0						
) d13-s35/e10.prol] d14-s35/e10.debug	s35.x10.prof	2016-08-24 18:08:45.881568	Linux 3.10.0-327.18.2.el7.x86_64	sif7-s35:e10:debug	~	~	1	1		

Access to High Performance Computing

- Clear push from DOE to use more HPC resources (supercomputers)
- Somewhat of a different paradigm, but current workflows can be adapted
- Resources typically require an allocation to access them
- FIFE can help experiment link allocations to existing job submission tools
 - Looks like just another site to the job, but shields user from complexity of gaining access
 - Successfully integrated with NOvA at Ohio Supercomputing Center, MINOS+ at Texas Advanced Computing Center
 - Mu2e experiment now testing at NERSC (via HEPCloud)



🌫 Fermilab

Photo by Roy Kaltschmidt, LBNL

Access to GPU Resources

- Lots of (justified) excitement about GPUs; heard quite a bit already this week
- Currently no standardized way to access resources
- FIFE now developing such a standard interface within the existing job submission system
 - Uses a GPU discovery tool from OSG to characterize the system (GPU type, CUDA/OpenCL version, driver info, etc.)
 - Advertises GPU capabilities in a standard way across sites; users can simply add required capabilities to their job requirements (I need GPU Type X, I need CUDA > 1.23, etc.) System will match jobs and slots accordingly.
 - Working at two OSG sites: Nebraska Omaha and Syracuse
- Rolling out to experiments over the next several weeks
- Starting discussions with non-FIFE experiments (LHC) about trying to speak a common language as much as possible in this new area

FIFE Plans for the future

- Containers (Docker, Singularity, etc.) becoming more important in increasingly heterogeneous environments (including GPU machines). Help shepherd users through this process and create some common containers for them
- Help define the overall computing model of the future (see HEPCloud talk), guide experiments
 - Seamlessly integrate dedicated, opportunistic, HPC, and commercial computing resources
 - Usher in easy access to GPU resources for those experiments interested
- Lower barriers to accessing computing elements around the world in multiple architectures
 - Help to connect experimenters and computing professionals to drive experiment SW to increased multithreading and smaller memory per core footprints
 - Federated identity management (reduced access barriers for international partners)
- Augment data management tools (SAM) to also allow a "jobs to the data" model
- Scale up and improve UI to existing services

13

🔁 Fermilab

Summary

14

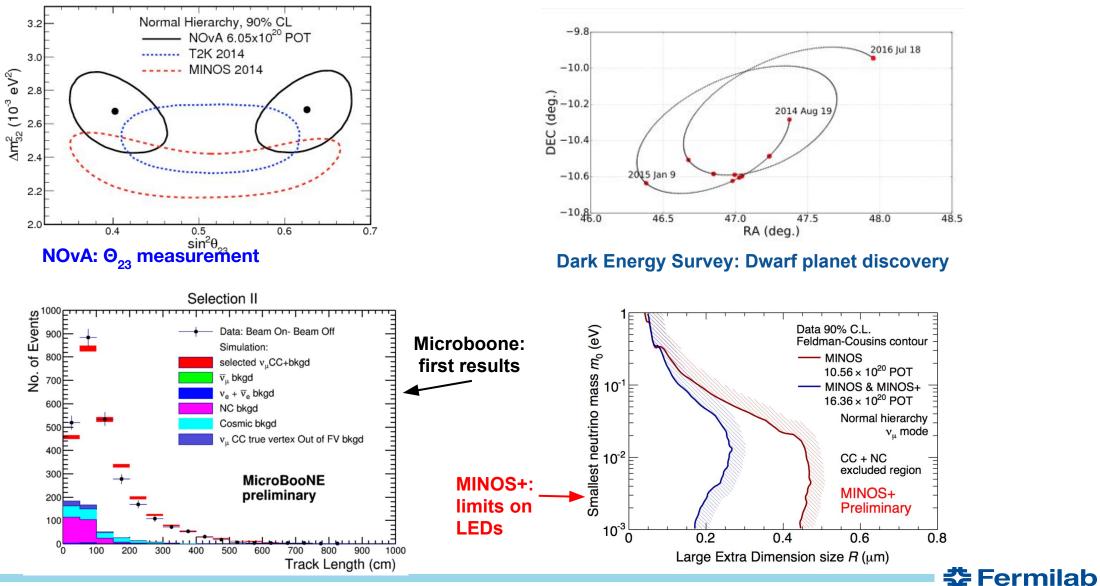
- FIFE providing access to world class computing to help accomplish worldclass science
 - FIFE Project aims to provide common, modular tools useful for the full range of HEP computing tasks
 - Stakeholders in all areas of HEP; wide range of maturity in experiments
 - Experiments, datasets, and tools are not limited to Fermilab
- Overall scale now approaching LHC experiments; plan to heavily leverage opportunistic resources
- Now providing full Workflow Manager, functionality not limited to Fermilab resources
- Work hand-in-hand with experiments and service providers to move into new computing models via HEPCloud

FABRIC FOR FRONTIER EXPERIMENTS

🔁 Fermilab

http://fife.fnal.gov/

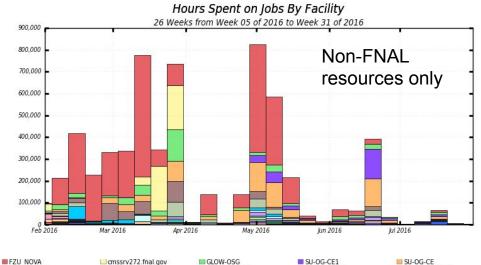
Backup

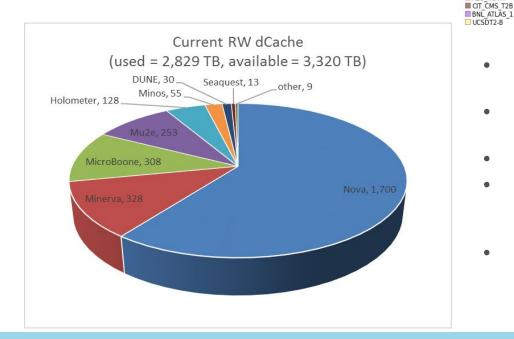


Additional Reading and Documentation

https://fermipoint.fnal.gov/project/FIFE/SitePages/Home.aspx https://cdcvs.fnal.gov/redmine/projects/fife/wiki/Wiki https://cdcvs.fnal.gov/redmine/projects/fife/wiki/Advanced_Computing https://cdcvs.fnal.gov/redmine/projects/jobsub/wiki#Client-User-Guide https://cdcvs.fnal.gov/redmine/projects/ifdhc/wiki https://cdcvs.fnal.gov/redmine/projects/ifdhc/wiki https://cdcvs.fnal.gov/redmine/projects/sam-main https://fifemon.github.io/ https://cdcvs.fnal.gov/redmine/projects/prod_mgmt_db https://pomsgpvm01.fnal.gov/poms/

Selected results enabled by the FIFE Tools




DISCOVERY OF A LARGE SCATTERED DISK OBJECT AT 92 AU

Ken Herner | FIFE: Computing for Experiments

NOvA – full integration of FIFE Services

- File Transfer Service stored over 6.5 PB of NOvA data in dCache and Enstore
- SAM Catalog contains more than 41 million files
- Helped develop SAM4Users
 as lightweight catalog

18

Maximum: 825,452 , Minimum: 2,031 , Average: 226,518 , Current: 2,031

BNL ATLAS 2

red-gateway?

Nebraska

MWT2_CE_UIUC

MWT2 NWICG_NDCMS

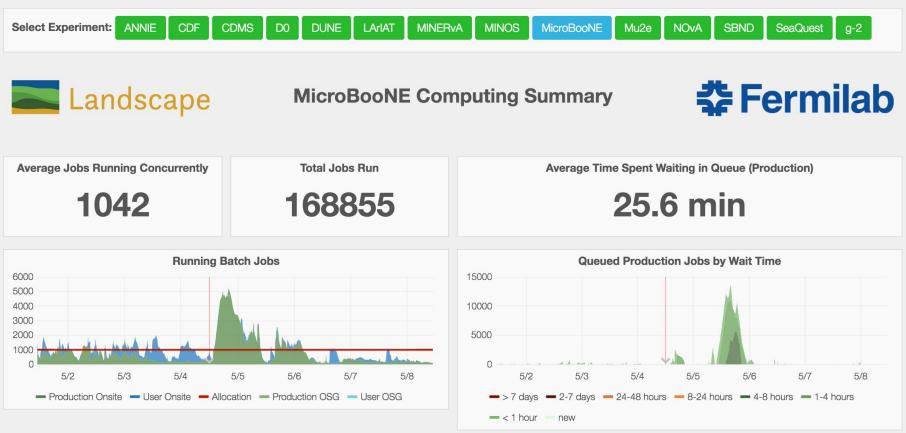
Nebraska-HCC

UCSDT2-C

Clemson-Palmetto

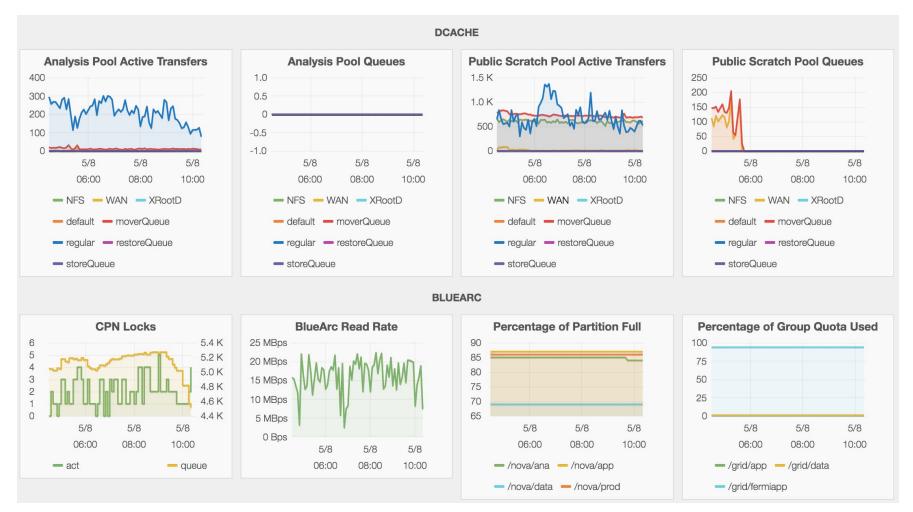
- Jan 2016 NOvA published first papers on oscillation measurements
- avg 12K CPU hours/day on remote resources
- > 500 CPU cores opportunistic

CIT CMS T2

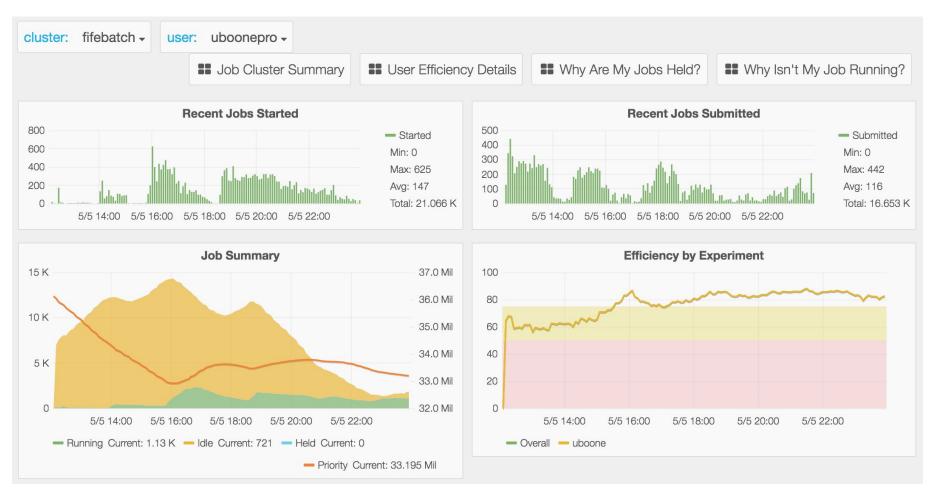

red-gateway2

Other

- FIFE group enabled access to remote resources and helped configure software stack to operate on remote sites
- Identified inefficient workflows and helped analyzers optimize


Overview of Experiment Computing Operations

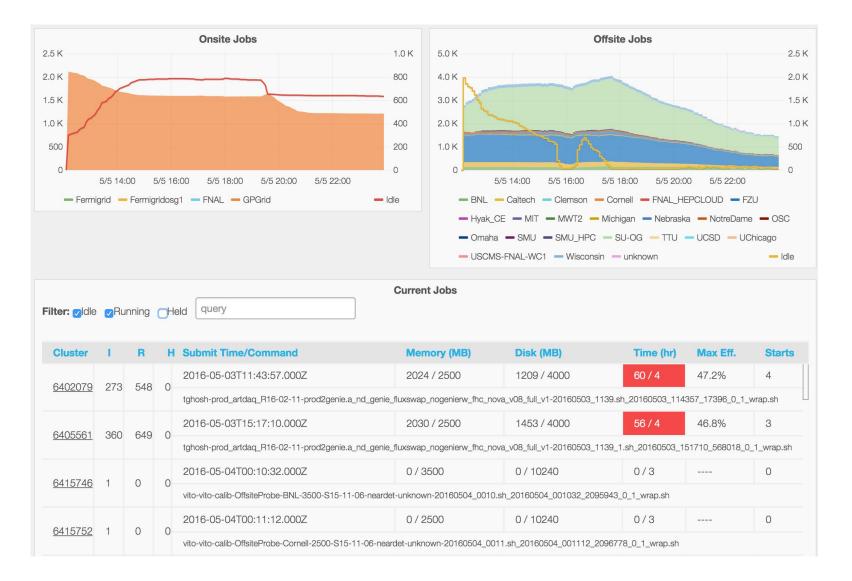
quickly understand the usage pattern for the last week of each experiment and collectively get a picture of distributed computing operations for the FIFE experiments


Detailed profiling of experiment operations

Monitor usage of slow moving resources so that projections can be made for projecting future need and limitations

🚰 Fermilab

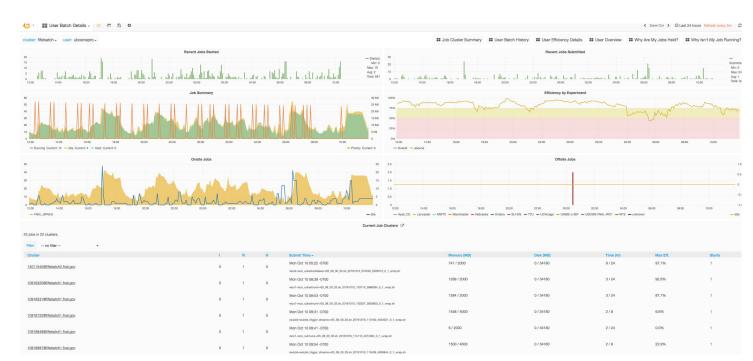
Monitoring of jobs and experimental dashboards



Monitoring for individual users to track their distributed computing workflows and understand their resource allocation and needs

Ken Herner | FIFE: Computing for Experiments

🛟 Fermilab


Monitoring of jobs and experiment dashboards

Monitoring at user level

Users have access to their own page, including special page with details of held jobs

General Tips

What is the hold reason?

You can see this on your User Batch Details page, in the table below (select your username from the dropdown above), or by running:

jobsub_q --hold --user=<your username>

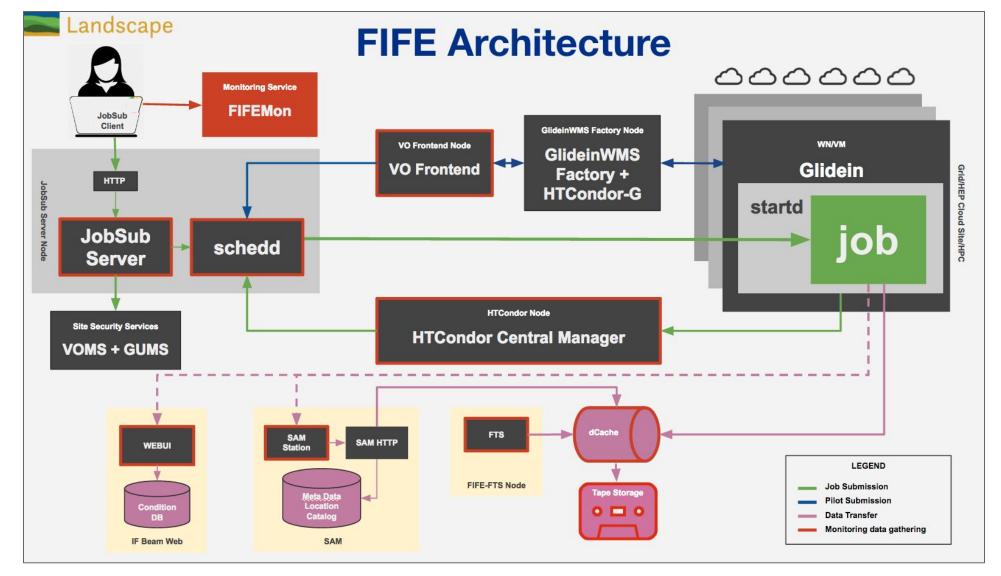
SYSTEM_PERIODIC_HOLD

This means your job exceeded requested resources.

		HEL	D JOBS	
		Hel	d Jobs	
jobid	hold_date -	HoldReasonCode	HoldReasonSubcode	HoldReason
1397.0@fife-jobsub-dev01.fnal.gov	2016-10-06 10:00:43	26	8	SYSTEM_PERIODIC_HOLD Run Time/limit 3607/3600
1394.0@fife-jobsub-dev01.fnal.gov	2016-10-06 10:00:43	26	8	SYSTEM_PERIODIC_HOLD Run Time/limit 3608/3600
1396.0@fife-jobsub-dev01.fnal.gov	2016-10-06 10:00:42	26	8	SYSTEM_PERIODIC_HOLD Run Time/limit 3606/3600
1395.0@fife-jobsub-dev01.fnal.gov	2016-10-06 10:00:42	26	8	SYSTEM_PERIODIC_HOLD Run Time/limit 3606/3600
1392.0@fife-jobsub-dev01.fnal.gov	2016-10-06 10:00:42	26	8	SYSTEM_PERIODIC_HOLD Run Time/limit 3607/3600

Automated Alerts with FIFEMON

Automated notifications for things like idle slot counts, disk utilization can go to email, Slack, websites, to both sysadmins and experimenters

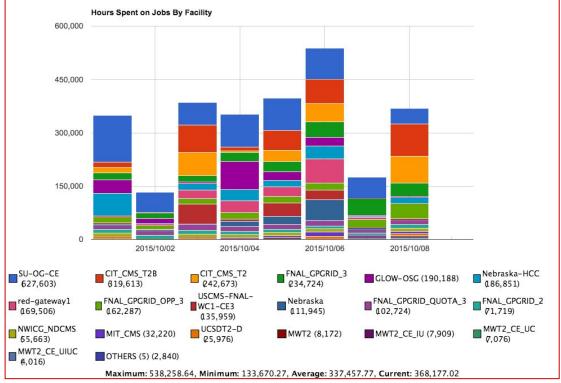


Processing Data with SAM Projects and jobs

When processing data with SAM, one:

- Defines a dataset containing the files you want to process
- Start a SAM "Project" to hand them out
- Start one or more jobs which register as "Consumers" of the Project, including their location.
- Consumer Jobs then request files from the project, process them, and request another file, etc.
- Projects can prestage data while handing out data already on disk, and refer consumers to the "nearest" replica.
- Generally output is copied to an FFTS dropbox for production work, or to a user's personal disk area.
- Thus the data is sent to the job, not the other way around
- However projects have limits; only so much at one submission.

Provide a modular architecture: experiments do not need to take all services. Can insert experiment-specific services as well (e.g. dedicated local SEs or local lab/university clusters)


26

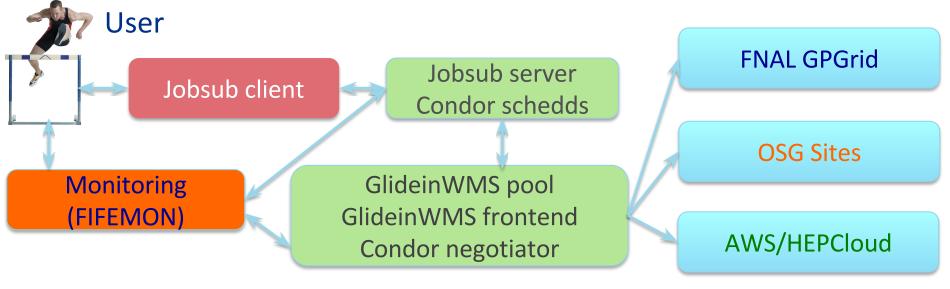
🚰 Fermilab

Mu2e Beam Simulations Campaign

- Almost no input files
- Heavy CPU usage
- <100 MB output per job
- Ran > 20M CPU-hours in under 5 months
- Avg 8000 simultaneous jobs across > 15 remote sites

27

- Usage as high as 20,000 simultaneous jobs and 500,000 CPU hours in one day – peaked usage 1st wk Oct 2015
- Achieved stretch goal for processing 24 times live-time data for 3 most important backgrounds
- Total cost to Mu2e for these resources: \$0


🗲 Fermilab

Job Submission and management architecture

- Common infrastructure is the fifebatch system: one GlideInWMS pool, 2 schedds, frontend, collectors, etc.
- Users interface with system via "jobsub": middleware that provides a common tool across all experiments; shields user from intricacies of Condor
 - Simple matter of a command-line option to steer jobs to different sites
- Common monitoring provided by FIFEMON tools

28

- Now also helps users to understand why jobs aren't running
- Automatic enforcement of memory, disk, and run time requests (jobs held if they exceed their request)

🔁 Fermilab

Simplifying I/O with IFDH

- File I/O is a complex problem (Best place to read? What protocol? Best place to send output?)
- Intensity Frontier Data Handling client developed as common wrapper around standard data movement tools; shield user from site-specific requirements and choosing transfer protocols
- Nearly a drop-in replacement for cp, rm, etc., but also extensive features to interface with SAM (can fetch files directly from SAM project, etc.)
- Supports a wide variety of protocols (including xrootd); automatically chooses best protocol depending on host machine, source location, and destination (can override if desired)
 - Backend behavior can be changed or new protocols added in completely transparent ways

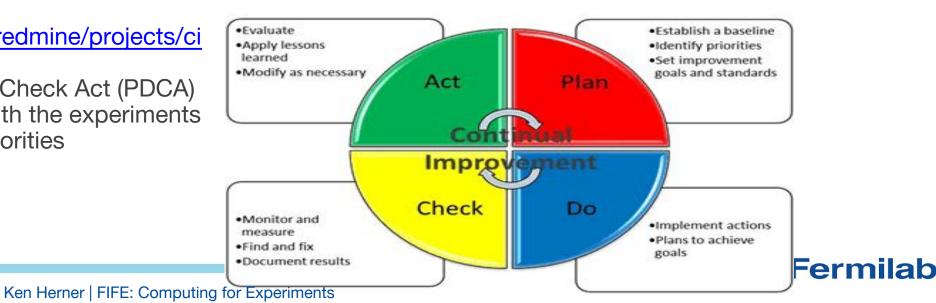
Data management: SAM and FTS

SAM originally developed for CDF and D0; many FNAL experiments now using it

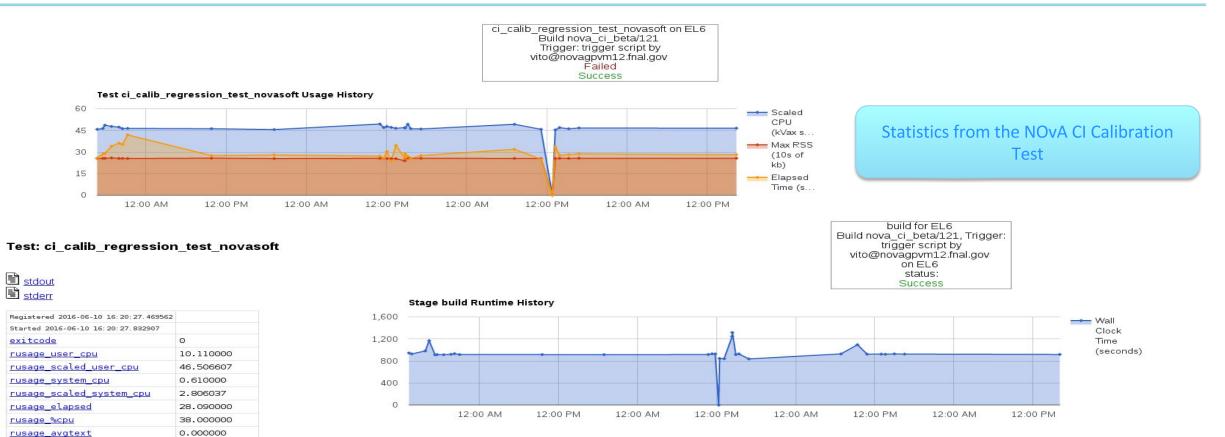
• A File metadata/provenance catalog

- A File replica catalog (data need not be at Fermilab)
- Allows metadata query-based "dataset" creation
- An optimized file delivery system (command-line, C++, Python APIs available)
- Originally a Oracle backend; now PostrgreSQL
- Communication via CORBA for CDF/D0; now via http for everyone
 - Eliminates need to worry about opening ports for communication with server in nearly all cases

Data management: SAM and FTS (2)


Fermilab File Transfer Service

- Watches one or more dropboxes for new files
- Can extract metadata from files and declare to SAM, or handle files already declared
- Copies files to one or more destinations based on file metadata and/or dropbox used, register locations w/SAM
- Can automatically clean dropboxes, usually N days after files are on tape
- Does not have to run at Fermilab, nor do source or destination have to be at Fermilab



CI Existing Plans

- Fermilab has already applied the Continuous Integration practice to the LArSoft-based experiments. Experiments on-boarded in Lar CI are: MicroBooNE, DUNE, LArIAT and ArgoNeuT.
- Because of the given justification, the CI project **plan** is to apply the Continuous Integration development practice to all IF experiments at Fermilab:
 - Extend Lar-CI practice to other no-LArSoft based experiments
 - Add additional features to the existing LAr-CI
 - Improve performance like: speed the response time of the DB/ schema changes (it requires some code and dataflow analysis to optimize the queries, it may need some DB model changes ... suspect scalability issue), create dynamic plots
 - Provide documentation to "facilitate" the use of the CI practice among the experiments.
- See CI redmine: <u>https://cdcvs.fnal.gov/redmine/projects/ci</u>
- Apply the The Plan Do Check Act (PDCA) cycle: work together with the experiments to define needs and priorities and receive feedback.

Monitoring in the CI system - NOvA

Phase: build

0.000000

262256.000000

65368.000000

50025.000000 0.000000

1424.000000

436.000000

0

True

build Started 2016-06-10 16:04:33.750498

Finished 2016-06-10 16:19:51.991690 exit code: 0 Found an issue in the reco processing stage and in a commit of the NOvA code from a user (contacted and solved)

Ken Herner | FIFE: Computing for Experiments

rusage_avgdata

rusage maxrss

rusage inputs

rusage_outputs

rusage_swaps

exit code: 0.0

valerrs success

rusage_major_faults

rusage minor faults

Finished 2016-06-10 16:20:56.768274

• Memory usage history plot: uboonecode geant4 stage as an example.

- Using CORSIKA as cosmic shower generator, memory usage goes from ~2Gb to ~3.5Gb.
- After the intervention of a memory profiling "task force" the memory usage went down to ~1.2Gb.

POMS: Example Campaign Info

• 20160824_101132

Launch Setun: echo Launch Template

Y POMS **Campaign uBooNE Electron Lifetime** Dashboard Calendar Requests Campaign Actions DB Admin Name: uBooNE Electron Lifetime In Job Efficiency Histogram Experiment: uboone III Day by Day Spreadsheet Dataset: none Submission Time Bars Software Version: v05 08 00 03 Raw Tables Campaign Submission Files Created: 2016-08-05 17:42:27.461118-05:00 Launch Campaign Jobs Now Creator: vito@fnal.gov Campaigns Kill Jobs for Campaign VO Role: Production # Schedule Future Job Launches Param Overrides: [["--configfile ","ConfigFiles/Config ElectronLifetime test.cfg"]] cs split type: None cs split dimensions: None cs last split: None Active: True Jobs **Campaign Definition** Failed_By Exit Code and Campaign Name (Last Day) Name: uBooNE Electron Lefetime Creator: vito@fnal.gov (Last Week) Created: 2016-08-05 17:49:08.688918-05:00 Failed_By Exit Code and Node Name (Last Launch Script: /uboone/app/home/uboonepro/KeepUp/ProductionKeepUp uBooNE.sh Dav) Definition Parameters: [["--configfile ","ConfigFiles/Config_ElectronLifetime.cfg"]] Failed_By Exit Code and CPU Type(Last Day) Input Files Per Job: 0 Output Files Per Job: 0 Output File Patterns: SwizRecoLifetime hist % a Tags **Recent Launch Outputs** Launch Template Enter tag • 20160824_161120 Name: uboone template • 20160824_141115 Launch Host: uboonegpvm07.fnal.gov • 20160824_121133 Launch Account: uboonepro

Fermilab

POMS: Example of Troubleshooting

Jobs by user_exe_exit_code,node_name,experiment 🚱

② 2016-08-23 19:01 to 2016-08-24 19:01

<previous 1 days | next 1 days >

node_name × us	er_exe_exit_code × expe	eriment ×		
user_exe_exit_code	node_name	experiment	count	
65	fnpc8001.fnal.gov	uboone	4	
65	fnpc7015.fnal.gov	uboone	1	
65	fnpc8002.fnal.gov	uboone	1	
65	fnpc7002.fnal.gov	uboone	1	
65	fnpc3274.fnal.gov	uboone	1	
250	acas1396.usatlas.bnl.gov	nova	1	
65	fnpc3284.fnal.gov	uboone	1	
65	fnpc2066.fnal.gov	uboone	1	
65	fnpc4217.fnal.gov	uboone	1	
65	fnpc2126.fnal.gov	uboone	1	

