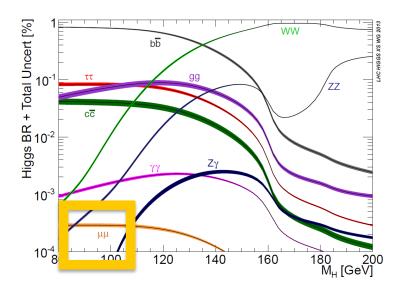


Search for Higgs to Dimuons Sergei V. Gleyzer on behalf of CMS Collaboration

DPF Meeting July 31, 2017

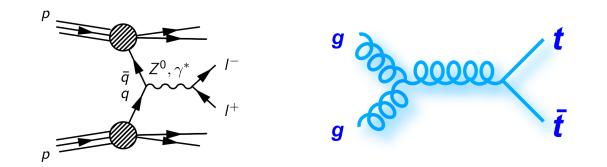
UNIVERSITY of FLORIDA

- Run 1 H⁰ $\rightarrow \mu^+\mu^-$ Analysis
- Run 2 H⁰ $\rightarrow \mu^+\mu^-$ Analysis improvements



- Higgs couples to muons

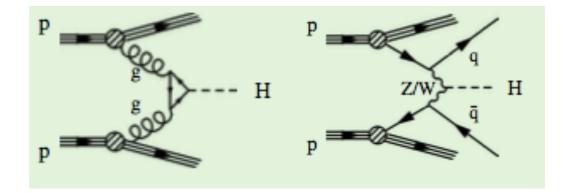
 Precise mass resolution
 - Test of direct coupling to fermions



UNIVERSITY OF FLORIDA

Run 1

- 5 fb⁻¹ at 7 TeV + 19.7 fb⁻¹ at 8 TeV
- Search for a narrow peak in the dimuon spectrum
 - Main backgrounds: Drell-Yan and ttbar



Run 1

Signal production: ggH and qqH

 Separate by jet multiplicity into exclusive categories to maximize sensitivity

Object Selection

- Trigger
 - At least one isolated muon
 - p_T > 24 GeV
 - |η| ≤ 2.1
- Offline
 - "Triggered" muon $p_T > 25 \text{ GeV}$
 - Sub-leading p_T > 15 GeV
 - Tight muon selection
 - Jet pt > 30 GeV, $|\eta| < 4.7$

Run 1 Categories

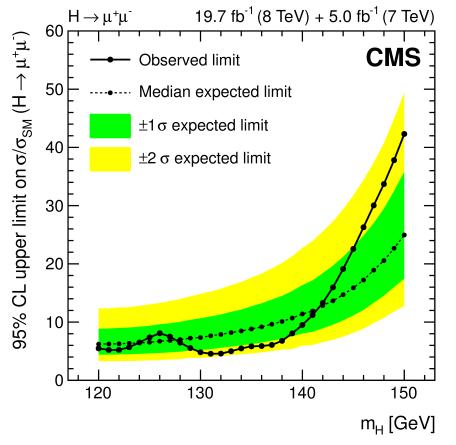
• VBF Tight

UNIVERSITY of **FLORIDA**

- $p_T^{J}(1,2) > 40, 30 \text{ GeV}$
- Mjj > 650 GeV
- bjet veto
- Δη(1,2) > 3.5
- GF Tight
 - $p_T^{J}(1,2) > 40, 30 \text{ GeV}$
 - Mjj > 250 GeV
 - bjet veto
 - $p_{T\mu\mu} > 50 \text{ GeV}$
- Muon Categories:
 - |η|< 0.8 (B); <1.6 (Ο) <2.4 (E)

- 2Jet Loose
 - − p_T^J(1,2) > 40, 30 GeV
 - bjet veto
- 0,1 Jet Tight
 - p_{Tµµ} > 25 GeV
 - bjet veto
- 0,1 Jet Loose
 - Fail all others

Source	GF [%]	VBF [%]
Higher-order corrections [18]	1–25	1–7
PDF [18]	11	5
PS/UE	6-60	2–15
${\cal B} \left({ m H} ightarrow \mu^+ \mu^- ight)$ [18]	6	6
Integrated luminosity [39, 40]	2.2–2.6	2.2-2.6
MC statistics	1–8	1–8
Muon efficiency	1.6	1.6
Pileup	< 1–5	< 1–2
Jet energy resolution	1–3	1–2
Jet energy scale	1–8	2–6
Pileup jet rejection	1–4	1–4


Link to paper

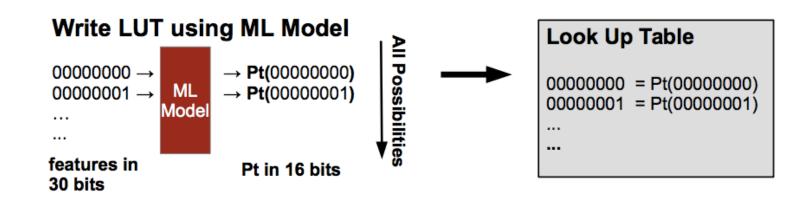
Expected and observed limits

7.4 x SM (6.5 + 2.8 -1.9)

35.9 fb⁻¹ at 13 TeV

- Trigger
 - Isolated muon p_T > 24 GeV
- Offline
 - 2 opposite sign muons
 - Triggered muon p_T > 26 GeV
 - |η| < 2.4
 - p_T > 10GeV
 - Jets p_T > 30GeV $|\eta|$ < 4.7

Analysis Improvements


UNIVERSITY OF FLORIDA

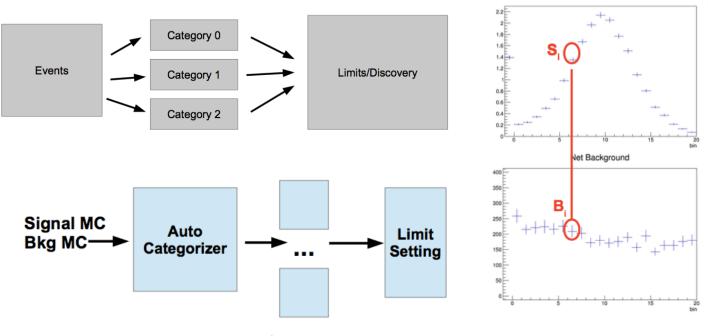
Improved muon trigger

- Machine learning algorithm trained to better approximate muon momenta
- Boosted regression trees encoded in lookup table in FPGA

- FEWZ NNLO generator
 - better model the shape of the Drell-Yan background
 - Reduce the systematic uncertainty
 - Better agreement with the data

FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order

Ryan Gavin¹, Ye Li¹, Frank Petriello^{2,3}, and Seth Quackenbush²

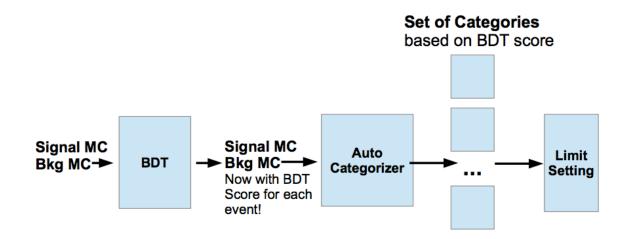


Use machine learning to find better categories

– ~10% improvement in expected limits

Sergei V. Gleyzer

DPF Meeting


Net Signal

- Use machine learning upstream for event selection
- Plus categorization

– ~25% improvement in expected limits

To be released in ~month

CMS PAS HIG-17-019

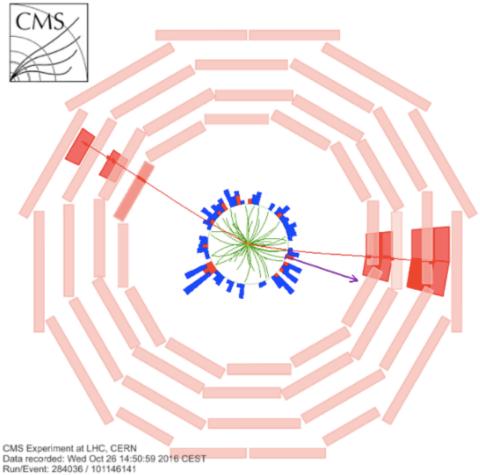
DRAFT CMS Physics Analysis Summary

The content of this note is intended for CMS internal use and distribution only

Stay Tuned

2017/05/23 Head Id: 405803 Archive Id: 309911:406036MP Archive Date: 2017/05/22 Archive Tag: trunk

Search for standard model Higgs boson production in the $\mu^+\mu^-$ final state at CMS in *pp* collisions at $\sqrt{s} = 13$ TeV



Thank You

Di-muon event

Lumi section: 57