Search for Higgs to Dimuons

Sergei V. Gleyzer on behalf of CMS Collaboration

DPF Meeting
July 31, 2017
Outline

• Run 1 $H^0 \rightarrow \mu^+\mu^-$ Analysis
• Run 2 $H^0 \rightarrow \mu^+\mu^-$ Analysis improvements
Motivation

• Higgs couples to muons
 – Precise mass resolution
 – Test of direct coupling to fermions
Run 1

- 5 fb$^{-1}$ at 7 TeV + 19.7 fb$^{-1}$ at 8 TeV
- Search for a narrow peak in the di-muon spectrum
 - Main backgrounds: Drell-Yan and ttbar
• Signal production: ggH and qqH

• Separate by jet multiplicity into exclusive categories to maximize sensitivity
Object Selection

• **Trigger**
 – At least one isolated muon
 • $p_T > 24$ GeV
 • $|\eta| \leq 2.1$

• **Offline**
 – “Triggered” muon $p_T > 25$ GeV
 – Sub-leading $p_T > 15$ GeV
 – Tight muon selection
 – Jet $p_T > 30$ GeV, $|\eta| < 4.7$
Run 1 Categories

• VBF Tight
 – $p_T^{J(1,2)} > 40, 30$ GeV
 – $M_{jj} > 650$ GeV
 – bjet veto
 – $\Delta \eta(1,2) > 3.5$

• GF Tight
 – $p_T^{J(1,2)} > 40, 30$ GeV
 – $M_{jj} > 250$ GeV
 – bjet veto
 – $p_{T\mu\mu} > 50$ GeV

• Muon Categories:
 – $|\eta| < 0.8$ (B); <1.6 (O) <2.4 (E)

• 2Jet Loose
 – $p_T^{J(1,2)} > 40, 30$ GeV
 – bjet veto

• 0,1 Jet Tight
 – $p_{T\mu\mu} > 25$ GeV
 – bjet veto

• 0,1 Jet Loose
 – Fail all others
Systematics

<table>
<thead>
<tr>
<th>Source</th>
<th>GF [%]</th>
<th>VBF [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF [18]</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>PS/UE</td>
<td>6–60</td>
<td>2–15</td>
</tr>
<tr>
<td>$\mathcal{B}(H \rightarrow \mu^+\mu^-)$ [18]</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Integrated luminosity [39, 40]</td>
<td>2.2–2.6</td>
<td>2.2–2.6</td>
</tr>
<tr>
<td>MC statistics</td>
<td>1–8</td>
<td>1–8</td>
</tr>
<tr>
<td>Muon efficiency</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Pileup</td>
<td>< 1–5</td>
<td>< 1–2</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>1–3</td>
<td>1–2</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>1–8</td>
<td>2–6</td>
</tr>
<tr>
<td>Pileup jet rejection</td>
<td>1–4</td>
<td>1–4</td>
</tr>
</tbody>
</table>

[Link to paper](#)
Results

• Expected and observed limits

\[7.4 \times \text{SM} \]
\[(6.5 + 2.8 - 1.9) \]
Run 2 Analysis

35.9 fb\(^{-1}\) at 13 TeV

- **Trigger**
 - Isolated muon \(p_T > 24\) GeV

- **Offline**
 - 2 opposite sign muons
 - Triggered muon \(p_T > 26\) GeV
 - \(|\eta| < 2.4\)
 - \(p_T > 10\) GeV
 - Jets \(p_T > 30\) GeV \(|\eta| < 4.7\)
Analysis Improvements
• Improved muon trigger
 – Machine learning algorithm trained to better approximate muon momenta
 – Boosted regression trees encoded in lookup table in FPGA
Background Model

- FEWZ NNLO generator
 - better model the shape of the Drell-Yan background
 - Reduce the systematic uncertainty
 - Better agreement with the data

FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order

Ryan Gavin\(^1\), Ye Li\(^1\), Frank Petriello\(^{2,3}\), and Seth Quackenbush\(^2\)
• Use machine learning to find better categories
 – ~10% improvement in expected limits
ML+ Categorizer

- Use machine learning upstream for event selection
- Plus categorization
 - ~25% improvement in expected limits
Results

• To be released in ~month

CMS PAS HIG-17-019

DRAFT

CMS Physics Analysis Summary

The content of this note is intended for CMS internal use and distribution only

2017/05/23
Head Id: 405803
Archive Id: 309911:406036MP
Archive Date: 2017/05/22
Archive Tag: trunk

Stay Tuned

Search for standard model Higgs boson production in the $\mu^+\mu^-$ final state at CMS in pp collisions at $\sqrt{s} = 13$ TeV
Thank You
Di-muon event