
Geant4e Track Extrapolation
in the Belle II Experiment

Leo Piilonen, Virginia Tech
on behalf of the Belle II Collaboration

1

Belle

DPF 2017 Fermilab August 2017

This work supported by

2

geant4e, a part of geant4, is designed for use during event
reconstruction (not simulation). It computes

the average trajectory of a charged track, assuming a
local helix in local magnetic field for each step
the covariance matrix along this trajectory due to
❖ multiple scattering
❖ ionization
❖ track curvature

using C++ port of the
geane code in geant3
(developed by the
European Muon
Collaboration)

3

During event reconstruction, use geant4e to propagate
charged tracks outward from the drift chamber (helps in
particle identification).

Belle

EM Calorimeter

KL and muon detector

Particle identifiers
Drift chamber

Vertex detectors

e– (7 GeV)

e+
(4 GeV)

4

Use geant4-based model of the Belle II detector:
detailed detector geometry
non-uniform solenoidal magnetic field map (~1.5 T)
for geant4 simulation and geant4e track propagation

 neutrons
 photons
 electrons
 positrons

photons

geant4 simulation of beam-induced backgrounds in Belle II

5

1) During event reconstruction, each track is extrapolated
outward using six hypotheses ()

swim each track from outer edge of drift chamber
through the calorimeter (or until it stops)
store time, position, momentum and covariance
matrix at entrance/exit of selected geant4 volumes
(useful for particle identification)

e, µ, ⇡, K, p, d

6

2) During event reconstruction, each track is extrapolated
 outward even farther using only hypothesis

swim each track through KL-muon detector with
Kalman filter to matching hits and track adjustment
store time, position, momentum and covariance
matrix at entrance/exit of each KLM layer

matching hits

µ

7

Belle II has two usage modes of the geant4e package:

for reconstruction of real events:
standalone – as intended by geant4/geant4e authors

for reconstruction of simulated events:
coexists with geant4 since we do event generation,
simulation and reconstruction in a single job

Geant4e and Geant4:

Some difficulties must be overcome!

8

geant4e, as distributed, cannot be used with geant4:
☒ incompatible particle lists
☒ incompatible physics processes
☒ conflicting usage of sensitive-detector geometry
☒ distinct states when calling RunManager
☒distinct step-by-step Navigators
☒ incompatible user actions (SteppingAction etc)

We have resolved these issues and limitations.
All mods are done outside the geant4(e) code base.

Geant4e and Geant4, cont’d:

geant4e, as distributed, is limited:
☒ propagates only electrons, positrons and photons

9

PhysicsList is user’s concrete implementation of
G4VUserPhysicsList, and must define:
• ConstructParticle()
• ConstructProcess()
• SetCuts()

geant4 and geant4e use distinct and incompatible
PhysicsLists.

Significant overhead to change PhysicsList when
switching between geant4 and geant4e so avoid this!

1) Particles and Physics Processes:

Define a combined (and extended) PhysicsList
that incorporates geant4 and geant4e functionality.

10

Our modified ConstructParticle() defines

gamma e+ e– mu+ mu– pi+ pi– pi0 kaon+
kaon– kaon0 kaon0L kaon0S proton anti_proton
neutron anti_neutron geantino chargedgeantino
opticalphoton etc for use by geant4
g4e_gamma g4e_e+ g4e_e– g4e_mu+ g4e_mu–
g4e_pi+ g4e_pi– g4e_kaon+ g4e_kaon– g4e_proton
g4e_antiproton g4e_deuteron g4e_antideuteron
(all with PIDcode = 0) for use by geant4e

Avoids this problem ☞ PhysicsList in the distributed
geant4e defines only three particles (gamma e+ e–)
and these conflict with geant4 usage during simulation

1) Particles and Physics Processes, cont’d:

11

Our modified PhysicsList() disables the generation of
secondaries – optical and scintillation photons – for
newly defined g4e_* particles since these processes
get attached to every charged particle by geant4

1) Particles and Physics Processes, cont’d:

Our modified SetCuts() does

SetCutsWithDefault() using default = 1.0*mm for the
regular particles, as in geant4

SetCutsWithDefault() using default = 1.0E9*cm for the
newly defined g4e_* particles, as in geant4e

12

During simulation, G4SteppingManager calls user code
to process steps through “sensitive” detector volumes
and record the hits therein.
During reconstruction, our custom version of
StepLengthLimitProcess() disables this behaviour:

G4ParticleChange aParticleChange;

G4VParticleChange*
 ExtStepLengthLimitProcess::PostStepDoIt(const G4Track& track,
 const G4Step&)
{
 aParticleChange.Initialize(track);
 aParticleChange.ProposeSteppingControl(AvoidHitInvocation);
 return &aParticleChange;
}

2) Common detector geometry:

13

Avoid the special G4ErrorPropagationNavigator in geant4e.
Instead, use the standard G4Navigator defined in geant4.
geant4e requires a target surface (G4ErrorCylSurfaceTarget
is an infinite-length cylinder). After each geant4e step,
G4ErrorPropagationNavigator would check if the track
crossed this surface. Our steering code does this check.
Our custom version of G4ErrorCylSurfaceTarget is a
closed finite-length cylinder that includes the two
endcap surfaces.

3) geant4e navigation and “target” geometry:

14

During our custom geant4e initialization, detect its  
co-existence with geant4 by a non-empty G4ParticleTable.
❖ If geant4e is running stand-alone, there is no need to

preserve the geant4 state from one event to next.
❖ If geant4e co-exists with geant4, restore the geant4 idle

state and save pointers to its UserActions for
swapping out/in during the later track extrapolation:

4) Distinct geant4/geant4e run states and user actions:

InitGeant4e();
G4StateManager::GetStateManager()–>
 SetNewState(G4State_Idle);
m_savedTrackingAction = UserTrackingAction;
m_savedSteppingAction = UserSteppingAction;

15

During reconstruction of one event:

4) Distinct run states and user actions, cont’d:

if (geant4e co-exists with geant4) { // hide geant4 actions
UserTrackingAction = NULL;
UserSteppingAction = NULL;

}

// extrapolate each track in the event using g4e_* particles;

if (geant4e co-exists with geant4) { // restore geant4 actions
UserTrackingAction = m_savedTrackingAction;
UserSteppingAction = m_savedSteppingAction;

}

16

The distributed MagFieldLimitProcess in geant4e assumes
that the magnetic field is along the z axis. Our custom
version removes this assumption.

The distributed G4EnergyLossForExtrapolator defines
energy-loss processes for electrons and positrons only.
Our custom version extends these to muons, pions,
kaons, protons and deuterons (and anti-particles).
❖ In geant4e, this applies the mean energy loss to each

particle during extrapolation. Fluctuations in energy
loss and multiple scattering are incorporated in the
growth of the covariance matrix.

5) Other geant4e modifications:

17

Record a crossing (“ExtHit”) when the extrapolated track
enters/exits each selected volume in the PID detectors or
when track is near(est) a reconstructed cluster

6) Track-extrapolation use in track–cluster matching:

extra
polated Tra

ck

from e+e– interaction point (IP)

ECLCluster’s sphere
(centred on IP)

ECLDL

ECLNEAR
ECLCROSS

ECLCluster

Calorimeter (ECL)

18

Extrapolate each reconstructed track from the CDC exit
point into the KLM (barrel and endcap) using geant4e
❖ default is muon hypothesis only
Look for matching 2D hit upon crossing each KLM layer
Kalman fitting: If there is a matching 2D hit in the layer,
use its position and uncertainty to adjust the position and
direction of the extrapolated track before continuing to the
next layer
Accumulate between in-plane hit and track position
Finish extrapolation when the track exits the KLM or stops
Use extrapolated vs measured range and /n.d.f. to
compute particle-ID likelihoods via PDF-table lookup

�2

7) Track-extrapolation use in muon identification:

�2

p [GeV/c]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
u

o
n

 e
ff

ic
ie

n
cy

 &
 p

io
n

 f
a

ke
 r

a
te

 x
 1

0

0

0.2

0.4

0.6

0.8

1

plab (GeV/c)

M
uo

n
id

en
tifi

ca
tio

n
ef

fic
ie

nc
y

(s
ol

id
 c

ur
ve

s)

Pi
on

 fa
ke

 ra
te

 x
 1

0
(d

as
he

d
cu

rv
es

)

KLM Performance for Muon Identification

19

ln(Lµ/L⇡) > 0
ln(Lµ/L⇡) > 10
ln(Lµ/L⇡) > 20

20

Typical cosmic ray is reconstructed as two tracks
Lower track #2 is extrapolated forward  
into bottom half of the detector
Upper track #1 is extrapolated  
backward into top half of  
the detector, using the  
back-propagation feature  
of geant4e, so that
❖ energy increases
❖ covariance grows
❖ time flows backward

8) Track-extrapolation of cosmic rays:

Track #1

Track #2

CDC

ECL

21

In the Belle II software library, we have implemented
geant4e track propagation for particle identification
(in the PID detectors) and muon identification (in the
KLM) during event reconstruction, either standalone or in
harmonious co-existence with geant4 event simulation:

merged particle list that comprises geant4-standard
and custom g4e_* particles
distinct physics processes for geant4-standard and
custom g4e_* particles
common geant4-based detector geometry
no hit invocation in sensitive volumes during geant4e
distinct states and user actions for geant4 and geant4e
Kalman fitting for muon extrapolation
all customizations are outside the geant4 code base

Conclusion

