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geant4e, a part of geant4, is designed for use during event 
reconstruction (not simulation).  It computes

the average trajectory of a charged track, assuming a 
local helix in local magnetic field for each step 
the covariance matrix along this trajectory due to 
❖ multiple scattering 
❖ ionization 
❖ track curvature

using C++ port of the 
geane code in geant3  
(developed by the 
European Muon 
Collaboration)
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During event reconstruction, use geant4e to propagate 
charged tracks outward from the drift chamber (helps in 
particle identification).
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Use geant4-based model of the Belle II detector: 
detailed detector geometry 
non-uniform solenoidal magnetic field map (~1.5 T) 
for geant4 simulation and geant4e track propagation

   neutrons 
   photons 
   electrons 
   positrons

photons

geant4 simulation of beam-induced backgrounds in Belle II 
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1) During event reconstruction, each track is extrapolated 
outward using six hypotheses (                            ) 

swim each track from outer edge of drift chamber 
through the calorimeter (or until it stops) 
store time, position, momentum and covariance 
matrix at entrance/exit of selected geant4 volumes 
(useful for particle identification)

e, µ, ⇡, K, p, d
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2) During event reconstruction, each track is extrapolated 
    outward even farther using only    hypothesis 

swim each track through KL-muon detector with 
Kalman filter to matching hits and track adjustment 
store time, position, momentum and covariance 
matrix at entrance/exit of each KLM layer

matching hits

µ
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Belle II has two usage modes of the geant4e package:  

for reconstruction of real events:  
standalone – as intended by geant4/geant4e authors 

for reconstruction of simulated events: 
coexists with geant4 since we do event generation, 
simulation and reconstruction in a single job

Geant4e and Geant4:

Some difficulties must be overcome!
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geant4e, as distributed, cannot be used with geant4: 
☒ incompatible particle lists 
☒ incompatible physics processes 
☒ conflicting usage of sensitive-detector geometry 
☒ distinct states when calling RunManager 
☒distinct step-by-step Navigators 
☒ incompatible user actions (SteppingAction etc)

We have resolved these issues and limitations. 
All mods are done outside the geant4(e) code base.

Geant4e and Geant4, cont’d:

geant4e, as distributed, is limited: 
☒ propagates only electrons, positrons and photons



9

PhysicsList is user’s concrete implementation of 
G4VUserPhysicsList, and must define: 
• ConstructParticle() 
• ConstructProcess() 
• SetCuts() 

geant4 and geant4e use distinct and incompatible 
PhysicsLists. 

Significant overhead to change PhysicsList when 
switching between geant4 and geant4e so avoid this! 

1) Particles and Physics Processes:

Define a combined (and extended) PhysicsList 
that incorporates geant4 and geant4e functionality.
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Our modified ConstructParticle()  defines 

gamma   e+   e–   mu+   mu–    pi+   pi–   pi0   kaon+   
kaon–   kaon0   kaon0L  kaon0S   proton   anti_proton   
neutron   anti_neutron   geantino   chargedgeantino   
opticalphoton  etc  for use by geant4 
g4e_gamma   g4e_e+   g4e_e–   g4e_mu+  g4e_mu–   
g4e_pi+   g4e_pi–   g4e_kaon+  g4e_kaon–  g4e_proton   
g4e_antiproton   g4e_deuteron g4e_antideuteron 
(all with  PIDcode = 0)  for use by geant4e

Avoids this problem  ☞  PhysicsList  in the distributed  
geant4e  defines only three particles (gamma   e+   e–) 
and these conflict with geant4 usage during simulation

1) Particles and Physics Processes, cont’d:
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Our modified PhysicsList() disables the generation of 
secondaries – optical and scintillation photons – for 
newly defined g4e_* particles since these processes 
get attached to every charged particle by geant4

1) Particles and Physics Processes, cont’d:

Our modified SetCuts() does 

SetCutsWithDefault() using default = 1.0*mm for the 
regular particles, as in geant4 

SetCutsWithDefault() using default = 1.0E9*cm for the 
newly defined g4e_* particles, as in geant4e   
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During simulation, G4SteppingManager calls user code 
to process steps through “sensitive” detector volumes 
and record the hits therein. 
During reconstruction, our custom version of 
StepLengthLimitProcess() disables this behaviour:

G4ParticleChange aParticleChange; 

G4VParticleChange* 
     ExtStepLengthLimitProcess::PostStepDoIt( const G4Track& track, 
                                                                        const G4Step& ) 
{ 
    aParticleChange.Initialize( track ); 
    aParticleChange.ProposeSteppingControl( AvoidHitInvocation ); 
    return &aParticleChange; 
}

2) Common detector geometry:
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Avoid the special G4ErrorPropagationNavigator in geant4e.  
Instead, use the standard G4Navigator defined in geant4. 
geant4e requires a target surface (G4ErrorCylSurfaceTarget 
is an infinite-length cylinder). After each geant4e step, 
G4ErrorPropagationNavigator would check if the track 
crossed this surface. Our steering code does this check. 
Our custom version of G4ErrorCylSurfaceTarget is a 
closed finite-length cylinder that includes the two 
endcap surfaces.

3) geant4e navigation and “target” geometry:
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During our custom geant4e initialization, detect its  
co-existence with geant4 by a non-empty G4ParticleTable. 
❖ If geant4e is running stand-alone, there is no need to 

preserve the geant4 state from one event to next. 
❖ If geant4e co-exists with geant4, restore the geant4 idle 

state and save pointers to its UserActions for 
swapping out/in during the later track extrapolation:

4) Distinct geant4/geant4e run states and user actions:

InitGeant4e(); 
G4StateManager::GetStateManager()–> 
                                    SetNewState(G4State_Idle); 
m_savedTrackingAction = UserTrackingAction; 
m_savedSteppingAction = UserSteppingAction;
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During reconstruction of one event:

4) Distinct run states and user actions, cont’d:

if ( geant4e co-exists with geant4 ) { // hide geant4 actions 
UserTrackingAction = NULL; 
UserSteppingAction = NULL; 

} 

// extrapolate each track in the event using g4e_* particles; 

if ( geant4e co-exists with geant4 ) { // restore geant4 actions 
UserTrackingAction = m_savedTrackingAction; 
UserSteppingAction = m_savedSteppingAction; 

}
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The distributed  MagFieldLimitProcess  in geant4e assumes 
that the magnetic field is along the z axis. Our custom 
version removes this assumption.  

The distributed G4EnergyLossForExtrapolator defines 
energy-loss processes for electrons and positrons only. 
Our custom version extends these to muons, pions, 
kaons, protons and deuterons (and anti-particles). 
❖ In geant4e, this applies the mean energy loss to each 

particle during extrapolation. Fluctuations in energy 
loss and multiple scattering are incorporated in the 
growth of the covariance matrix.

5) Other geant4e modifications:
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Record a crossing (“ExtHit”) when the extrapolated track 
enters/exits each selected volume in the PID detectors or 
when track is near(est) a reconstructed cluster

6) Track-extrapolation use in track–cluster matching:

extra
polated Tra

ck

from e+e– interaction point (IP)

ECLCluster’s sphere 
(centred on IP)

ECLDL

ECLNEAR
ECLCROSS

ECLCluster

Calorimeter (ECL)
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Extrapolate each reconstructed track from the CDC exit 
point into the KLM (barrel and endcap) using geant4e 
❖ default is muon hypothesis only 
Look for matching 2D hit upon crossing each KLM layer 
Kalman fitting:  If there is a matching 2D hit in the layer, 
use its position and uncertainty to adjust the position and 
direction of the extrapolated track before continuing to the 
next layer 
Accumulate       between in-plane hit and track position  
Finish extrapolation when the track exits the KLM or stops 
Use extrapolated vs measured range and     /n.d.f. to 
compute particle-ID likelihoods via PDF-table lookup

�2

7) Track-extrapolation use in muon identification:

�2
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KLM Performance for Muon Identification
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ln(Lµ/L⇡) > 0
ln(Lµ/L⇡) > 10
ln(Lµ/L⇡) > 20
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Typical cosmic ray is reconstructed as two tracks 
Lower track #2 is extrapolated forward  
into bottom half of the detector 
Upper track #1 is extrapolated  
backward into top half of  
the detector, using the  
back-propagation feature  
of geant4e, so that 
❖ energy increases 
❖ covariance grows 
❖ time flows backward

8) Track-extrapolation of cosmic rays:

Track #1

Track #2

CDC

ECL
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In the Belle II software library, we have implemented 
geant4e track propagation for particle identification 
(in the PID detectors) and muon identification (in the 
KLM) during event reconstruction, either standalone or in 
harmonious co-existence with geant4 event simulation:

merged particle list that comprises geant4-standard 
and custom  g4e_*  particles 
distinct physics processes for geant4-standard and 
custom  g4e_*  particles 
common geant4-based detector geometry 
no hit invocation in sensitive volumes during geant4e 
distinct states and user actions for geant4 and geant4e 
Kalman fitting for muon extrapolation 
all customizations are outside the geant4 code base

Conclusion


