Yicheng Guo
University of Michigan
University of Science and Technology of China

Search for Dark Matter in association with a hadronically decaying vector boson

DPF Conference
August 1st, 2017
Motivation
Dark matter (DM) compose large part of the mass-energy of the universe. If the DM particle couples to the SM, it may be produced in a particle collider and be observed in experiment.
Search for dark matter pair production in association with a W/Z boson with 2015 + 2016 data at $\sqrt{s} = 13$ TeV with the ATLAS detector, 36.1 fb$^{-1}$

The Experimental Final State
Large Missing transverse momentum and a quark pair decayed from the vector boson

W/Z \rightarrow qqbar

merged reconstruction: decaying from a high mass resonance, the quark pair is more efficiently reconstructed as a single large-radius jet (large-R jet)

resolved reconstruction: 2 small-R jets
Signal models used in the analysis

Example of simplified model diagram

The simplified vector mediate models and the Vvxx effective field theory are considered

Simplified models have a particle mediating the interaction between Standard Model (SM) particles and Dark Matter (DM)

Example of Vvxx diagram

EFTs integrate out the mediator removing degrees of freedom and leading to a generic model.

In this analysis
g_x (coupling of the DM to the mediator) = 0.25,
g_q (coupling of the SM to the mediator) = 1
Event Selection

Merged Regime

Resolved Regime

Failed

Trigger

Lepton Veto

Anti-QCD

MET Triggers
70-110 GeV
depends on the luminosity

No loose leptons
(electrons or muons)

Track-MET > 30 GeV
\(\min(\Delta\phi(MET, \text{jets})) > 20^\circ\)
\(\Delta\phi(MET, \text{Track-MET}) < 90^\circ\)
\(\Delta\phi(MET, J/jj) > 120^\circ\)
Merged Regime

Requirements:
- MET > 250 GeV
- 1 Large-R jet

Boson-tagging:
- 0 b-jet category*
- 1 b-jet category
- 2 b-jet category: \(m_J : [75, 100] \) GeV

* b-jet categories

track jets b-tagging at 70% w.p.
Resolved Regime

Requirements:

- MET $>$150 GeV
- 2-3 central small-R jets
- no forward small-R jets
- leading jet $p_T > 45$ GeV
- $\Delta \phi (\text{jet, jet}) > 140^\circ$
- $p_T,\text{sum}(\text{jets}) > 120/150$ GeV (2/3 jets)
- $m(\text{leading 2 jets})$: [65, 105/100] GeV (01/2 bjets category)

* b-jet categories: small-R jets b-tagging at 70% w.p.
Control Regions

Major backgrounds: Z+jets, W+jets, ttbar

Replacing the lepton veto by requiring two lepton control regions, the rest event selections are the same as signal region

One lepton control region — constrain W+jets and ttbar backgrounds
- required 1 tight muon

Two lepton control region — constrain Z+jets backgrounds
- required 2 same flavor leptons (>=1 medium lepton).
- dilepton mass: [66, 116]

*In control regions, METmod (\(\overrightarrow{\text{MET}} + p_{T,\text{lep}}\)) is defined to mimic the SR MET for event selections
Distributions in 0 b-tag categories are shown as examples.

The Data are consistent with the expected background in control regions.
MET Distributions in Signal Regions

Signal:
W boson hadronic decay,
mediator mass = 300 GeV,
dark matter mass = 50 GeV
Limits with new data improves previous results.

All limits at 95% C.L.

Limits with 2015 data

the leptonic decay channel gives out better limits in the monoZ channel.
Search for DM with monoZ and monoW is performed with large missing energy and dijet final state at 13TeV with 36.1 fb⁻¹ data;

Changes to the 2015 analysis:

- Inclusion of a resolved regime
- Using b-tagging in SR and all CRs to improve the sensitivity
- New selections and optimizing
- Using new W/Z tagger and combined mass for large-R jets

The limits with simplified vector mediator model exclusions are shown at 95% C.L, which improves previous results.
Back Up
Objects Used in Analyses

<table>
<thead>
<tr>
<th>Loose Muon</th>
<th>Loose Electron</th>
<th>Large-R Jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T > 7$ GeV</td>
<td>$p_T > 7$ GeV</td>
<td>AntiKt10LCTopoTrimmedPtFrac5SmallR20Jets</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
<td>< 2.7$</td>
</tr>
<tr>
<td>Loose quality</td>
<td>LooseLH</td>
<td>$p_T > 200$ GeV</td>
</tr>
</tbody>
</table>
| $|z_0| \cdot \sin \theta < 0.5$ | $|z_0| \cdot \sin \theta < 0.5$ | $
|\text{Id}_0$ significance$ < 3$ | Id_0 significance$ < 5$ | |
| isolation: LooseTrackOnly | isolation: LooseTrackOnly | |

<table>
<thead>
<tr>
<th>Medium Muon</th>
<th>MET/trk-MET</th>
<th>Small-R Jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>LooseMuon</td>
<td>MET: MET_TST</td>
<td>AntiKt4EMTopoJets</td>
</tr>
<tr>
<td>$p_T > 25$ GeV</td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
<td>< 2.5$</td>
</tr>
<tr>
<td>Tight Muon</td>
<td>vectorial sum of p_T in of</td>
<td>if $p_T < 60$ GeV and $</td>
</tr>
<tr>
<td>Medium Muon</td>
<td>(trk-)METmod:</td>
<td>b-Tagging: 70% W.P.</td>
</tr>
<tr>
<td>Tight Isolation</td>
<td>$(\text{trk-})\text{MET} + \hat{\pvec}(T, \text{lep})$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track jets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AntiKt2PV0TrackJets</td>
<td>$</td>
</tr>
<tr>
<td>$p_T > 10$ GeV</td>
<td>b-Tagging: 70% W.P.</td>
</tr>
</tbody>
</table>
Simplified models and effective field theories (EFT)

Simplified models have a particle mediating the interaction between Standard Model (SM) particles and Dark Matter (DM)

EFTs integrate out the mediator removing degrees of freedom and leading to a generic model.

E.g. the cross-section of the s-channel exchange of vector mediator

\[\sigma \propto \frac{g_{\chi}^2 g_{q}^2}{(Q^2 - M^2)^2 + M^2 \Gamma^2} \approx \frac{g_{\chi}^2 g_{q}^2}{M^4} = \frac{1}{M_*^4}, \]

g_{\chi}: coupling of the DM to the mediator

g_{q}: coupling of the SM to the mediator

Q: momentum transfer

M: Mass of the mediator

\(\Gamma \): width of the mediator

Grid of generated signal mass point for simplified model

\[m_{\text{vector}} [\text{GeV}] \]

\[g_{\text{DM/SM}}: \text{coupling of the DM/SM to the mediator} \]

\[g_{\text{DM}} = 1, g_{\text{SM}} = 0.25 \]

\[m_{\text{HM}} [\text{GeV}] \]
The combined mass is defined as the simple linear combination of the calorimeter jet mass and the track assisted mass definitions. It is expected to have better mass resolution and a reduction of the systematic uncertainties.

The calorimeter jet mass is defined using the collection of topo-clusters in the calorimeter and corrects with an MC-based calibration the reconstructed jet-mass to the particle level. It is defined as

\[m_{\text{calo}} = \sqrt{\left(\sum_i E_i \right)^2 - \left(\sum_i p_i \right)^2} \]

The track assisted (TA) mass is defined as the mass of the tracks reconstructed by the inner detector and weighted by the ratio of the transverse momenta measured by the calorimeter and the inner detector. It is defined as

\[m_{\text{TA}} = m_{\text{track}} \cdot \frac{p_{T}^{\text{calo}}}{p_{T}^{\text{track}}} \]
FatJet Substructure — C_2 & D_2

N-Points Energy Correlation Functions (ECF)

$$ECF(N, \beta) = \sum_{i_1 < i_2 < \ldots < i_N \in J} (\prod_{a=1}^{N} p_{T_i}) (\prod_{b=1}^{N-1} \prod_{c=b+1}^{N} R_{i_b i_c})^{\beta}$$

where $R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$

Loop over all particles in the system J.

If a jet has fewer than N constituents then $ECF(N, \beta) = 0$
FatJet Substructure — C_2 & D_2

Dimesionless variables

$$e_n^{(\beta)} = \frac{ECF(n, \beta)}{(ECF(1, \beta))^n}$$

$$C_2^{(\beta)} = \frac{e_3^{(\beta)}}{(e_2^{(\beta)})^2} = \frac{ECF(3, \beta) \times ECF(1, \beta)}{ECF^2(2, \beta)}$$

A study of e_2 and e_3

1-prong jet (QCD jets)

$$(e_2)^3 \lesssim e_3 \lesssim (e_2)^2$$

2-prong jet (boosted Z)

$$0 < e_3 \ll (e_2)^3$$

\Rightarrow boundary $e_3 \sim (e_2)^3$ \Rightarrow $D_2^{\beta} = \frac{e_3^{\beta}}{(e_2^{\beta})^3}$
FatJet Substructure — C_2 & D_2

C_2 and D_2 with different index (beta)