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The data unfolding problem

| The PrObIem: 1200: ‘ True distribution 1200: —— Smeared distribution
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= R;; = P(observed inbin i | true value in bin j)
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The data unfolding problem

" The problem:
fsmear(X) = jR(xl}I)ftrue(}’) dy -

= R(x|y): responsefunction
= mi == Z] RUS]
= R;; = P(observed inbin i | true value in bin j)

= Whynotdos =R~ '-m?
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The data unfolding problem

= The PrObIem: 1200’ True distribution 1200’ —— Smeared distribution
1000: 1000/~ —t— Data
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= R;; = P(observed inbin i | true value in bin j)
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The data unfolding problem

1200 1200

* The problem: : |

True distribution [ —— Smeared distribution
1000} 1000} —+— Data
_ 800/ soo:—
fsmear (X) = jR(xl}I)ftrue(Y) dy i i
600} 600}
= R(x|y): responsefunction = =
200; 200—
. mi:ZjRiij 0: e b b b b b by 07 ol b b b b b s
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= R;; = P(observed inbin i | true value in bin j)
. Why nOt C|O S = R N 1 ° m ? 2000: True distribution 2000: True distribution
- Unfolded Data L —4— Unfolded Data
= Due to statistical fluctuation, the unfolded 1600/

spectrum from direct inversion of response matrix
bares no resemblance to the true spectrum.
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The data unfolding problem

1200 1200

* The problem: : |

True distribution [ —— Smeared distribution
1000} 1000} —+— Data
_ 800/ soo:—
fsmear (X) = jR(xW)ftrue(Y) dy i i
600} 600}
= R(x|y): responsefunction = =
200; 200—
. mi:ZjRiij 0: e b b b b b by 07 ol b b b b b s
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
= R;; = P(observed inbin i | true value in bin j)
. Why nOt C|O S = R N 1 ° m ? 2000: True distribution 2000: True distribution
- Unfolded Data L —4— Unfolded Data
= Due to statistical fluctuation, the unfolded 1600/

spectrum from direct inversion of response matrix
bares no resemblance to the true spectrum.
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L 5007

" Introduce additional constraints. :
0

= E.g.trade bias for smoothness oF r

= Bayesian analysis
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Wiener filter in digital signal processing (1)

= Deconvolution problem:
= M(t) = [ R(t,t)-S() dt

= True signal S(t), measured signal M(t"), response
function R(t,t')) = R(t —t)
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Wiener filter in digital signal processing (1)

= Deconvolution problem:
= M(t) = [ R(t,t)-S() dt

= True signal S(t), measured signal M(t"), response
function R(t,t')) = R(t —t)

= Fourier transform:
M(w) = R(w) - S(w) » S(w) = M(w)/R(w)
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Wiener filter in digital signal processing (1)

= Deconvolution problem:
= M(t) = [ R(t,t)-S() dt

= True signal S(t), measured signal M(t"), response
function R(t,t') = R(t — t)

= Fourier transform:
M(w) = R(w) - S(w) = S(w) = M(w)/R(w)
— Inverse FFT S(w) — S(t)
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Wiener filter in digital signal processing (1)

= Deconvolution problem:
= M(t) = [ R(t,t)-S() dt

= True signal S(t), measured signal M(t"), response
function R(t,t') = R(t — t)

= Fourier transform:
M(w) = R(w) - S(w) = S(w) = M(w)/R(w)
— Inverse FFT S(w) — S(t)

* The response function R(w) does not address
noise contributions to the measured signal.
Worse still, R(w) is generally smaller at higher
frequencies due to the shaping features of
electronics, resulting in amplification of noises.
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Wiener filter in digital signal processing (2)

Wiener Filter @ Frequency Domain

= To address the issue with noise:

a M(w)
= S(a)) = Tz))) . F(a)) Wiener filter in

. . frequency domain
" Wiener filter:

s F(w) = $* (@) %02 04 06 08 1

7 @{n? (@) Noise @ (MHz)

Wiener Filter @ Time Domain

* The functional form of Wiener filter is obtained by =
minimizing '5.03 |
ELF(w) - M(w) — S(a)))z] 00z Wiener filter in
= E[(F(w) - (S((U) + N(w)) - S(w))z] 0.01 time domain
* Wiener filter is designed to achieve the best of
signal/noise. —d\/\ . J\/Wi
407200 20 4(158)
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Wiener filter in digital signal processing (3)

Deconvolution without filter Deconvolution with Wiener filter
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Reminder of SVD Method

= Minimize y?:
xr’S)=(m-r-s)-Cov'-(m—r-s)
= Cholesky decomposition: Cov™1 = Q- Q
" Pre-scalingg M :=Q -mR:==0Q-r
= ML estimator: § = (RTR)™'-RT- M
" Equivalently, the estimator can be written as
$=R'R)™1-RT - (R 5tyye + N)

where N, the “noise” coming from
uncertainties, follows a normal distribution.
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Reminder of SVD Method

= Minimize y?*:
2 — —r.q)T. -1, —r-
x°(s) =(m—r-s)"-Cov (m-—r /Singular value decomposition (SVD)\
* Cholesky decomposition: Cov=1=0T-0Q R=U-D-VT
U,V: orthogonal

D: diagonal (diagonal elements
= ML estimator: § = (R"R)™*-R"- M ranked by magnitude)

\_

= Equivalently, the estimator can be written as
$=(R"R)™*-R"- (R * Strye + N)

" Pre-scalingg M :=Q -mR:==0Q-r

/

where N, the “noise” coming from
uncertainties, follows a normal distribution.
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Reminder of SVD Method

= Minimize y?*:
2 — —r.q)T. -1, —r-
x°(s) =(m—r-s)"-Cov (m-—r /Singular value decomposition (SVD)\
* Cholesky decomposition: Cov=1=0T-0Q R=U-D-VT
U,V: orthogonal

D: diagonal (diagonal elements
= ML estimator: § = (R"R)™*-R"- M ranked by magnitude)

\_

= Equivalently, the estimator can be written as
[NU=UT~N\ §=V-D1UT - (R-Spye + N)

" Pre-scalingg M :=Q -mR:==0Q-r

/

My=U"-M | =V D7 . (Ry - Sgpye + Ny) =V -D71- My
"= Because U is an orthogonal matrix, Ny are still uncorrelated and follows a normal
distribution.

= My = U" - Mis the measurement in the effective frequency domain
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Reminder of SVD Method

= Minimize y?:
x’()=(m-r-s)l-Cov'-(m—-r-
= Cholesky decomposition: Cov™1 = Q- Q
" Pre-scalingg M :=Q -mR:==0Q-r
= ML estimator: § = (RTR)™'-RT- M

= Equivalently, the estimator can be written
N

[

N=uT-N | §=V-D71-U"-(R-stye + N)

4 N

Singular value decomposition (SVD)
R=U-D-V"

U,V: orthogonal

D: diagonal (diagonal elements

ranked by magnitude)

\_ /

as e
Recall in signal processing }

My=UT - M =V-D 1 (Ry - Sppye+ Ny) =V -D~ 1M, S(w) = [R(w)] M (w)

J

\_

"= Because U is an orthogonal matrix, Ny are still uncorrelated and follows a normal

distribution.

= My = U" - Mis the measurement in the effective frequency domain
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Reminder of Regularization unfolding

" The estimator can be obtained by finding the maximum of

d(s) = log|L(s) |+ tX(s) [ Regularization function

Likelihood function

Regularization strength

= E.g. Tikhonov regularization

k 2
¢ (s(E)) = —j(ddf{f)) dE,k =0,1,2, ..

= When k = 0, the unfolded result can be written as
§=R'R+tH)'-RT-M

where [ is an identity matrix and 7 is the regularization strength
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Reminder of Regularization unfolding

" The estimator can be obtained by finding the maximum of
d(s) = log|L(s) |+ tX(s) [ Regularization function

Likelihood function

Regularization strength

= E.g. Tikhonov regularization
2
d*s(E
Tk (s(E)) = —J( ( )) dE,k =0,1,2, ..

dkE
R=U-D-VT ]
= When k = 0, the unfolded result can be written as

S$=R'R+tD) ' -RT-M

where [ is an identity matrix and 7 is the regularization strength
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Reminder of Regularization unfolding

" The estimator can be obtained by finding the maximum of
d(s) = log|L(s) |+ tX(s) [ Regularization function

Likelihood function

Regularization strength

= E.g. Tikhonov regularization

k 2
2¢(s(E)) = —f(ddf{f)) dE,k =0,1,2, ...

R=U-D-VT ]
= When k = 0, the unfolded result can be written as
4 N
§=A-(RTR)"'.-RT-M
where A=V -F. VT, (d; is the diagonal terms of D)
\_ J
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Reminder of Regularization unfolding

* The estimator can be obtained by finding the maximum of

Likelihood function

L(s)

+ T

2(s)

L —>

: d(s) = log

.

Regularization strength

= E.g. Tikhonov regularization

Regularization function

= When k

Regularization is effectively introducing an additional
smearing to the unfolded results

(

§=A-(RTR)"'.-RT-M

where A=V -F-VT,
\__

(d; is the diagonal terms of D)
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Reminder of Regularization unfolding

" The estimator can be obtained by finding the maximum of
d(s) = log|L(s) |+ tX(s) [ Regularization function

.

Regularization strength

Likelihood function

= E.g. Tikhonov regularization

k 2
2¢(s(E)) = —f(ddf{f)) dE,k =0,1,2, ...

= When k = 0, the unfolded result can be written as

R=U-D-VT ]

§=V-F-D 1 (Ry" Sgyue + Ny), where

\ Ny are suppressed by d;/ (df + 1), regardless of signal strength
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*Recall: § =V - F D" - (Ry - Srue + Ny)» Fij =

Xiaoyue Li ‘\\\\ Stony Brook University DPF2017 - FNAL
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Wiener-SVYD

"Recal: § =V -W-D' - (Ry * Strye + Ny), W: Wiener filter
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Wiener-SVYD

"Recal: § =V -W-D' - (Ry * Strye + Ny), W: Wiener filter

* In Wiener-SVD method, the functional form
of W (replace / as filter) also factors in the
signal expectation in the effective frequency
domain

M, =U"-M=UT"-R-5=D-VT.3

Xiaoyue Li ‘\\\‘ Stony Brook University DPF2017 - ENAL
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Wiener-SVYD

"Recal: § =V -W-D' - (Ry * Strye + Ny), W: Wiener filter

* In Wiener-SVD method, the functional form
of W (replace / as filter) also factors in the
signal expectation in the effective frequency
domain

My =U"-M=UT"-R-5=D-VT.§
. —2 _\2
'Slgnalt MUi — dlz .(Z]Vl"l]w.sj)

" Noise: 1 (normal distribution)
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Wiener-SVYD

"Recal: § =V -W-D' - (Ry * Strye + Ny), W: Wiener filter

* In Wiener-SVD method, the functional form
of W (replace / as filter) also factors in the
signal expectation in the effective frequency

domain
M, =U"-M=UT"-R-5=D-VT.3
: V2 2 T . <)* g
'Slgnalt MUi — di .(Z]Vl] ’Sj)
W-

" Noise: 1 (normal distribution)

___ o N
_ MUi S
Wij —2 —2Yij
MUL.+NUL
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* In Tikhonov regularization, when k # 0, the solution is
§=R'R+tCc'C)~'-RT-M

where in the case of k = 2,

-1 1 0 = 0 0 0
/1 -2 1 ---000\
0 1 0 0 0
' 2

—2

\OOO~-1—21
o oo - 0 -1 1
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Generalized Wiener-SVYD

* In Tikhonov regularization, when k # 0, the solution is
§=R'R+tCc'C)~'-RT-M

where in the case of k = 2,

-1 1 0 00 0
/1—21 ---000\
|0 1 -2 =00 0
S . =2 1 0
000 - 1 -2 1
000 = 0 -1 1

= Similarly to Tikhonov regularization, we can add an
additional matrix C to the equation

M=(R-CYH-(C-3)

Xiaoyue Li ‘\\\‘ Stony Brook University DPF2017 - FNAL
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Generalized Wiener-SVYD

* In Tikhonov regularization, when k # 0, the solution is
§=R'R+tCc'C)~'-RT-M

where in the case of k = 2,

—1
1 Since the effective frequency
c=| O domain is determined by the
Pl smearing matrix R, the
0 0 O inclusion of C would alter
0 0 O the basis of the effective
= Similarly to Tikhonov regularization, we c frequency domain.
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Generalized Wiener-SVYD

* In Tikhonov regularization, when k # 0, the solution is
§=R'R+tCc'C)~'-RT-M

where in the case of k = 2,

/—1 1 0 = 00 0 4 N\
1 -2 1 0 0 0 \
C _ O 1 _2 cee O 0 O SVD
S .. =2 1 0
0 0 O -1 =2 1 -1 _— . .UT
00 o 0 i RC Uc Do -V
= Similarly to Tikhonov regularization, we c

additional matrix C to the equation

M=(R-CHr
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Generalized Wiener-SVYD

* In Tikhonov regularization, when k # 0, the solution is
§=R'R+tCc'C)~'-RT-M

4 N

The Wiener-SVD solution becomes / \
s=Cct.v,-w,-vI-C-(RTR)™*-RT-M SVD
d? - (X:(vh). - (X, Cqi- 5
(WC)U:diz'(Z(jz(::/ET)ij)fj(Z(zZle‘151))3)+1 1 RC 1= Uec - De - VCT
= Similarly to Tikhonov regularization, we c

additional matrix C to the equation
M=(R-CHr(C-5)
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Regularization interpretation of Wiener-SVD method

* The Wiener-SVD unfolding method is equivalent to regularization
w.r.t. minimizing the signal to noise ratio in the effective frequency

domain (Mu)L Z] Lj J
2

(MU)Z (Z] l] ]

1
¢(s) =logL(s) +§z log = = log L(s) + ZZI

Q\\\\ Stony Brook University
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Application on neutrino cross-section measurements ()

TO)’ experlment Detector response Statistics only uncertainties

505_ true spectrum E E 14;_ 6 g 14;_ I120

00F Asimov spectrum 23 12F 23 12F
; - 2t S5 14100
- —— measured spectrum ] > 10E g 10F

50' . o E ’4 © E E _80
| 1 28 3 8 ]

00} 1 2 e 32 e -f 1460
[ ] 2 ak 2 & 4t

': ..I...I...I...I...I...I...I.
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Energy True energy bin Reconstructed energy bin
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Application on neutrino cross-section measurements (2)

Regularization

F diz o)
g di2 +7 Y
Wiener-SVD

S=vV-w-D1.M

N2
diz . (Zj Vi? . Sj)

i

a? - (2,75 5)" +1

Xiaoyue Li
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Filter shape
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Application on neutrino cross-section measurements (3)

Additional smearing

Unfolded covariance

matrix A,
A T -1 T g
) true spectrum S = AC . (R R) * R ¢ M
EZSO unfolded spectrum - 14
4 unfolded data . i3] 12
8200 &
© g 10
2150 5
g =
2100 = 6 .
A Wiener-SVD w/ C,
50 )
0 g |10
0 2 4 6 8 10 12 2 4 6 8 101214 %2468101214
Energy True energy bin True energy bin
—— true spectrum

§25() unfolded spectrum =14 =14
2200 unfolded data 51 8 S 12
3 > >
S 510 6 51 . L
8150 5 g ' 5 Tikhonov regularization w/ C,
£ 3 4 3
2100 £ 6 =

4 2

2

0
8
6
4
2
b

0024681012 2 4 6 8 101214 2 4 6 8101214

Energy True energy bin True energy bin
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Application on neutrino cross-section measurements (4)

1/, 5 (100...0
MSE:—(cr +b) 010...0
n Co=1|.... .
aa) AL AL L BN IR LA IS " L L L 000...1
7p) 6 ——— Regularization w/ C © 7L ——— Regularization w/ C _ - -
10 3 . . 0 = 10 3 . . 0 3
: Regularization w/ C E g Regularization w/ C 3 110 0
C —— Regularization w/ C2 i 6 —— Regularization w/ C2 N '
105:— - Wiener-SVD w/ C _ 10 g_ ® Wiener-SVD w/C, _g O -11...0
: Wiener-SVD w/ C, : i Wiener-SVD w/ C, 5 Ci = Do
104:_ —— Wiener-SVD w/ C, _: 1()5 2 ® Wiener-SVD w/ C, E 0 00. -1
AN ] 0 00... 0 —I
: 1 10%g 3 ,
1035_ : 35 ] ~l+e ?1 0...0 8
: ; 10 = 2 | -24+€l1...0
) T - ] G = : R S b
1072 2o C o i ® (] ) )
AN 3 102 - \ 2 0 0 0...1-2+¢€
I T T = . o N\ . g i 0 0O 0...0 | —l+€_
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Regularization strength variance
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Application on reactor neutrino measurement (1)

Covariance matrix includes both statistical

4000 <12 . ..
*§ i 2 and systematic uncertainties
8, I =2
30001 >
i o)
L S 12
2000 a )
C = Neutrino spectrum g g 10
10005 —Prompt spectrum | - S 8
: 2
O-.I..I..I..h!-l-l...l... 0 |_|J6
2 4 6 8 10 12 8 10 12 ‘—
Energy (MeV) Prompt Energy (MeV) g— 4
© 2
o5 (AT -
0.04 2 4 6 8 10 12
20 0.035 Neutrino Energy (MeV)
0.03

—_
)]

Detector energy response matrix I
0.015 as reported by the Daya Bay collaboration

Y
o

pt Energy Bin after Pre-scaling

0.01
Pre-scaled 5 0.005
prompt energy - | | | | | ;
distribution o 5 10 15 20 25 E 0D 5 10 15 20 25 Pre-scaled detector ener 1 _ AT
Prompt Energy Bin after Pre-scaling Q%NGU'(””O Energy Bin after Pre-scaling . Y Cov - Q ' Q
M:=0Q -m response matrix R := Q - r
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Application on reactor neutrino measurement (2)

(13 = b2 . . .
Filter” shape in the effective frequency domain = In practice, the “true” energy spectrum is unknown;all
T~ ] j we have are various models = take average
—Regularization —Regularization
—Wiener-SVD 0.8 —Wiener-SVD o) X}%
[ yT . LeT T
0.6¢ Q2 =2 2 Zk (Z‘l ‘/"] S(k)J) ¢
04'_ S" :MUzd’ . 2 .
T 2k e
0.2f
w/ C, - w/ C, = The y? for model k is calculated by comparing the
PRI R -l e | | R
10 15 20 25 % 70 5. 20 25 predicted spectrum my, := r - S}, and measurementm
Effective Frequency Bin Effective Frequency Bin
Unfolded distributions Additional smearing matrix
4000 < 12
2 | > Io.7 ’>"12
é [ ! 2 10 —0.6 0 10
3000F I > s 2
[ ! 5] '
i | (5 H0.4 E; 8
2000 o 0.3 o)
I - = o 6
[ —True 5 -0.2 L
i 2 Wiener-SVD with C, [0)
1000F v Regularization C, zZ 0.1 8 4
L 0 E
[ 0.1 > 2
0 SR APRPS: APPSR o 2 4 6 BMJV‘SQ
2 4 6 8 10 12 2 4 6 8 10 12 Z -
Neutrino Energy (MeV) Neutrino Energy (MeV) Neutrino Energy (Me Unfolded covariance matrix
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Application on reactor neutrino measurement (3)

— Regularization
= Wiener-SVD
» Wiener-SVD w/incorrect prediction
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Discussions and recommendations (1)

= Pros & cons of Wiener-SVYD

* It does not require the evaluation of regularization strength.

" |t is model-dependent. However, the dependence can be mitigated by taking into
account a number of different models,and by reporting the additional smearing
matrix.

* Both the traditional regularization or Wiener-SVD are equivalent to
applying a new smearing matrix, which suppresses the large oscillation (high
variance) of the direct matrix inversion unfolded results, but also
introduces bias.

§=Ac.-(R"R)™'-R"-M
2
d - (2, (i G- 5)) +1

Where Ac=C7"-Vo-W,-V¢ -C (We)ij=
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Discussions and recommendations (2)

* The Wiener filter should be constructed in ways which takes into account a range
of prior expectations.

= C, matrix generally yields better results than C, and C;

* We recommend reporting this additional smearing matrix A, in the publication
together with the unfolded results to enable a more direct comparison of
expectations (e.g. from new theoretical calculations) with the unfolded results. In
practice, the new smearing matrix should be applied to the theoretical calculation
before comparing to the unfolded results.

arXiv:1705.03568
https://github.com/BNLIF/Wiener-SVD-Unfolding
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Regularization interpretation of Wiener-SVD method

. TheW|ener-SVD unfolding method is equivalent to regularization w.r.t. minimizing the signal to noise ratio in the effective frequency domain (M ); =

Z] UJ

d(s) =logL(s) + = ZI og U) = logL(s) += Zlo (Z] u 1)

Minimizing Eq. (7) yields the following estimator
§==-X"t.v-M,

Where
0% ¢p? 1
ij P l‘aSj ( )l] - ik (MU)E kj
62¢2
Y 0s,0My; Y
= With X and Y evaluated at the expectation of § and M, one recovers Eq.(6)
§=V-w-VT.RT.-M
With
d; (21 ij ])
W = 2—15ij » ij
d?+ — d; (Z, T.5) 41
My,
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