Fermilab DUS. DEPARTMENT OF Science

Progress of the Charged Pion Semi-Inclusive Neutrino Charged-Current Cross Section in NOvA

A. Tsaris, On Behalf of the NOvA Collaboration
Division of Particles and Fields Conference 2017
July 31 - August 4, 2017
Fermi National Accelerator Laboratory, Batavia, IL

Resonant pion production is a dominant interaction channel for the energy range of the oscillation experiments

Thus modeling the nuclear effects for the final state interactions is key for precision neutrino energy measurements.

Signal Definition

$$\nu_{\mu} + N \rightarrow \mu + \pi^{+/-} + X$$

- One muon
- At least one charge pion
- Classify events based on an event id
 - » the selection is sensitive to low energy pions
- Measure the flux integrated double differential cross section with respect to muon energy and angle

Beam at NOvA

NOvA has a narrow band beam and it is sensitive to many interaction channels

Nice overlap with other currently running experiments

T2K + MicroBooNE + NOvA + MINERvA

🗖 🛟 🕹 Fermilab

The NOvA Near Detector

- 20,193 identical cells constructed into 214 alternating horizontal and vertical planes
- Each plane is 96 cells long

 Cells are filled with liquid scintillator apart from the Muon Catcher which is made from steel to increase efficiency to contain muons (range out ~2 GeV muons)

Cross Section Definition

$$\left(\frac{d\,\sigma}{dx}\right)_{i} = \frac{\sum_{j} U_{ij} \left(N_{j}^{Sel} - N_{j}^{Bkg}\right)}{\epsilon_{i} \left(\Phi T\right) \Delta x_{i}}$$

where

 $\boldsymbol{\epsilon}_i$

 Δx_i

- $N_{j}^{Sel} N_{j}^{Bkg}$: data background = signal
 - U_{ii} : Unfolding matrix (reco j to truth i)
 - : Efficiency for bin i
 - ΦT : Flux times target number
 - : Bin Width

Event Selection

- All track vertices are required to be within the fiducial volume
- To reject neutrino interactions with the surrounding rock, tracks near the edge of the detector are not selected
- Events with hadronic activity near the muon catcher are excluded

Simulated NOvA Events

Event Identification

NOvA has successfully used deep learning technique to identify electron neutrino events for the oscillation analysis

- » Inspired by GoogLeNet architecture, an Artificial Neural Net was developed (arXiv:1604.01444) to classify neutrino interactions
- » An improvement to sensitivity was shown, equivalent to 30% more exposure

Event Identification

This architecture was used to classify final state interactions

- » Having an event id, a semi-inclusive cross section measurement can be made with respect to the lepton kinematics, giving better efficiency to low energy particles than traditional reconstruction
- Potentially on top of classifier techniques can be developed to id the reconstructed objects

Event Identification Energy Dependence

Event ID is better for high energy charge pions

A. Tsaris

Event Identification

- Since charge pion production has large cross section, find better FOM that statistical to improve the quality of the measurement.
- Quality is being driven by systematics and background events
- Fractional uncertainty of the cross section:

$$\frac{\delta\sigma}{\sigma} = \sqrt{\left(\frac{\delta N_{bkg}^{syst}}{N_{sel} - N_{bkg}}\right)^2 + \left(\frac{\delta\epsilon}{\epsilon}\right)^2}$$

Systematics that were used are: calibration uncertainty, cross section model uncertainty, flux uncertainty

A. Tsaris

¹⁴ DPF 2017, Fermilab, IL, USA

$$\frac{\delta\sigma}{\sigma} = \sqrt{\left(\frac{\delta N_{bkg}^{syst}}{N_{sel} - N_{bkg}}\right)^2 + \left(\frac{\delta\epsilon}{\epsilon}\right)^2}$$

Systematics that were used are:

- calibration uncertainty
- cross section model uncertainty
- flux uncertainty

Signal

740,724

237,519

- Table shows events selected with event-pion score bigger than 0.7
 - POT exposure corresponds to 8.09 e20
- Main background is CC0π events
- A detailed study is underway for this particular topology

Selected

2,684,460

305,438

DPF 2017, Fermilab, IL, USA

0.7

Cut

Value

Presel

CVN-pi

16

Summary && Future Work

- » We are planning to do a measurement of double differential cross section with respect to muon kinematics
 - For the pions that are reconstructable we want to do a measurement with the pion kinematics as well (more related to hadronic interactions)
- » Event ID of the charge pion events has been developed
- » Framework to make the selection based on optimizing the quality of the measurement
- » A multi label ANN is underway which might help us with particular difficult topologies and open more possibilities
- » Weight events with different generator trying to quantify model dependence of selection and technique
 - Traditional approaches to id pions

Fermilab