Search for Contact Interactions in $\mu^+\mu^-$ and e^+e^- Final States in 13 TeV p-p Collisions at CMS

<u>S. Zaleski</u> ⁶ P. Bhat ¹ P. Dong ² N. De Filippis ³ S. Elgammal ⁴ J. Schulte ⁵ P. Karchin ⁶ N. Neumeister ⁵ D. Salazar-Gallegos ⁷ L. Spiegel ¹ J. Sturdy ⁶ P. Thapa

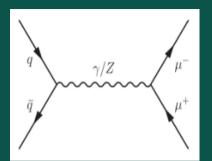
¹Fermi National Accelerator and Laboratory

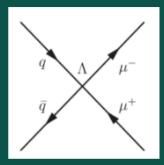
⁴British Unversity in Egypt

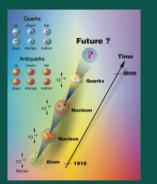
⁵Purdue University ⁶Wayne State University

²Illinois Mathematics and Science Academy

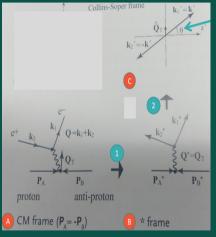
³INFN Sezione di Bari


⁷University of Illinois at Urbana-Champaign


Aug. 2, 2017


Objective

- Search for evidence of contact interactions (CI) in both dimuon and dielectron channels by comparing CI to Drell-Yan (DY)
- \blacksquare Will seek evidence for CI or place a lower limit on energy scale parameter Λ
- Limit on combined dilepton channel will also be set
- $\frac{d\sigma^{(CI)}}{dM_m} = \frac{d\sigma^{(DY)}}{dM_m} \eta \frac{l}{\Lambda^2} + \eta^2 \frac{C}{\Lambda^4} (\eta \text{ is relative sign between CI and DY})$
- I and C are proportional to interference and CI amplitudes respectively


Motivation

$$\begin{split} \mathcal{L}_{ql} &= (g_0^2/\Lambda^2) \{ \eta_{LL} (\bar{q}_L \gamma^\mu q_L) (\bar{\mu}_L \gamma_\mu \mu_L) \\ &+ \eta_{LR} (\bar{q}_L \gamma^\mu q_L) (\bar{\mu}_R \gamma_\mu \mu_R) \\ &+ \eta_{RL} (\bar{u}_R \gamma^\mu u_R) (\bar{\mu}_L \gamma_\mu \mu_L) \\ &+ \eta_{RL} (\bar{d}_R \gamma^\mu d_R) (\bar{\mu}_L \gamma_\mu \mu_L) \\ &+ \eta_{RR} (\bar{d}_R \gamma^\mu u_R) (\bar{\mu}_R \gamma_\mu \mu_R) \\ &+ \eta_{RR} (\bar{d}_R \gamma^\mu d_R) (\bar{\mu}_R \gamma_\mu \mu_R) \}, \end{split}$$

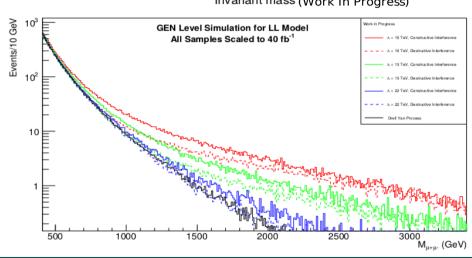
- Evidence of CI would suggest quark or lepton substructure
- Contact interaction models with different helicity structures can be used to interpret the data: left-left(LL), left-right(LR), right-right(RR)

Collins-Soper Frame

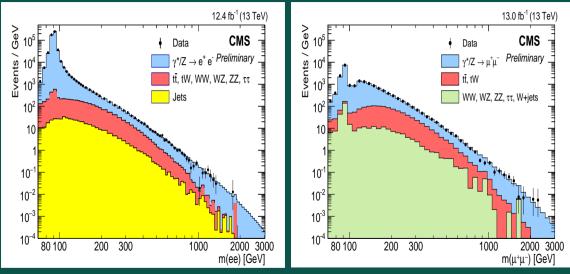
Nagashimi, Elementary Particle Physics

- Collins-Soper (CS) frame is the rest frame of dilepton system of interest
- To get to CS frame, from CM frame boost along longitudinal direction, then boost along transverse direction
- \blacksquare θ_{CS} is of interest as distribution in LR model differs from those of LL and RR
 - θ_{CS} defined to be angle between $q\overline{q}$ collision axis and $\ell^+\ell^-$ axis

 $\begin{array}{l} \cos(\theta_{CS}) = \frac{p_{z}(\ell^{+}\ell^{-})}{|p_{z}(\ell^{+}\ell^{-})|} \frac{2(k_{1}^{+}k_{2}^{-}-k_{1}^{-}k_{2}^{+})}{m(\ell^{+}\ell^{-})\sqrt{m^{2}(\ell^{+}\ell^{-})+p_{T}^{2}(\ell^{+}\ell^{-})}} \\ k_{i}^{+} = \frac{1}{\sqrt{2}}(p_{i}^{0}+p_{i}^{3}) \\ k_{i}^{-} = \frac{1}{\sqrt{2}}(p_{i}^{0}-p_{i}^{3}) \end{array}$


Search Method

Compare data to SM and CI model $\frac{dN}{dM_{ee}}; \theta_{CS}$ SM processes: DY $t\overline{t}$. tW diboson (WW. WZ. ZZ) CI model includes interference term between DY and CI samples CI signal is the excess of events above SM prediction Find lower limits on Λ using a Bayesian method Use prior flat in: σ , $\frac{1}{\Lambda^2}$, or $\frac{1}{\Lambda^4}$


Simulation Method

- Create MC samples using Pythia8 and GEANT4 then reconstruct
- Λ = 10, 16, 22, 28, 34 TeV
- Parameterize event yield by Λ
- As chosen a few below and above Run I limits to better predict new limits
- Helicity models: LL, LR, RR
- Interference: Constructive and destructive
- Both dielectron and dimuon final states
- Lower mass cut at 300, 800, 1300, 2000 (LL Con Only) GeV. These will be combined for larger statistics
- Each sample has 50 k events

Dimuon Mass for different Λ values


Dilepton Invariant Mass

From CMS PAS EXO-16-031

From CMS PAS EXO-16-031

Dimuon CI and Background

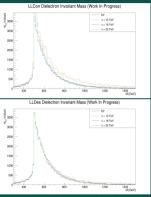
Summary

Item	Run I	Run II
Lumi	5.7 <i>fb</i> ⁻¹ (7 TeV)	36.3 fb^{-1}
Model	LL	LL,LR,RR
θ_{CS}	no	yes

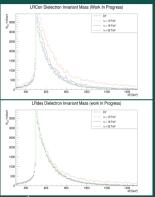
Lower Limits on Λ from Run I

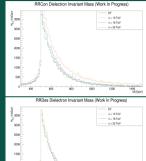
Dileptons	Λ_c (TeV)	Λ_d (TeV)
e^+e^	18.3	13.5
$\mu^+\mu^-$	15.2	12.0

Lower limits on A from Run 1: CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at $\sqrt{s} = 8$ TeV, JHEP 04 (2015) 025.

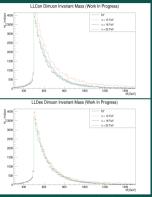

BACKUP

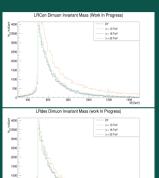
Harari Fermions

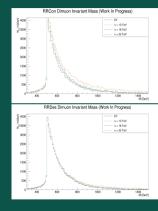

charge	preon makeup	particle
+1	+++	positron
$+\frac{2}{3}$	++0	u-quark
$+\frac{1}{3}$	+00	anti d-quark
0	000	e-neutrino
0	000	anti e-neutrino
$-\frac{1}{3}$	-00	d-quark
$-\frac{2}{3}$	0	anti u-quark
-1		electron

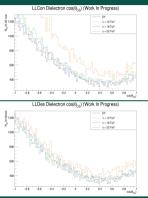

charge	preon makeup	particle
+1	+++000	W^+
-1	000	W^-
0	++/-+-+00/000000/-+0000	Z_0
0	+-	γ

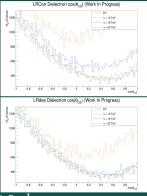
Dielectron Mass Distribution

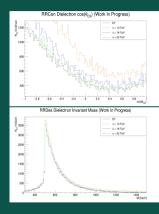

All samples scaled to $L = 37.12 fb^{-1}$



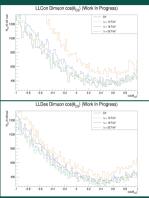

Dimuon Mass Distribution


All samples scaled to $L = 37.12 fb^{-1}$

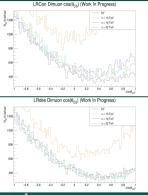

1400 M (DeV

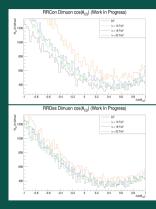


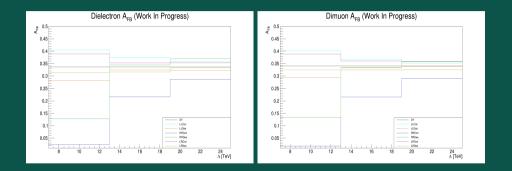
Dielectron Collins-Soper Angle Distribution

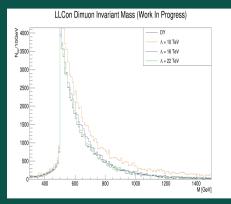


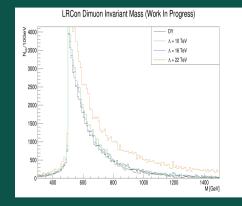
All samples scaled to $L = 37.12 fb^{-1}$






Dimuon Collins-Soper Angle Distribution


All samples scaled to $L = 37.12 fb^{-1}$



Dimuon Mass Distribution

All samples scaled to $L = 37.12 fb^{-1}$

