A novel, precise LHCb measurement of B⁰s and D⁻s lifetimes

Diego Tonelli (INFN Trieste) for the LHCb Collaboration

DPF 2017 Fermilab, Aug 1, 2017

Not just stamp collecting

Lifetimes test the heavy-quark expansion model: the best predictive tool for inclusive quantities in the dynamics of heavy mesons.

- $\tau(B^{0}_{s})/\tau(B^{0})$ has key discriminating power as corrections nearly vanish.
- Data value 0.99 ± 0.004 is 2.5σ off the 1.001 ± 0.002 prediction.
- \bigcirc ==> Improve the B⁰_s lifetime.
- Look where most of the statistical power is: semileptonic decays

$$\tau_s^{\rm fs} = \frac{1}{\Gamma_s} \left[\frac{1 + (\Delta \Gamma_s / 2\Gamma_s)^2}{1 - (\Delta \Gamma_s / 2\Gamma_s)^2} \right]$$

Semileptonic got out of fashion

1	<i>VALUE</i> (10^{-12} s)	EVTS		DOCUMENT ID		TECN	COMMENT
	$\textbf{1.520} \pm \textbf{0.004}$	OUR EVALUATION					
	$1.534 \pm 0.019 \pm 0.021$		1	ABAZOV	2015A	D0	$p\overline{p}$ at 1.96 TeV
	$1.499 \pm 0.013 \pm 0.005$		2	AAIJ	2014E	LHCB	pp at 7 TeV
	$1.524 \pm 0.006 \pm 0.004$		3	AAIJ	2014E	LHCB	pp at 7 TeV
	$1.524 \pm 0.011 \pm 0.004$		4	AAIJ	2014R	LHCB	pp at 7 TeV
	$1.509 \pm 0.012 \pm 0.018$		5	AAD	2013U	ATLS	<i>pp</i> at 7 TeV
	$1.508 \pm 0.025 \pm 0.043$		2	ABAZOV	2012U	D0	$p\overline{p}$ at 1.96 TeV
	$1.507 \pm 0.010 \pm 0.008$		6	AALTONEN	2011	CDF	$p\overline{p}$ at 1.96 TeV
	$1.414 \pm 0.018 \pm 0.034$		7	ABAZOV	2009E	D0	$p\overline{p}$ at 1.96 TeV
	$1.504 \pm 0.013 \stackrel{+0.018}{_{-0.013}}$		8	AUBERT	2006G	BABR	$e^+ e^- \rightarrow \Upsilon(4S)$
	$1.534 \pm 0.008 \pm 0.010$		9	ABE	2005B	BELL	$e^+ e^- \rightarrow \Upsilon(4S)$
	1.531 ±0.021 ±0.031		10	ABDALLAH	2004E	DLPH	$e^+ e^- \rightarrow Z$
	$1.523 \begin{array}{c} +0.024 \\ -0.023 \end{array} \pm 0.022$		11	AUBERT	2003C	BABR	$e^+ e^- \rightarrow \Upsilon(4S)$
- 15	$1.533 \pm 0.034 \pm 0.038$		12	AUBERT	2003H	BABR	$e^+ e^- \rightarrow \Upsilon(4S)$
	1.497 ±0.073 ±0.032		13	ACOSTA	2002C	CDF	$p\overline{p}$ at 1.8 TeV
	1.529 ±0.012 ±0.029		14	AUBERT	2002H	BABR	$e^+ e^- \rightarrow \Upsilon(4S)$
	$1.546 \pm 0.032 \pm 0.022$		15	AUBERT	2001F	BABR	$e^+ e^- \rightarrow \Upsilon(4S)$
	▶ 1.541 ±0.028 ±0.023		14	ABBIENDI,G	2000B	OPAL	$e^+ e^- \rightarrow Z$
	▶ 1.518 ±0.053 ±0.034		16	BARATE	2000R	ALEP	$e^+ e^- \rightarrow Z$
	▶ 1.523 ±0.057 ±0.053		17	ABBIENDI	1999J	OPAL	$e^+ e^- \rightarrow Z$
	$1.474 \pm 0.039 + 0.052 - 0.051$		16	ABE	1998Q	CDF	$p\overline{p}$ at $1.8~{ m TeV}$
	▶ 1.52 ±0.06 ±0.04		17	ACCIARRI	1998S	L3	$e^+ e^- \rightarrow Z$
	1.64 ±0.08 ±0.08		17	ABE	1997J	SLD	$e^+ e^- \rightarrow Z$
	1.532 ±0.041 ±0.040		18	ABREU	1997F	DLPH	$e^+ e^- \rightarrow Z$
-0	$1.25 \substack{+0.15 \\ -0.13} \pm 0.05$	121	13	BUSKULIC	1996J	ALEP	$e^+ e^- \rightarrow Z$
-0	$1.49 \begin{array}{c} +0.17 \\ -0.15 \end{array} \begin{array}{c} +0.08 \\ -0.06 \end{array}$		19	BUSKULIC	1996J	ALEP	$e^+ e^- \rightarrow Z$
	$1.61 \stackrel{+0.14}{_{-0.13}} \pm 0.08$	1	6, 20	ABREU	1995Q	DLPH	$e^+ e^- \rightarrow Z$
	1.63 ±0.14 ±0.13		21	ADAM	1995	DLPH	$e^+ e^- \rightarrow Z$
	1.53 ±0.12 ±0.08		6 , 22	AKERS	1995T	OPAL	$e^+ e^- \rightarrow Z$

Mostly abandoned in the last decade, when large samples of fully reconstructed decays became available.

for a reason

Yield advantage typically offset by complications from unreconstructed neutrino momentum:

- Broadens B mass, spoiling separation from bckg and between the various signals within the inclusive final state
- Biases the decay-time determination from the observed decay length.

Pioneering attempts at the Tevatron, e.g.,

http://inspirehep.net/record/741160/files/fermilab-thesis-2006-78.PDF

http://inspirehep.net/record/1508436/files/fermilab-thesis-2010-76.pdf

some made it to paper, <u>https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.062001</u> although limited by large systematic uncertainties.

We report competitive B⁰s lifetimes from semileptonic decays thanks to a novel approach. Got D⁻s for free too..

How

 $\tau(B^{0}_{s})$ and $\tau(D^{-}_{s})$ from change in B^{0}_{s} yield vs decay time, relative to the yield of B^{0} decays **reconstructed in the same final state.**

K

K

V

μ

Π

D_s or D

 B_{s}^{0} or B_{s}^{0}

Name of the game: minimize B^{0}_{s} -to- B^{0} differences in decay-time acceptance

- Reconstruct many low-bckg B^{0}_{s} and B^{0} decays in the common (KK π)_D μ final state
- \bigcirc Enforce equal B^{0}_{s} and B^{0} decay-time acceptances
- Fit (a proxy to) the B mass to measure B_s^0 and B_s^0 yields vs (a proxy of) decay time: get B_s^0 width relative to $B^0 = > (1/\tau_{fs}) \Gamma(B^0)$
- Repeat vs D_s^{-} decay time: get the D_s^{-} width relative to $D^{-} => \Gamma(D_s^{-}) \Gamma(D^{-})$

20 layers of silicon microstrips for vertex reconstruction with 10-20 micron resolution

High acceptance for low-background muons with pT > 1.5 GeV

JINST 3 (2008) S08005

Event selection

LHCb 2010-12 sample, restricted to single muon trigger

Combine single muon with opposite-sign $D^-s/D^- \rightarrow KK\pi$

O Signal

• $b \rightarrow X$ (physics bckg)

Combinatorial bckg

Tune PID, p_T and track/vertex quality to make Dµ-mass of same-sign and signal candidate decays similar at $m_{D\mu} > 5$ GeV

Use same-sign to model combinatorics

Suppressing b-> X bckg

Mass vetoes suppress

- $B_s^0 \rightarrow \psi^{(\prime)} (\rightarrow \mu^+ \mu^-) \phi(\rightarrow K^+ K^-) \ [\mu \rightarrow \pi]$
- $\Lambda_b^0 \to \Lambda_c^+ (\to p K^- \pi^+) \mu^- \bar{\nu}_\mu X \ [p \to K \text{ or } \pi]$
- $B^0_{(s)} \to D^-_{(s)} \pi^+ \ [\pi \to \mu]$

Correlation between mass and D-momentum component transverse to the B flight reduce to about 5% of the signal the following backgrounds

- $B^0_{(s)} \to D^{(*)-}_{(s)} D^+_{(s)}$
- $\bullet \ B^+ \to \overline{D}{}^{(*)0} D^{(*)+}$
- $B^+ \rightarrow D^- \mu^+ \nu_\mu X$
- $B^+ \rightarrow D_s^{(*)-} K^+ \mu^+ \nu_\mu X$
- $B^0 \to D_s^{(*)-} K^0 \mu^+ \nu_\mu X$

- $B^0_s \to D^0 D^-_s K^+$
- $B_s^0 \rightarrow D^- D_s^+ K^0$
- $\bullet \ \varLambda^0_b \to \varLambda^+_c D^{\scriptscriptstyle{(*)-}}_s X$
- $\Lambda_b^0 \to D_s^+ \Lambda \mu^- \bar{\nu}_\mu X$

Sample composition

10

Fit corrected mass

$$m_{\rm corr} = \sqrt{m^2(D\mu) + p_{\perp}^2(D\mu)} + p_{\perp}(D\mu)$$

PRL 66 1819 (1991)

<u>Shapes</u>: from MC, grouping together components with similar distributions.

<u>Yields</u>: from the fit, including shape and normalization uncertainties.

Validate fit on the B^o sample, whose composition is precisely known from B-factories

D⁻s lifetime result

Repeat composition fit in each D decay time bin and then fit the resulting signal-to-reference yield ratio, including a 4% relative acceptance correction and 110 fs decay-time resolution.

That was a bonus – now to the B^0_s

Correcting for the neutrino

Unreconstructed v momentum biases the decay-time determination from the observed decay length.

Correct observed momentum for average missing momentum as determined in simulation:

 $k = p(D\mu)/p(B)$

http://lss.fnal.gov/archive/thesis/2000/fermilab-thesis-2006-18.pdf

Spread of the correction dominates the final decay-time resolution and is included in the final fit for the width-difference.

Making acceptances equal

Need uniform signal-toreference acceptance ratio as a function of decay time.

Known 2x difference between D_s and D_s lifetime introduces $\pm 20\%$ nonuniformities.

Reweighting each signal candidate with $exp[\Delta(D) * t(D_s)]$ reduces them to within 5%.

Flavor specific B⁰_s lifetime

 $\Delta(B) = -0.0115 \pm 0.0053 \pm 0.0041 / ps$

 $\tau(B_s^0) = 1.547 \pm 0.013 \pm 0.010 \pm 0.004 \text{ ps}$

15% more precise than LHCb's world's best, PRL 113 172001 (2014)

Closure test of acceptance

Width difference between B^0 decays reconstructed in $KK\pi\mu$ and $K\pi\pi\mu$.

Same B meson, different final state!

Limiting case: 4x larger acceptance correction than in the signal sample

Systematic uncertainties

	$\sigma[\Delta(D)] [\mathrm{ps}^{-1}]$	$\sigma[\Delta(B)] \;[\mathrm{ps}^{-1}\;]$
Fit bias	0.0004	0.0009
Decay model of $B_s^0 \to D_s^{*-} \mu^+ \nu$	0.0005	0.0025
Sample composition	0.0007	0.0005
$f_s/f_d(p_T)$	0.0018	0.0028
Decay-time acceptance	0.0049	0.0004
Decay-time resolution	0.0039	0.0004
Feed-down from B_c^+ decays	—	0.0010
Total systematic	0.0065	0.0041
Statistical	0.0117	0.0053

Precision limited by the size of the reference sample

Summary

LHCb reports a novel data-driven method for competitive B-lifetime measurements using semileptonic decays

15% improvement in B⁰_s lifetime and 2x in D⁻_s lifetime. Accepted by PRL. arXiv:1705.03475

Results limited by reference sample size. Ample chances for improvement: extend to additional triggers (+20%), extend to Run II (3x), use alternative reference channels.

Method potential extends well beyond lifetimes: semileptonic BFs, form factors, etc.

Method is suitable for other experiments too.

(Occasionally stamp-collecting too can be quite rewarding)

Backup

Sweden Three Skilling Banco, Yellow Color Error, 1855

\$2.3 million

Sweden Three Skilling Banco, Yellow Color Error, 1855 \$2.3 million In 1855, Sweden issued its first series of stamps featuring the Swedish coat of arms. The stamps were available in a number of denominations ranging from 3 to 24 Swedish skillings. Each denomination was associated with a different color, which sometimes created confusion in the printing houses. Due to a printing error, one of the three skilling stamps appeared on yellowish orange paper meant for the eight skilling stamp of the same set instead of the usual blue-green color used for this denomination. One copy of the yellow error variety was discovered in 1885 by a young Swedish boy in his grandfather's collection.

The exact number of mistakenly printed stamps remains unknown. It is considered to be a one-of-a-kind rarity, as no other copies have been discovered to date. In 1996, the stamp was auctioned to an anonymous collector for \$2.3 million.