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Why Monaopoles 2
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Existence of a single monopole implies charge
guantized due to quantization of angular
momentum of electroAmonopole system
Grand Unified Theory monopoles
A Wi  PBl@Rov monopoles: fundamental
solutions to norAlbelian gauge theories
A Produced early in the Big Bang
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Monopole Properties 3

A Caution: most every statement | make here should have an asterisk
assccl)mated with it as there are almost always assumptions that have been
made.

A Mass:

A Grand unified theories predict the existence of monopoles, produced
|1n O}Q% een/'(lgf Universe with masses greater than the GUT s
eV/c.

A Some GUT and some SUSY models predict intermediate mass
monopoles:10° GeV/& M »K10° GeV/&, that were produced in
later phase transitions in the early Universe.

A Mafqn_etic char e:]gDeni c/2e. Charge can be quite large if n > 1. Note
that'sincea,= g/t © 34 perturbation calculations cannot be used.

A Electric charge:monopoles can have an intrinsic electric chafgdng or
pick up an electric charge from an attached proton or nucleus.

A Spin: undefined; can either be ¥ or 0.

A Energy:the energy gained by a monopole with the minimum Dirac charge
over a coherent galactic length is 2 X1GeV.

A Lifetime: lowest mass stable due to conservationcbirge.
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NIVIO-AxidAopearan&Experiment 4

i NOVA is a-2letector longbaseline, off
axis neutrino oscillation experiment.

A Far detector 14kton, fine grind, lowZ, liquid
scintillator,810 km fromFermilab on the
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Waveshifting Far Detector
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Why Search for Monopoles with NOvVA s

A NOvAfar detectorhas a very large
surface area:

A NOVA 4290 n? 896 hor.+vert. planes
AMACRO: 3482 n? . 44,004 11 el
A SLIM:; 427 n? 2
A OHYA: 2000 n? 3

A NOVA will run a long time: at lea® 3 e

75.5,.,,7 -~

years most likely more FarDetector o |

. III' Near Detector
\

A NOvAfar detector is on surface, which means it has
little overburden

A Allows access tlighter monopoles that deep underground
detectors cannot see, because they cannot penetrate deep
underground.

A Means backgrounds are much larger: muon rate 150kHz!
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Monopole Energy Loss In Matter 6

_n_vmm —rrrr3 A Salient feature: the higher the
s o- mwzmw_\/ energy the more the energy loss,

, opposite of electric monopoles
- (no Bragg peak)
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A A few regimes:

A 10! >b: ionize or excite the
atoms and molecules

A 103<b < 10?2: assuming that
the medium is a degenerate
electron gas

A 104<b < 1083 excitation of
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Uncertainty of Monopole Energy Loss in Matt
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Simulated Monopole and Real Cosmic Data

A150kHzf cosmic induced events
AData driven trigger to control trigger rate lower than 10Hz.
AMake fast decision to reje€9.99%backgrounds. Limited bandwidth.

100K 20000 ElLEN] LI SO0 B0

.

5000

X {cm)

—5(H}

S00 | i

y (em)

—S00 1

0 1 U'U'U 2000 3000 4000 5000 6000
Zlcm)

NOvA - FMAL E929

. = T ; : ; ; ; ; : ; : = Uj ; ; ;
Run: 1/1 =R Elm
Event: 3/ -- 10 1
| le

EJEGTSLS‘;:;OEGL%?G 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 102 10 _
B L{LLsec) g (ADC)




Simulated Monopole and Real Cosmic Data

A150kHzf cosmic induced events
AData driven trigger to control trigger rate lower than 10Hz.
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Fast Monopole Trigger

10

Trigger Efficiency

A First trigger uses simple cutssed on

energy. Dec 2014

A Improved trigger withess energy
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dependency and less uncertaintysing
some additional topological value and
ADC distribution. Feb 2016
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Fast Monopole Trigger with A Neural Network

AChoose frameworkKerasand TensorFlow{GPU support).

AData set300 million cosmic events, 5 million monopole events.
Alnput: Values from hits cluster information.

APreselection: Through going, 3D requirement, etc.

ABuild a good model:
A Choose a set of inputs. Remove inputs with high linear correlation.
A Tune hyperparameters of models. Number of layers, nodes in each layer, etc.

We need to be careful
with model
complexity. A simple

model can not fully
utilize the data, but a
too complicated model
might overfit.

A neural network model will find a curve
surface in high dimensional space to
separate signal and backgrounds.
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