The MATHUSLA Detector

MAssive Timing Hodoscope for Ultra Stable

To search for ultra long-lived neutral particles (ULLPs)

Decay very far from the interaction point ($c\tau \sim 10^7$ m)

Do not interact with SM particles

Why Search for Long Lived Particles?

Dark Matter
Dark Energy
Hierarchy Problem
Matter/Anti-Matter Asymmetry

Motivated searches for new physics

Many extensions to the SM contain LLP
• Hidden Valley
• StealthSUSY
• Baryogenesis Models
• 2 Higgs Doublet Models
• Hidden Sector Models

What we know...

Hidden Sector

What we want to probe...

(Idea for Schematic taken from Strassler)
Current Searches

Specialized triggers and analysis methods re-purpose ATLAS to select the decays and reject background.

LLP decays in the ATLAS Calorimeters

LLP is produced

Backgrounds typically QCD, cosmics, cavern background, etc. depending on the analysis.

→ Rarely background free!
LHC Experiments have been busy!
ATLAS Long-lived Particle Searches - 95% CL Exclusion

Status: July 2015

Model Description

<table>
<thead>
<tr>
<th>Model</th>
<th>Signature</th>
<th>$\mathcal{L} dt$ [fb$^{-1}$]</th>
<th>Lifetime limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSY</td>
<td>RPV $\chi_l^i \rightarrow e\nu\nu$</td>
<td>20.3</td>
<td>$\tau_{\chi_l^i}$ lifetime</td>
</tr>
<tr>
<td></td>
<td>OGM $\chi_l^i \rightarrow Z\nu$</td>
<td>20.3</td>
<td>$\tau_{\chi_l^i}$ lifetime</td>
</tr>
<tr>
<td></td>
<td>AMSB $p\bar{p} \rightarrow \chi_l^i\chi_l^i$</td>
<td>20.3</td>
<td>$\tau_{\chi_l^i}$ lifetime</td>
</tr>
<tr>
<td></td>
<td>AMSB $p\bar{p} \rightarrow x_l^i x_l^i$</td>
<td>18.4</td>
<td>$\tau_{\chi_l^i}$ lifetime</td>
</tr>
<tr>
<td></td>
<td>GMSB non-pointing or delayed χ_l</td>
<td>20.3</td>
<td>τ_{χ_l} lifetime</td>
</tr>
<tr>
<td>Stealth SUSY</td>
<td>2 ID/MS vertices</td>
<td>19.5</td>
<td>τ_{χ_l} lifetime</td>
</tr>
<tr>
<td>Hidden Valley $H \rightarrow x_l x_l$</td>
<td>2 low-EMF trackless jets</td>
<td>20.3</td>
<td>τ_{χ_l} lifetime</td>
</tr>
<tr>
<td>FRVZ $H \rightarrow 2\gamma + X$</td>
<td>2 e$^+e^-$, $\nu\bar{\nu}$</td>
<td>20.3</td>
<td>τ_{χ_l} lifetime</td>
</tr>
<tr>
<td>FRVZ $H \rightarrow 4\gamma + X$</td>
<td>2 e$^+e^-$, $\nu\bar{\nu}$</td>
<td>20.3</td>
<td>τ_{χ_l} lifetime</td>
</tr>
<tr>
<td>Hidden Valley $H \rightarrow x_l x_l$</td>
<td>2 ID/MS vertices</td>
<td>19.5</td>
<td>τ_{χ_l} lifetime</td>
</tr>
<tr>
<td>Hidden Valley $H \rightarrow x_l x_l$</td>
<td>2 low-EMF trackless jets</td>
<td>20.3</td>
<td>τ_{χ_l} lifetime</td>
</tr>
<tr>
<td>Hidden Valley $H \rightarrow x_l x_l$</td>
<td>2 ID/MS vertices</td>
<td>19.5</td>
<td>τ_{χ_l} lifetime</td>
</tr>
<tr>
<td>Hidden Valley $H \rightarrow x_l x_l$</td>
<td>2 low-EMF trackless jets</td>
<td>20.3</td>
<td>τ_{χ_l} lifetime</td>
</tr>
</tbody>
</table>

Reference

<table>
<thead>
<tr>
<th>Reference</th>
<th>$m(\chi^0_1) = 1.3$ TeV, $m(\chi^0_1) = 1.0$ TeV</th>
<th>$m(\chi^0_1) = 1.1$ TeV, $m(\chi^0_1) = 1.0$ TeV</th>
<th>$m(x_l) = 450$ GeV</th>
<th>$m(x_l) = 450$ GeV</th>
<th>$m(x_l) = 450$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1504.05162</td>
<td>1504.05162</td>
<td>1310.3675</td>
<td>1506.03332</td>
<td>1409.5542</td>
</tr>
<tr>
<td></td>
<td>1504.02634</td>
<td>1504.02634</td>
<td>1409.0706</td>
<td>1409.0706</td>
<td>1409.0706</td>
</tr>
<tr>
<td></td>
<td>1504.03934</td>
<td>1504.03934</td>
<td>1409.0706</td>
<td>1409.0706</td>
<td>1409.0706</td>
</tr>
</tbody>
</table>

Only a selection of the available lifetime limits on new states is shown.
Much Longer Lifetimes Are Possible

Big Bang Nucleosynthesis

- Defines the upper limit on the lifetime
- Approximately 0.1 seconds (10^7 or 10^8 m)
- Limit comes from the n/p ratio
- Robust against most variations and is considered conservative

Conclusions: to access these long lifetimes we need a detector really far away, with no background

\[c\tau = 0.5 \text{ m} \]
\[c\tau = 1 \text{ m} \]
\[c\tau = 2 \text{ m} \]

arXiv: 1706.01920
MATHUSLA Overview

Surface Detector size is determined by acceptance!
Overall Design

\[N_{\text{obs}} \sim N_h \cdot Br(h \rightarrow ULLP \rightarrow SM) \cdot \epsilon_{\text{geometric}} \cdot \frac{L}{bc\tau} \]

\(c\tau \) – Lifetime of U LLP
\(b \) – kinematic constant: \(\frac{m_h}{m_h - n \cdot m_X} \)

(less than 3 for 2 body decay with \(m_X \sim 20 \text{ GeV} \))

\(N_h \) - 1.5 \times 10^8 during HL-LHC

\[\epsilon_{\text{geometric}} \text{ Fraction of } 4\pi \text{ covered by MATHUSLA} \]

If
• \(c\tau \sim 10^7 \text{ m} \)
• Need a to collect a few

Then
• \(L = 20 \text{ m} \)
• \(\epsilon_{\text{geometric}} = 10\% \)
What Is The Sensitivity?

Some sensitivity at the BBN limit
That is big?

200 m \times 200 \text{ m} \quad (\epsilon_{\text{geometric}} \sim 10\%)

Perhaps easier at CMS as they have unused land already owned by CERN
Detector Design

Internal design motivated by the differences between signal and background!

Goal is very high efficiency and almost zero background

\[\phi \rightarrow XX \]

Two jets of charged (and neutral) particles
Point back along direction of \(\phi \)
Point back to LHC interaction Point

No Interaction

Backgrounds:
- Cosmics from above
- \(\mu \) from LHC
- Atmospheric \(\nu \) from below (or above)
- \(\nu \) from LHC
Detector Design

$L = 20\text{ m}$

5 layers of RPC chambers

Top/Bottom layer of Scintillator

Decay Volume

Scintillator

Precise timing.
~ 80ns to cross top to bottom

Resistive Plate Chambers

“Cheap” tracking chambers
Decent timing

Differentiate between upward and downward going
Assure decay happened inside decay volume.

Pointing back to origin of particle
Cosmic Muon Background

10 MHz rate (over $200^2 \, m^2$)

- Downward traveling
- No vertex
- Hits bottom scintillator

Multiple ways to reject this background
Main worry: combinatorics with another background
LHC Muons

Rate from HL-LHC is ~ 10 Hz

- Muons must have $p \sim 70$ GeV to penetrate rock
- Some lack vertex
- Vertex-track multiplicity

Bottom scintillator-plane efficiency crucial
Upward Going Cosmic Neutrinos

- For muons above 300 MeV
- Does not point back to detector
- For some forms of signal this may be irreducible
- Combinatorics with cosmic ray

~ 100 per year

Will have to be carefully measured when LHC is turned off
LHC Neutrinos

- Does point back to detector
- Vertex-track multiplicity
- Combinatorics with cosmic ray

This will need further study, but is a very small background

~ few per run
Anchoring The Background Estimates

We are developing a GEANT-4 simulation to better understand these backgrounds.

And a fast simulation to aid in detector design.

We need some way to anchor these simulations in reality, however.

Test Stand
The MATHUSLA Test Stand

Repurpose DØ forward muon scintillator paddles (thanks, DØ!)

Repurpose RPC’s from the Argo cosmic ray experiment

Place test stand in ATLAS assembly building (P1)
Test Stand Status

Status
• Scintillator is being tested & characterized at CERN
• RPC’s will arrive any week now
• Support structures completing design/safety
• Aim to run in the fall of 2017 until winter shutdown

Goals
• Develop background rejection algorithms
• Understand algorithm performance in relation to full MATHLUSA design simulation
• Trigger: proposed to have only upward and downward going scintillator pair
 • The goal is not to hunt for signal with such a small ϵ_{geom}
• Create an LOI with a well understood background estimation
Giovanni Marsella giovanimarsella@cern.ch INFN Lecce e Universita del Salento
Cristiano Alpigiani cristiano.alpigiani@cern.ch University of Washington - Seattle
Akaxia Danae Cruz adanaecrus@cern.ch University of Washington - Seattle
Audrey Katherine Kvam audrey.katherine.kvam@cern.ch University of Washington - Seattle
Henry Lubatti lubatti@u.washington.edu University of Washington - Seattle
Mason Louis Profitt mason.louis.profitt@cern.ch University of Washington - Seattle
Joseph Rothberg joseph.rothberg@cern.ch University of Washington - Seattle
Rachel Christine Rosten rachel.rosten@cern.ch University of Washington - Seattle
Gordon Watts g Watts@uw.edu University of Washington - Seattle
Emma Toró Pastor emma.toro.pastor@cern.ch University of Washington - Seattle
Nina Anikeeva nina.anikeeva@gmail.com University of Washington - Seattle

Sunanda Banerjee Sunanda.Banerjee@cern.ch Fermi National Accelerator Laboratory
Yan Benhammou yan.benhammou@cern.ch Tel Aviv University
Mery Ben Moshe meryb@post.tau.ac.il Tel Aviv University
Tingting Cao tingting.cao@cern.ch Tel Aviv University
Erez Eltzion eretz.eltzion@cern.ch Tel Aviv University
Tamar Garbuz tgarbuz197@gmail.com Tel Aviv University
Gilad Mizrahi GiladMizrahi01@gmail.com Tel Aviv University
Yiflah Silver yifelah@gmail.com Tel Aviv University
Abi Soffer Abner.Soffer@cern.ch Tel Aviv University
Dan Levin dlevin@umich.edu University of Michigan
David Curtin david.r.curtin@gmail.com University of Maryland
Andy Haas Andy.haas@nyu.edu New York University

University of Washington
Seattle, FNAL, Tel Aviv University, University of Michigan, University of Maryland, Autonomous University of Puebla, Rutgers State University of New Jersey, SLAC, Università di Tor Vergata, Università della Calabria, Sapienza Università di Roma and CERN

Mario Rodriguez Cahuantzi mario.rodriguez.cahuantzi@cern.ch Autonomous University of Puebla
Martin Hentschinski martin.hentschinski@gmail.com Autonomous University of Puebla
Mario Ivan Martinez Hernandez Mario.Martinez.Hernandez@cern.ch Autonomous University of Puebla
Guillermo Tejeda Munoz Guillermo.Tejeda.Munoz@cern.ch Autonomous University of Puebla
Arturo Fernandez Tellez Arturo.Fernandez.Tellez@cern.ch Autonomous University of Puebla
Martin Alfonso Subieta Vasquez martin.alfonso.subieta.vasquez@cern.ch Autonomous University of Puebla
John Paul Chou john.paul.chou@cern.ch Rutgers, State University of New Jersey
Luke Kasper lukekasper25@gmail.com Rutgers, State University of New Jersey
Amitabh Lath Amitabh.Lath@cern.ch Rutgers, State University of New Jersey
Steffie Ann Thayil steffie.ann.thayil@cern.ch Rutgers, State University of New Jersey
Charlie Young young@slac.stanford.edu SLAC
Robert Arthur Mina robmina@stanford.edu SLAC
Paolo Camarri paolo.camarri@cern.ch Università di Tor Vergata
Roberto Cardarelli roberto.cardarelli@roma2.infn.it Università di Tor Vergata
Rinaldo Santonico santhio@roma2.infn.it Università di Tor Vergata
Barbara Liberti barbara.liberti@roma2.infn.it Università di Tor Vergata
Roberto Ipppa roberto.ipppa@cern.ch Università di Tor Vergata
Luca Pizzimento luca.pizzimento@cern.ch Università di Tor Vergata
Antonio Policicchio Antonio.Policicchio@cern.ch Università della Calabria
Marco Schioppa Marco.Schioppa@cern.ch Università della Calabria
Stefano Giagu Stefano.Giagu@cern.ch Sapienza Università di Roma
Cristiano Sebastian Cristiano.Sebastiani@cern.ch Sapienza Università di Roma
Austin Ball Austin.Ball@cern.ch CERN
Ce Zhang ce.zhang@cern.ch CERN (Summer Student)
Conclusion

- A novel idea to cover the complete phase space for neutral decaying ultra long lived particles
 - Takes advantage of field’s investment in the LHC
- Large Surface Detector – close to 200 x 200 m
- Composed of
 - Top and bottom scintillator planes to record direction and if particles are thru-and-thru
 - 5 layers of RPC’s to reconstruct secondary vertex
- Low background requirements will make detector design and quality control important
- Other interesting physics – like cosmic ray bundles – being explored
- Always looking for new people