Semileptonic B decays at LHCb

Matthew Rudolph
Syracuse University

on behalf of the LHCb Collaboration
August 3, 2017

Introduction

- Semileptonic b-hadron decays important tests of the Standard Model:
- Measure quark mixing CKM matrix elements $\left|V_{c b}\right|,\left|V_{u b}\right|$
- Validate understanding of QCD in decays
- Can study lepton flavor universality in charged current
- LHCb produces large data sets of b-hadron decays of all types
- Large semileptonic branching fractions $\approx 10 \%$ allow them to be used for other measurements

At LHCb

- Excellent vertexing and particle ID enable selection

$V_{u b} \mid$ with baryons
 First such measurement

Ratio
$\Lambda_{b}^{0} \rightarrow p \mu v / \Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu v$
Main backgrounds also semileptonic

Tagging decay flavor

Allows mixing studies

$\Delta m_{d}=(505.0 \pm 2.1 \pm 1.0) \mathrm{ns}^{-1}$

Eur. Phys. J. C (2016) 76: 412

CP violation in mixing

Phys. Rev. Lett. 117 (2016), 061803

Other talks

Lifetime of B_{s}^{0} and D_{s}^{+}

- Lepton universality $-\tau / \mu$

B. Siddi on $8 / 2$

LHCb-PAPER-2017-017
D. Tonelli on $8 / 1$ arXiv:1705.03475

- Differential distributions key for comparisons with Heavy Quark Effect Theory and Lattice QCD
- Necessary to measure CKM quark mixing parameters (overall factor G)
- Measure form-factors as one Isgur-Wise function ξ_{B} :

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} w}=G K(w) \xi_{B}^{2}(w) \quad w=\frac{m_{\Lambda_{b}^{0}}^{2}+m_{\Lambda_{c}^{+}}^{2}-q^{2}}{2 m_{\Lambda_{b}^{0}} m_{\Lambda_{c}^{+}}}
$$

Kinematic factor
$q^{2}=$ momentum transfer ${ }^{2}$

Backgrounds are interesting!

- Excited states are backgrounds to ground state decay
- Measure excited $\Lambda_{c}^{* *+}$ with $\Lambda_{c}^{+} \pi^{+} \pi^{-}$

- $\Lambda_{C}(2765)^{+}$not well measured previously

Unfolding to w

\squareUnfold using Singular Value Decomposition

- Corrected for acceptance and efficiency
- Final w distribution fit with multiple ansatz

Slope of ξ_{B}

Slope of ξ_{B} at $w=1$ is key observable

- Measured:

Theory:

Lattice 1	QCD sum rules	HQET 3
$\rho^{2}=1.2_{-1.1}^{+0.8}$	1.35 ± 0.13	1.51

Comparison to lattice

Unfold also to q^{2}

- Comparison with lattice calculation ${ }^{1}$ (gray band)
Also described by single form factor fit (blue line)
Future studies with normalization channel can extract | $V_{c b} \mid$

Conclusion

- Semileptonic decays are an interesting and broad subject at LHCb
- Allow measurements of:
- CKM quark mixing elements
- QCD form factors
- Lepton universality
- Large cross-sections useful for other measurements:
- Meson mixing
- Lifetime
- Excited charm
- NEW: Λ_{b}^{0} form factor measurement

