

Addressing the Proton Radius Puzzle Using QED-NRQED Effective Field Theory

Steven Dye Wayne State University Based on paper by: Dye, Gonderinger, and Paz Arxiv: 1602.07770 PRD: 10.1103/PhysRevD.94.013006

Proton Radius Puzzle

[1] P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Modern Phys. 84 (2012)

[2] C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

[3] Antognini, Aldo et al. Science 339 (2013) 417-420

Muon

 $0.84087(39) \text{fm}^{[3]}$

???

Outline

- Experimental Background
- Why QED-NRQED?
- One photon exchange at power m^2/M^2
- Two photon exchange at leading power
- Future endeavors

Spectroscopy

- Measure Lamb shift
- Difference between $2S_{1/2}$ and $2P_{1/2}$ energy states

Textbook Example

• Assume the charge density ρ is spherically symmetric

$$F(\mathbf{q}) = \int d^3 r \rho(|\mathbf{r}|) e^{i\mathbf{q}\cdot\mathbf{r}} \quad \text{ or } \quad \rho(|\mathbf{r}|) = \frac{1}{(2\pi)^3} \int F(\mathbf{q}) e^{-i\mathbf{q}\cdot\mathbf{r}} d^3 q$$

• For small q

$$F(\mathbf{q}) = 1 - \frac{\mathbf{q}^2 \langle r^2 \rangle}{6} + \cdots$$

• From Gauss's Law

$$V(\mathbf{r}) = rac{|e|}{(2\pi)^3} \int d^3q e^{-i\mathbf{q}\cdot\mathbf{r}} rac{F(\mathbf{q})}{\mathbf{q}^2}$$

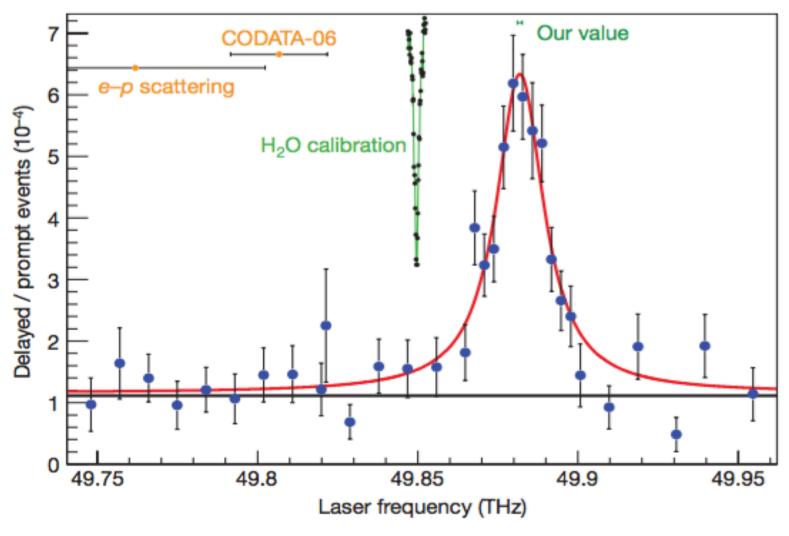
• Potential can be expanded to be

$$V(r) = \frac{|e|}{4\pi r} - \frac{\langle r^2 \rangle}{6} |e| \delta^3(\mathbf{r}) + \cdots$$

• From perturbation theory

$$\Delta E_{\langle r^2
angle} = \langle \psi | rac{\langle r^2
angle}{6} | e | \delta^3(\mathbf{r}) | \psi
angle = rac{2lpha^4}{3n^3} m_r^3 \langle r^2
angle \delta_{\ell 0},$$

- Muon is ~200 times more massive then the electron
- Effect is ~200³ times larger
- Smaller error for the radius
- Muonic Hydrogen: r = 0.84087(39) fm
- Atomic Hydrogen: r = 0.8758(77) fm



Muonic Spectroscopy

Experimental precision requires separation of one and two photon exchange

• ΔE_{TPE} is the contribution from the Two Photon Exchange

Muonic Scattering Experiment (MUSE)

Experiment at Paul Scherrer Institute in Switzerland

• e^+/e^- and μ^+/μ^- beams scattering off a proton target

MUSE

Quantity	Coverage
Beam momenta	$0.115, 0.153, 0.210~{ m GeV}/c$
Scattering angle range	20° - 100°
Azimuthal coverage	30% of 2π typical
Q^2 range for electrons	$0.0016 \ { m GeV^2}$ - $0.0820 \ { m GeV^2}$
Q^2 range for muons	$0.0016 \ { m GeV^2}$ - $0.0799 \ { m GeV^2}$

$d\sigma_{MUSE} \rightarrow$ QED-NRQED \rightarrow Spectroscopy

MUSE Collaboration Technical Design Report January 8, 2016

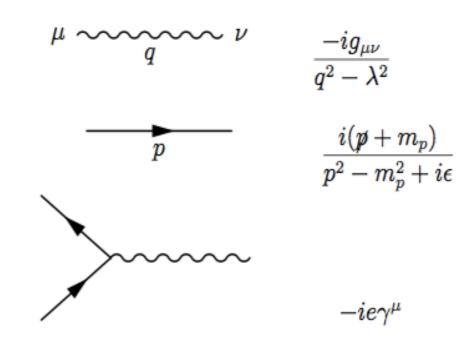
Why QED-NRQED?

- Effective Field Theories describe physics within a certain energy scale
- QED-NRQED combines
 - Quantum Electrodynamics (QED)
 - Non-Relativistic Quantum Electrodynamics (NRQED)
- Relativistic particles use QED
- Non-Relativistic particles use NRQED

- m=muon mass ~ 100 MeV/c²
- M=proton mass ~ 1000 MeV/c²
- Muonic Hydrogen: $p \sim mc\alpha \sim 1 \text{ MeV/c}$
 - Muon is non-relativistic
- MUSE: p ~ mc ~ 100 MeV/c
 - Muon is relativistic: Use QED
 - Proton is non-relativistic: Use NRQED

Overview of QED

- QED Lagrangian: $\mathcal{L} = \bar{\ell} \gamma^{\mu} i (\partial_{\mu} + i e Q_{\ell} A_{\mu}) \ell m \bar{\ell} \ell$
- Photon Propagator:
- Fermion Propagator:
- Vertex:



Overview of NRQED

• To Order 1/M² [1]

$$\mathcal{L} = \psi^{\dagger} \left\{ iD_t + c_2 \frac{D^2}{2M} + c_F e \frac{\boldsymbol{\sigma} \cdot \boldsymbol{B}}{2M} + c_D e \frac{[\boldsymbol{\nabla} \cdot \boldsymbol{E}]}{8M^2} + ic_S e \frac{\boldsymbol{\sigma} \cdot (\boldsymbol{D} \times \boldsymbol{E} - \boldsymbol{E} \times \boldsymbol{D})}{8M^2} \right\} \psi + \cdots$$

- Schrödinger's Equation
- Spin Orbit Coupling
- Darwin Term

Overview of NRQED

• To Order 1/M^{2 [1]}

$$\mathcal{L} = \psi^{\dagger} \left\{ iD_t + c_2 \frac{D^2}{2M} + c_F e \frac{\boldsymbol{\sigma} \cdot \boldsymbol{B}}{2M} + c_D e \frac{[\boldsymbol{\nabla} \cdot \boldsymbol{E}]}{8M^2} + ic_S e \frac{\boldsymbol{\sigma} \cdot (\boldsymbol{D} \times \boldsymbol{E} - \boldsymbol{E} \times \boldsymbol{D})}{8M^2} \right\} \psi + \cdots$$

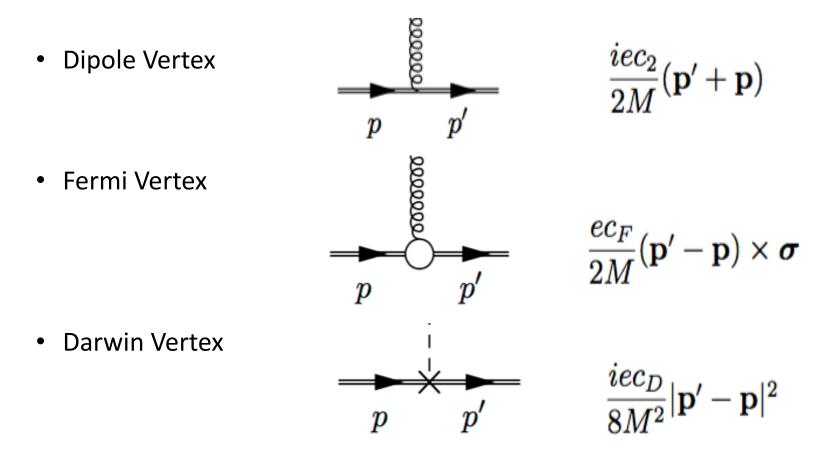
- c_F is the magnetic moment ~2.79^[2]
- c_D is equivalent to the proton radius

NRQED Feynman Rules^[1]

Coulomb Photon Propagator • q $\overline{\mathbf{q}^2 + \lambda^2}$ Space-like Photon Propagator $rac{i(\delta^{ij}-rac{q^iq^j}{\mathbf{q}^2+\lambda^2})}{\left(q^0
ight)^2-\mathbf{q}^2-\lambda^2+i\epsilon}$ i QOQQOQ j**NR Fermion Propagator** ۲ $\overline{E - \frac{\mathbf{q}^2}{2M} + i\epsilon}$ Coulomb Vertex -ie

[1] T. Kinoshita and M. Nio, Phys. Rev. D 53, 4909 (1996) [hep-ph/9512327]

NRQED Feynman Rules^[1]



[1] T. Kinoshita and M. Nio, Phys. Rev. D 53, 4909 (1996) [hep-ph/9512327]

From Wilson Coefficients to the Charge Radius

Wilson Coefficients related to Form Factors^{[1][2]}

 $c_{D} = F_{1}(0) + 2F_{2}(0) + 8M^{2}F_{1}'(0) \qquad c_{F} = F_{1}(0) + F_{2}(0)$ $F_{1}' = dF_{1}(q^{2})/dq^{2} \qquad G_{E}(q^{2}) = F_{1}(q^{2}) + \frac{q^{2}}{4M^{2}}F_{2}(q^{2})$ $G_{M}(q^{2}) = F_{1}(q^{2}) + F_{2}(q^{2}) \qquad p'$

• FF's describe interactions between particles without going into detail about the interaction

• Arise from matrix element of electromagnetic current

$$\langle N(p_f) | J^{em}_{\mu} | N(p_i) \rangle = \bar{u}(p_f) \left[\gamma_{\mu} F_1(q^2) + \frac{i\sigma_{\mu\nu}}{2m} F_2(q^2) q_{\nu} \right] u(p_i)$$

- Where $q = p_f p_i$
- Relation between form factors and charge radius^[1]

$$\langle r_E^2
angle^{rac{1}{2}} = -rac{6\hbar^2}{G_E(0)} rac{dG_E(q^2)}{dq^2} igg|_{q^2=0}$$

[1] J. C. Bernauer et al. [A1 Collaboration], Phys. Rev. Lett 105, 241001 (2010)

Properties of QED-NRQED

- λ IR cut off and M_p is UV cut off
- No Deep Inelastic Scattering contribution
- Describes only Electromagnetic interactions
 - Strong interaction information encoded in Wilson Coefficients
 - Pion is not considered a dynamical degree of freedom

Why Not QED-QED?

- QED makes the assumption that all particles are fundamental particles (point like)
- Proton is a composite particle!

Why Not NRQED-NRQED?

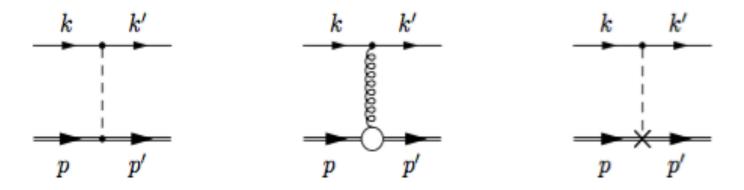
• NRQED is power expanded in p/m (or v)

• At relativistic momentum (p ~ m), series does not converge

QED-NRQED Scattering of One Photon Exchange to power m²/M²

Dye, Gonderinger, and Paz Arxiv:1602.07770

• Lepton-Proton elastic scattering $\ell(k) + p(p) \rightarrow \ell(k') + p(p')$



• At power m^2/M^2

$$\mathcal{M}_{\rm QN} = -e^2 Z Q_\ell \left[\left(1 - c_D \frac{\vec{q}^{\,2}}{8M^2} \right) \frac{1}{\vec{q}^{\,2}} \xi^{\dagger}_{p'} \xi_p \bar{u}(k') \gamma^0 u(k) + i \frac{c_F}{2M} \frac{1}{q^2} \epsilon^{ijk} q^j \xi^{\dagger}_{p'} \sigma^k \xi_p u(k') \gamma^i u(k) \right]$$

- Z =1 for a proton
- Q₁ is the lepton charge (±1)

Compare to Rosenbluth Scattering

• To power m^2/M^2

$$\overline{|\mathcal{M}|}_{\rm QN}^2 = \frac{e^4 Z^2 Q_\ell^2}{\vec{q}^2} \left[\frac{1}{\vec{q}^2} \left(4E^2 - \vec{q}^2 \right) - \frac{2E}{M} + \frac{\vec{q}^2 + c_F^2 \left(\vec{q}^2 + 4E^2 - 4m^2 \right) + c_D \left(\vec{q}^2 - 4E^2 \right)}{4M^2} \right]$$

 Replace WC's with FF's to reproduce Rosenbluth scattering to power m²/M²^[1]

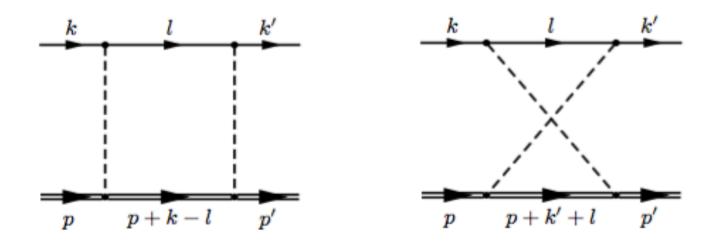
$$\begin{aligned} \frac{d\sigma}{d\Omega'} &= \frac{\alpha^2}{q^4} \frac{p'/p}{1 + (E - (pE'/p')\cos\theta)/M} \Big[G_E^2 \frac{(4EE' + q^2)}{1 - q^2/4M^2} \\ &+ G_M^2 \Big((4EE' + q^2) \Big(1 - \frac{1}{1 - q^2/4M^2} \Big) + \frac{q^4}{2M^2} + \frac{q^2m^2}{M^2} \Big) \Big] \end{aligned}$$

[1] E. Borie arXiv:1207.6651

QED-NRQED Scattering of Two Photon Exchange at Leading Power

Dye, Gonderinger, and Paz Arxiv:1602.07770

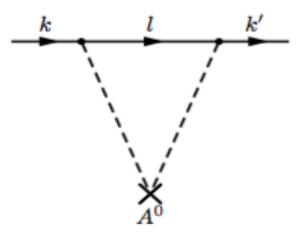
QED-NRQED Amplitude



To leading power m/M

$$\begin{split} i\mathcal{M}\left(2\pi\right)^{4}\delta^{4}(k'+p'-k-p) &= \int \frac{d^{4}l}{(2\pi)^{4}} \frac{2\pi\delta(l^{0}-k^{0})}{(l-k)^{2}-\lambda^{2}} \, \frac{2\pi\delta(l^{0}-k'^{0})}{(l-k')^{2}-\lambda^{2}} \, \frac{\bar{u}(k')\gamma^{0}\left(l\!\!\!/+m\right)\gamma^{0}u(k)}{l^{2}-m^{2}} \\ &\times (-)iZ^{2}Q_{\ell}^{2}e^{4}(2\pi)^{3}\delta^{3}(\vec{k}'+\vec{p}'-\vec{k}) \end{split}$$

Static Potential Amplitude



Using a screened coulomb potential:

$$\vec{A} = 0 \qquad A^0 = \frac{Ze \, e^{-\lambda r}}{4\pi r} = -Ze \int \frac{d^4q}{(2\pi)^4} \frac{2\pi\delta(q^0)}{q^2 - \lambda^2} e^{iqx}$$
$$i\mathcal{M}(2\pi)\delta(k'^0 - k^0) = -iZ^2 Q_\ell^2 e^4 \int \frac{d^4l}{(2\pi)^4} \frac{2\pi\delta(l^0 - k^0)}{(l - k)^2 - \lambda^2} \cdot \frac{2\pi\delta(l^0 - k'^0)}{(l - k')^2 - \lambda^2} \cdot \frac{\bar{u}(k')\gamma^0\left(\not\!\!\!/ + m\right)\gamma^0 u(k)}{l^2 - m^2}$$

R. H. Dalitz, Proc. Roy. Soc. Lond. 206, 509 (1951)

Comparing Results

• Both methods give the same result

QED-NRQED:

$$i\mathcal{M}(2\pi)^{4}\delta^{4}(k'+p'-k-p) = \int \frac{d^{4}l}{(2\pi)^{4}} \frac{2\pi\delta(l^{0}-k^{0})}{(l-k)^{2}-\lambda^{2}} \frac{2\pi\delta(l^{0}-k'^{0})}{(l-k')^{2}-\lambda^{2}} \frac{\bar{u}(k')\gamma^{0}\left(l+m\right)\gamma^{0}u(k)}{l^{2}-m^{2}} \\ \times (-)iZ^{2}Q_{\ell}^{2}e^{4}(2\pi)^{3}\delta^{3}(\vec{k}'+\vec{p}'-\vec{k})$$

Static Potential:

$$i\mathcal{M}(2\pi)\delta(k'^{0}-k^{0}) = -iZ^{2}Q_{\ell}^{2}e^{4}\int \frac{d^{4}l}{(2\pi)^{4}}\frac{2\pi\delta(l^{0}-k^{0})}{(l-k)^{2}-\lambda^{2}}\cdot\frac{2\pi\delta(l^{0}-k'^{0})}{(l-k')^{2}-\lambda^{2}}\cdot\frac{\bar{u}(k')\gamma^{0}(\not\!\!l+m)\gamma^{0}u(k)}{l^{2}-m^{2}}$$

• Same Amplitude

Cross Section

- Both Amplitudes result in the same cross section
- Mott Scattering with α correction

$$\frac{d\sigma}{d\Omega} = \frac{4Z^2 \alpha^2 Q_\ell^2 E^2 \left(1 - v^2 \sin^2 \frac{\theta}{2}\right)}{\vec{q}^{\,4}} \left[1 - \alpha Z Q_\ell \frac{\pi v \sin \frac{\theta}{2} (1 - \sin \frac{\theta}{2})}{1 - v^2 \sin^2 \frac{\theta}{2}}\right]$$

• v=p/E

R. H. Dalitz, Proc. Roy. Soc. Lond. 206, 509 (1951)

Future Work

- Establish a direct relation between μ-p scattering and muonic Hydrogen
 - TPE contributes to b_1 constant in nucleon-relativistic lepton effective lagrangian^[1]

$$\mathcal{L}_{\ell\psi} = rac{b_1}{M^2} \psi^{\dagger} \psi ar{\ell} \gamma^0 \ell + ... \qquad b_1 \sim \mathcal{O}(lpha^2)$$

 Look at Two Photon Exchange up to power m²/M²^[2] – Include 1/M and 1/M² power vertices

Summary

- Looked at One Photon Exchanges
 - To leading power V
 - To power m/M
 - To power m^2/M^2 v
- Looked at Two Photon Exchanges
 - To leading power
 - To power m/M
 - To power m²/M²
- Reproduced known results with QED-NRQED Effective Field Theory
- Establish a direct comparison between spectroscopy and scattering data

END

Extra Slides

Proton Charge Radius Data

VALUE (fm)		DOCUMENT ID		TECN	COMMENT	
0.8751	± 0.0061		MOHR	16	RVUE	2014 CODATA value	
0.84087	±0.00026	±0.00029	ANTOGNINI	13	LASR	μp -atom Lamb shift	
 ● We do not use the following data for averages, fits, limits, etc. ● ● 							
0.895	± 0.014	±0.014 1	LEE	15	SPEC	Just 2010 Mainz data	
0.916	\pm 0.024		LEE	15	SPEC	World data, no Mainz	
0.8775	± 0.0051		MOHR	12	RVUE	2010 CODATA, <i>e p</i> data	
0.875	± 0.008	± 0.006	ZHAN	11	SPEC	Recoil polarimetry	
0.879	± 0.005	± 0.006	BERNAUER	10	SPEC	$e p \rightarrow e p$ form factor	
0.912	± 0.009	± 0.007	BORISYUK	10		reanalyzes old <i>e p</i> data	
0.871	± 0.009	± 0.003	HILL	10		z-expansion reanalysis	
0.84184	± 0.00036	± 0.00056	POHL	10	LASR	See ANTOGNINI 13	
0.8768	± 0.0069		MOHR	08	RVUE	2006 CODATA value	
0.844	$^{+0.008}_{-0.004}$		BELUSHKIN	07		Dispersion analysis	
0.897	± 0.018		BLUNDEN	05		SICK 03 + 2 γ correction	
0.8750	± 0.0068		MOHR	05	RVUE	2002 CODATA value	
0.895	± 0.010	± 0.013	Steven Dye Wayne State U	03 Iniversity		$ep \rightarrow ep$ reanalysis	

Kinematics used

$$p' = p + q, \quad k' = k - q, \quad p^2 = M^2, \quad k^2 = m^2,$$

 $p \cdot q = M(E - E') = Mq^0 = -q^2/2,$
 $k \cdot q = q^2/2, \quad \vec{q}^{\ 2} = -q^2 + q^4/4M^2.$

There are also several approximate relations between the various kinematic variables:

$$q^2 = -\vec{q}^{\;2} + \vec{q}^{\;4}/4M^2 + \mathcal{O}\left(rac{1}{M^3}
ight),$$

 $ec{k}\cdotec{q} = ec{q}^{\;2}/2 + \mathcal{O}\left(rac{1}{M}
ight),$
 $ec{k}'\cdotec{q} = -ec{q}^{\;2}/2 + \mathcal{O}\left(rac{1}{M}
ight).$

Wilson Coefficients

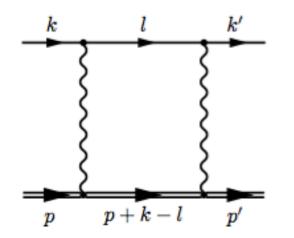
$$egin{aligned} c_D &= F_1(0) + 2F_2(0) + 8M^2F_1'(0) & c_F &= F_1(0) + F_2(0) \ & F_1' &= dF_1(q^2)/dq^2 & G_E(q^2) = F_1(q^2) + rac{q^2}{4M^2}F_2(q^2) & G_M(q^2) = F_1(q^2) + F_2(q^2) \end{aligned}$$

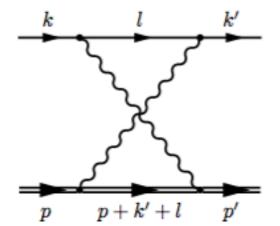
Where r_F is the charge radius

$$\langle r_E^2
angle^{rac{1}{2}} = -rac{6\hbar^2}{G_E(0)} rac{dG_E(q^2)}{dq^2} igg|_{q^2=0}$$

R. J. Hill, G. Lee, G. Paz and M. P. Solon, Phys. Rev. D 87, no. 5, 053017 (2013) [arXiv:1212.4508 [hep-ph]]

Point Particle QED Amplitude





• Taken to the limit of $M \rightarrow \infty$

• Same result as QED-NRQED

$$i\mathcal{M} = Z^2 Q_\ell^2 e^4 \int \frac{d^4l}{(2\pi)^4} \frac{\bar{u}(k')\gamma^0 \left(\not{l}+m\right)\gamma^0 u(k)\xi_{p'}^{\dagger}\xi_p}{(l-k)^2(l-k')^2(l^2-m^2)} \left(\frac{1}{k^0-l^0+i\epsilon} + \frac{1}{l^0-k'^0+i\epsilon}\right)$$

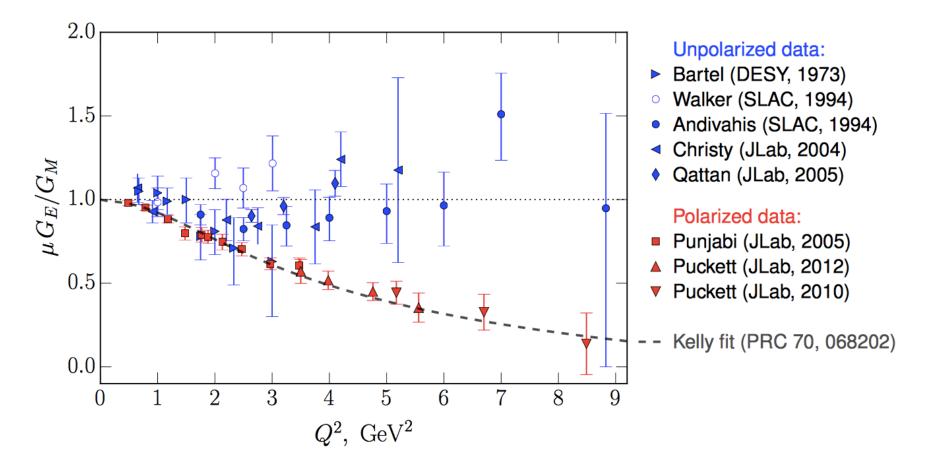
Differences in Scatterings

- Coulomb Scattering: NR and massless lepton
- Mott Scattering: R and massless lepton
- Rosenbluth Scattering: R and massive lepton^[1]

$$\frac{d\sigma}{d\Omega'} = \frac{m^2 M}{4\pi^2} \frac{p'/p}{M + E - (pE'/p')cos\theta} |\mathfrak{M}_{fi}|^2$$

• All hit an infinitively massive, point like proton

Electric and Magnetic Form Factor Ratio



Novosibirsk TPE Collaboration https://www.jlab.org/indico/event/160/session/14/contribution/13/material/slides/0.pdf