Advances in QCD Theory

Christopher Lee

Los Alamos National Laboratory Theoretical Division

August 3, 2017

A handful of Advances in QCD Theory

Christopher Lee

Los Alamos National Laboratory Theoretical Division

August 3, 2017

Fermi and Los Alamos

Valles Caldera, near Los Alamos, May 8, 1945

Fermilab and Los Alamos

• Drell-Yan: E772/E789/E866 (NuSea)/E906 (SeaQuest), E1039

Geoff Mills, 1955-2017

"QCD theory developments over the last ~2 years"

Two years ago

Christopher Lee, May 27, 1922 — June 7, 2015

POLL			
		June 26-22 2015	8
_		<u>=010</u>	
E	Bush	19%	
I	Trump	12%	
ł	Huckabee	8%	
0	Carson	7%	
F	Paul	7%	
F	Rubio	6%	
7	Valker	6%	
F	Perry	4%	
0	Christie	3%	
Cruz		3%	
Santorum		3%	
Jindal		2%	
ŀ	Kasich	2%	
F	Fiorina	1%	
0	Fraham	1%	
			Total

Clinton	59%
Trump	35%
Neither	6%

Historic Day: July 4

Historic Day: July 4

San Diego "Big Bay Boom"

Historic Day: July 4

2012

2017

San Diego "Big Bay Boom"

 $= 1.813 \times 10^{27} \text{ GeV}/c^2$

Andreas Maria Lee, Los Alamos, NM

Outline

- Soft Collinear Effective Theory
- N-Jettiness, SCET_I, N³LL resummation
- SCET_{II} and N³LL resummed TMD distributions
- Subtractions and NNLO cross sections
- Non-Global Logarithms, fixed order and resummed
- Jet substructure and SCET+
- Outlook

Formation of Jets in QCD

History of Jets in QCD

*** SUMS (GEV) *** PTOT 35,768 PTRANS 29,964 PLONG 15,700 CHARGE -2 TOTAL CLUSTER ENERGY 15,169 PHOTON ENERGY 4,893 NR OF PHOTONS 11

Boosted heavy particles in SM and BSM

Separation of scales

- Large logs in QCD arise from large ratios of physical scales defining the measurement or degree of exclusivity of a jet cross section.
- For jet cross sections, these are precisely ratios of hard to soft scales and ratios of collinear momentum components.
 - e.g. measurement of jet mass

$$p_J^2 = (p_c + p_s)^2 = m_J^2$$
$$p = (\bar{n} \cdot p, n \cdot p, p_\perp)$$

Hierarchy of scales

Factorize cross section into pieces depending on only one of these scales at a time.

Soft Collinear Effective Theory

 Modern tools for high precision resummation, factorization of perturbative and nonperturbative effects
 Bauer, Fleming, Luke, Pirjol, Stewart (1999-2001)

Leading

Log (LL)

Next-to-

Leading Log (NLL) **NNLL**

N³LL

Bauer, Fleming, Luke (2000) Bauer, Fleming, Pirjol, Stewart (2001) Bauer, Fleming, Pirjol, Rothstein, Stewart (2002)

Soft Collinear Effective Theory

• SCETI

Theory for jets constrained by mass

- Hard, collinear, soft all separated by virtuality
- Collinear/soft decoupling and factorization
- Dim. Reg. regulates all divergences

SCET_{II}

Theory for jets constrained by transverse momentum or for exclusive collinear hadrons Remove

- Hard separated from coll. and soft by virtuality, collinear & soft separated by **rapidity**
- Inherits SCET₁ collinear-soft decoupling
- Dim. Reg. regulates virtuality divergences but not rapidity divergences need additional regulator

Challenges to Precision Jet Cross Sections

• Jet cross sections typically depend on

- choice of jet algorithm
- jet sizes
- jet vetoes (for exclusive jet cross sections)
- These parameters generate a number of logarithms (nonglobal logs, logs of radii *R*, etc.) in perturbation theory which are challenging to resum
- **N-Jettiness**: a *global* observable picking out *N*-jet final states by measurement of a *single* parameter, logs of which *can* be resummed in perturbation theory by standard RGE

N-jettiness

• A global event shape measuring degree to which final state is *N*-jet-like. (small *N*-jettiness vetoes events with more than *N* jets.)

N³LL resummation with SCET

High precision strong coupling

NNLL resummation for generic observables

- We do not always have a factorization theorem available to make SCET and its RG evolution to achieve resummation
- Monte Carlo implementation ARES (successor to NLL CAESAR) of emission amplitudes needed for NNLL

High precision p_T resummation at LHC

New rapidity regulator and 3-loop anomalous dimension $\frac{d\sigma}{dq_T^2 dy} = \sigma_0 \pi (2\pi)^2 H(Q^2, \mu) \int db \, b J_0(bq_T) \widetilde{S}(b, \mu, \nu) \widetilde{f}_1^{\perp}(b, Q, x_1, \mu, \nu) \widetilde{f}_2^{\perp}(b, Q, x_2, \mu, \nu)$ $\widetilde{f}(\vec{b}) \equiv \int \frac{d^2 q_T}{(2\pi)^2} e^{i \vec{b} \cdot \vec{q_T}} f(\vec{q_T}) \qquad \widetilde{f}(\vec{b}) \equiv \frac{1}{2\pi} \widetilde{f}(b) \,, \quad b \equiv |\vec{b}|$

- Computation of beam or soft functions requires regulation of rapidity divergences: $\int_{0}^{\infty} \frac{dk^{+}}{k^{+}}$
- Regulator: shift separation of soft Wilson lines defining soft function in Euclidean time

N³LL resummed p_T spectrum

• 3-loop soft function diagrams:

• N³LL resummed results:

- All three-loop integrals for threshold soft function known Anastasiou et al, 2015; Y. Li et al, 2014
- **3-loop rapidity anomalous dimension:** $\gamma_{0}^{R} = 0$ $\gamma_{1}^{R} = C_{a}C_{A}\left(28\zeta_{3} - \frac{808}{27}\right) + \frac{112C_{a}n_{f}}{27}$ $\gamma_{2}^{R} = C_{a}C_{A}^{2}\left(-\frac{176}{3}\zeta_{3}\zeta_{2} + \frac{6392\zeta_{2}}{81} + \frac{12328\zeta_{3}}{27} + 44\zeta_{4} - 192\zeta_{5} - \frac{297029}{729}\right)$ $+ C_{a}C_{A}n_{f}\left(-\frac{824\zeta_{2}}{81} - \frac{904\zeta_{3}}{27} + 8\zeta_{4} + \frac{62626}{729}\right) + c\beta_{0}$ $+ C_{a}n_{f}^{2}\left(-\frac{32\zeta_{3}}{9} - \frac{1856}{729}\right) + C_{a}C_{F}N_{f}\left(-\frac{304\zeta_{3}}{9} - 16\zeta_{4} + \frac{1711}{27}\right)$

New three loop results!

Li, Neill, Schulze, Stewart, Zhu (SCET2016, Argonne Advances in QCD 2016)

NNLO Subtractions

[Boughezal, Focke, Petriello, Liu] [Gaunt, Stahlhofen, Tackmann, Walsh]

$$\sigma(X) = \int_{0}^{\infty} d\mathcal{T} \frac{d\sigma(X)}{d\mathcal{T}} = \int_{0}^{\mathcal{T}^{\text{cut}}} d\mathcal{T} \frac{d\sigma(X)}{d\mathcal{T}} + \int_{\mathcal{T}^{\text{cut}}}^{\infty} d\mathcal{T} \frac{d\sigma(X)}{d\mathcal{T}}$$

N-Jettiness Subtractions

- Exploit factorization and 2-loop computations of ingredients for small au_N

$$\sigma(\mathcal{T}^{\mathsf{cut}}) = \int_{0}^{\mathcal{T}^{\mathsf{cut}}} d\mathcal{T} \frac{d\sigma(X)}{d\mathcal{T}}$$

Compute using factorization in soft/collinear limits:

$$\frac{d\sigma}{d\mathcal{T}} = HB_a \otimes B_b \otimes S \otimes J_1 \otimes \cdots \otimes J_{N-1}$$

Additional jet resolved. Use NLO subtractions.

> Boughezal, Liu, Focke, Petriello (2015) Gaunt, Stahlhofen, Tackmann, Walsh (2015)

High precision, numerical stability requires power corrections:

 $\sigma(\tau_{\rm cut}) = \int_{0}^{\tau_{\rm cut}} d\tau \frac{d\sigma}{d\tau} = \sum_{n=0}^{n=\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{n=0}^{2n-1} \tilde{c}_{nm}^{(0)} \log^m(\tau_{\rm cut}) + \tau_{\rm cut} \sum_{n=0}^{n=\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{n=0}^{2n-1} \tilde{c}_{nm}^{(2)} \log^m(\tau_{\rm cut}) + \cdots$

Subleading Power Corrections

+ Also computable in fixed-order QCD, dramatic improvement in $\, au_{cut} \,$ independence:

NNLO Results V+jet

- N-jettiness subtraction method • vs. antenna subtraction:
- vs. data:

vs = 8 TeV, 20.3 fb⁻¹

Data

dơ/d(∆R) [fb]

180L

160E

140F

120

100

80E 60F

40E

20

2E

1.5

2E

1.5F

0

뱐

0

0.5

1

1.5

0

Pred./Data

Pred./Data

Boughezal, Campbell, Ellis, Focke, Giele, XL, Petriello Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan

Boughezal, Liu, Petriello (2016)

NNLO Revolution

D. Neill SCET 2017

Non-global logs

Dasgupta, Salam (2001)

Start to spoil "global" resummation at 2 loops:

$$\sigma(m_H/m_L) = \sigma_{\rm gl}(m_H/m_L) \left[1 + \frac{\alpha_s^2}{(2\pi)^2} C_F C_A \frac{\pi^2}{3} \ln^2 \frac{m_H}{m_L} + \cdots \right]$$

 $\mathbf{B}\ll\mathbf{A}$

Second Second

А

jet axis

Conjecture / fit to Monte Carlo resummation (large N_c):

$$S_{ng} = \exp\left[-C_F C_A \frac{\pi^2}{3} \left(\frac{1+(at)^2}{1+(bt)^c}\right) t^2\right]$$

$$t = \frac{1}{4\pi\beta_0} \ln \frac{1}{1 - 2\beta_0 \alpha_s L} \qquad \qquad L = \ln \frac{m_H}{m_L}$$

$$a = 0.85C_A, b = 0.86C_A, c = 1.33$$

Fixed-order computations

 Soft functions for non-global observables in SCET, two-loop computations, and subleading (single) NGLs

Kelley, Schabinger, Schwartz, Zhu (2011); Hornig, CL, Stewart, Walsh, Zuberi (2011)

Factorization and Resummation of NGLs

Larkoski, Moult, Neill (2015)

 $e^+e^- \rightarrow 2_j + 1_{sj}$:

$$\frac{d\sigma}{de_2^{(\alpha)}de_2^{(\beta)}de_3^{(\beta)}dB} = H_{n\bar{n}}H_{n\bar{n}}^{sj}(e_2^{(\alpha)}, e_2^{(\beta)})J_{n_{sj}}(e_3^{(\beta)}) \otimes S_{n_{sj}\bar{n}_{sj}}(e_3^{(\beta)})$$

 $\otimes S_{n\bar{n}n_{sj}}(e_3^{(\beta)};B) \otimes J_n(e_3^{(\beta)}) \otimes J_{\bar{n}}(B)$

RG evolve, integrate over to obtain original non-global distribution, now resummed!

Resummed computations

Larkoski, Moult, Neill (2015)

Singularities and Buffers

• Take fixed order series and apply conformal mapping obeying proper singularities in *L* and buffer region:

- Boundary Soft RG implies: $U_{abj} \propto \left(1 - \frac{\tan^2 \frac{\theta_{sj}}{2}}{\tan^2 \frac{R}{2}}\right)^L$
- Cross-section for production of a jet at the boundary vanishes!
- Buffer region and singularities in L reproduced by resummed calculation with jets, but not fixed-order calculation with partons

•
$$g_{ab}(L) \to g_{ab}(u)$$
.

$$g_{ab}(u) = 1 + b_1 u + b_2 u^2 + \dots$$

Example u's:

0

$$u(L) = \begin{cases} \ln(1+L), \text{ log mapping} \\ \frac{\sqrt{1+L}-1}{\sqrt{1+L}+1}, \text{ disc mapping} \end{cases}$$

Determine b's by matching taylor series at L = 0.

Larkoski, Moult, Neill (2016)

Conformal improvement of fixed-order NGLs

Jet Substructure

$$\begin{array}{l} \displaystyle \underset{v}{\mathsf{Energy Correlators}}{\mathsf{Energy Correlators}} & \stackrel{\text{cf. Basham, Brown,}}{\underset{{}_{\mathsf{Ellis, Love (1978);}}}{\underset{{}_{\mathsf{Larkoski, Salam, Thaler}}}{\underset{{}_{(2013)}}{\overset{}_{\mathsf{Correlators}}} & \stackrel{v}{\underset{{}_{\mathsf{I} \leq i_{1} < i_{2} < \cdots < i_{n} \leq n_{J}}} z_{i_{1}} z_{i_{2}} \dots z_{i_{n}} \prod_{m=1}^{v} \min_{s < t \in \{i_{1}, i_{2}, \dots, i_{n}\}} \left\{ \theta_{st}^{\beta} \right\} \end{array}$$

Moult, Necib, Thaler (2016)

good discriminants:

definite power counting, amenable to factorization and precision calculation

3-prong (top): $N_3^{(\beta)} = \frac{2e_4^{(\beta)}}{(1e_3^{(\beta)})^2}$ 2-prong: $M_2^{(\beta)} = \frac{1e_3^{(\beta)}}{1e_2^{(\beta)}}$ 1-prong (q vs g): $U_i^{(\beta)} = _1e_{i+1}^{(\beta)}$

Grooming and Soft Drop

contamination:

grooming:

Soft Drop

• Simplifies theoretical calculations:

Groomed substructure

Moult, Necib, Thaler (2016)

Groomed substructure and SCET+

• Soft drop groomed energy correlators:

SCET+: Bauer, Tackmann, Walsh, Zuberi (2011)

Frye, Larkoski, Schwartz, Yan (2016)

$$\frac{d^2\sigma}{de_{2,L}^{(\alpha)} de_{2,R}^{(\alpha)}} = H(Q^2) S_{\rm G}(z_{\rm cut}) \left[S_C\left(z_{\rm cut} e_{2,L}^{(\alpha)}\right) \otimes J(e_{2,L}^{(\alpha)}) \right] \left[S_C\left(z_{\rm cut} e_{2,R}^{(\alpha)}\right) \otimes J(e_{2,R}^{(\alpha)}) \right]$$

free of NGLs; correlated hierarchical emissions groomed away

NNLL substructure calculations

Frye, Larkoski, Schwartz, Yan (2016)

Many other EFT directions

- Connection of NGLs and small-x evolution (BFKL)
- SCET with Glauber modes for factorization violating effects, small-x resummation, forward scattering

I. Rothstein and I. Stewart (2016)

• SCET_G for jets in heavy-ion collisions

A. Idilbi and A. Majumder (2008) G. Ovanesyan and I.Vitev (2011)

 SCET + NRQCD for improved description of quarkonia in jets, discriminate production mechanisms

Baumgart, Leibovich, Mehen, Rothstein (2014) Bain, Dai, Leibovich, Makris, Mehen (2016-17)

 SCET_{EW} for resummation of electroweak logs in colliders, dark matter production and annihilation
 ^{Chiu, Golf, Kelley, Manohar (2007)} Ovanesyan, Slatyer, Stewart (2014)

Baumgart, Rothstein, Vaidya (2014)

In the last several years, we have gained a collection of EFT and other powerful tools for high precision calculations of observables in multiscale jet-like processes, making possible fixed-order and resummed calculations to orders previously unachievable and the solution of problems previously intractable in QCD.

The future holds great promise

Extra slides

Jet Algorithms and Radii

- Example: e⁺e⁻ to **two** jet cross section:
- One-loop cross section in QCD:
 - in a cone algorithm:

$$\frac{\sigma_{2\text{-jet}}}{\sigma_0} = 1 + \frac{\alpha_s C_F}{\pi} \left(-4\ln\frac{2E_0}{Q}\ln R - 3\ln R - \frac{1}{2} + 3\ln 2 \right)$$

• in a kT-type recombination (or Sterman-Weinberg) algorithm:

$$\frac{\sigma_{2\text{-jet}}}{\sigma_0} = 1 + \frac{\alpha_s C_F}{\pi} \left(-4\ln\frac{2E_0}{Q}\ln R - 3\ln R - \frac{\pi^2}{3} + \frac{5}{2} \right)$$

 Natural to use SCET to factorize and resum, but structure of logs is surprisingly subtle.

Soft and Soft-Collinear phase space

• collinear and soft phase space for cone and kT algorithms:

Ellis, Hornig, CL, Vermilion, Walsh (2010) Chien, Hornig, CL (2015)

Soft and Soft-Collinear phase space

• Soft phase space splits into two, single-scale-sensitive regions:

Resummed jet thrust cross section

• Integrated jet thrust in e⁺e⁻:

 Improved perturbative convergence thanks to additional logs resummed after soft-collinear refactorization

Resummed jet thrust cross section

A. Hornig, Y. Makris, T. Mehen (2016)

 $d\tilde{\sigma}(\tau_a)$ $d\tilde{\sigma}(\tau_a)$ 60 000 R = 0.4R = 0.625000 without soft-collinear 50 000 20000 refactorization 40 000 15000 30 000 10000 with soft-collinear 20 000 5000 10 000 refactorization $\tau_{a=0}$ 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0030 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 $d\tilde{\sigma}(\tau_a)$ $d\tilde{\sigma}(\tau_a)$ 14 000 R = 0.8R = 1.08000 12000 10 000 6000 8000 4000 6000 4000 2000 2000 $\tau_{a=0}$ 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

Larger impact on differential shape

NP Corrections

$$\langle e \rangle = \langle e \rangle_{\rm PT} + c_e \frac{\Omega_1}{Q}$$

- c_e observable dependent, calculable coefficient
- Ω_1 universal nonperturbative parameter (one for each of ee, ep, pp)

conjecture from single soft gluon emission: Dokshitzer, Webber (1995, 1997)

proof to all orders in soft gluon emission: **CL**, Sterman (2006, 2007)

• SCET: First rigorous proof (and **field theory** definition $d\Omega_1$) from factorization theorem and boost invariance of soft radiation:

soft radiation sees only direction, not energy, of original collinear partons, invariant to boosts along z

Momentum Flow Operators

generic form of event shapes:

$$= \frac{1}{Q} \sum_{i \in X} f_e(\eta_i) |\mathbf{p}_T^i| \quad \text{ e.g. angularities } f_{\tau_a}(\eta) = e^{-|\eta|(1-a)}$$

operator action in terms of transverse momentum flow operator:

$$\hat{e} |X\rangle \equiv e(X) |X\rangle = \frac{1}{Q} \int_{-\infty}^{\infty} d\eta f_e(\eta) \mathcal{E}_T(\eta; \hat{t}) |X\rangle$$

$$\mathcal{E}_T(\eta)|X\rangle = \sum_{i\in X} |\mathbf{p}_T^i|\delta(\eta - \eta_i)|X\rangle$$

construct out of energy-momentum tensor of QCD:

e(X)

$$\mathcal{E}_T(\eta) = \frac{1}{\cosh^3 \eta} \int_0^{2\pi} d\phi \lim_{R \to \infty} R^2 \int_0^\infty dt \, \hat{n}_i T_{0i}(t, R\hat{n})$$

measures total transverse momentum $|\mathbf{p}_T|$ flowing through slice of sphere at rapidity η from collision time t=0 to detector at $t \to \infty$ $R \to \infty$

since Lagrangian of SCET factors into collinear and soft sectors, so does the energy-momentum tensor:

$$\Gamma_{\mu\nu} \to T^n_{\mu\nu} + T^{\bar{n}}_{\mu\nu} + T^s_{\mu\nu}$$

Proof of universality

- In general NP part of soft function must be modeled and is observable-dependent: $S(e, \mu, \Lambda) = \int_{0}^{\infty} de' S_{\rm PT}(e - e', \mu) F_{\rm NP}(e', \Lambda)$
- The universality of the first moment, however, can be proven exactly:

Beam Function and PDFs

transverse momentum dependent beam function:

$$B(\omega k^{+}, x, k_{\perp}^{2}, \mu) = \frac{\theta(\omega)}{\omega} \int \frac{dy^{-}}{4\pi} e^{ik^{+}y^{-}/2} \langle P_{n}(P^{-}) | \bar{\chi}_{n} \left(y^{-}\frac{n}{2} \right) \delta(xP^{-} - \bar{n} \cdot \mathcal{P}) \delta(k_{\perp}^{2} - \mathcal{P}_{\perp}^{2}) \chi_{n}(0) | P_{n}(P^{-}) \rangle$$

$$match \text{ onto PDF}$$

$$f(x, \mu) = \theta(\omega) \langle P_{n}(P^{-}) | \bar{\chi}_{n}(0) \delta(xP^{-} - \bar{n} \cdot \mathcal{P}) \chi_{n}(0) | P_{n}(P^{-}) \rangle$$

$$\mathcal{B}_{q}(t, x, \mathbf{k}_{\perp}^{2}, \mu) = \sum_{j} \int_{x}^{1} \frac{d\xi}{\xi} \mathcal{I}_{ij} \left(t, \frac{x}{\xi}, \mathbf{k}_{\perp}^{2}, \mu \right) f_{j}(\xi, \mu)$$

$$Measure small light-cone momentum k^{+} = t/P^{-}$$
and transverse momentum \mathbf{k}_{\perp}
of initial state radiation

Generalized Beam Function to 1-loop

$$\mathcal{B}_{q}(t, x, \mathbf{k}_{\perp}^{2}, \mu) = \sum_{j} \int_{x}^{1} \frac{d\xi}{\xi} \mathcal{I}_{ij}\left(t, \frac{x}{\xi}, \mathbf{k}_{\perp}^{2}, \mu\right) f_{j}(x, \mu)$$
Gaunt

now known to 2 loops; anomalous dimension known to 3 loops

Gaunt, Stahlhofen, Tackmann (2014)

$$\begin{split} \mathcal{I}_{qq}(t,z,\mathbf{k}_{\perp}^{2},\mu) &= \frac{1}{\pi} \delta(t) \delta(1-z) \delta(\mathbf{k}_{\perp}^{2}) + \frac{\alpha_{s}(\mu) C_{F}}{2\pi^{2}} \theta(z) \Biggl\{ \frac{2}{\mu^{2}} \left[\frac{\theta(t) \ln(t/\mu^{2})}{t/\mu^{2}} \right]_{+} \delta(1-z) \delta(\mathbf{k}_{\perp}^{2}) & \text{Jain, Procura, Waalewijn (2009)} \\ &+ \frac{1}{\mu^{2}} \left[\frac{\theta(t)}{t/\mu^{2}} \right]_{+} \left[P_{qq}(z) - \frac{3}{2} \delta(1-z) \right] \delta\left(\mathbf{k}_{\perp}^{2} - \frac{(1-z)t}{z}\right) \\ &+ \delta(t) \delta(\mathbf{k}_{\perp}^{2}) \left[\left[\frac{\theta(1-z) \ln(1-z)}{1-z} \right]_{+} (1+z^{2}) - \frac{\pi^{2}}{6} \delta(1-z) + \theta(1-z) \left(1-z - \frac{1+z^{2}}{1-z} \ln z\right) \right] \Biggr\} \end{split}$$
(162a) $\mathcal{I}_{qg}(t,z,\mathbf{k}_{\perp}^{2},\mu) &= \frac{\alpha_{s}(\mu) T_{F}}{2\pi^{2}} \theta(z) \Biggl\{ \frac{1}{\mu^{2}} \left[\frac{\theta(t)}{t/\mu^{2}} \right]_{+} P_{qg}(z) \delta\left(\mathbf{k}_{\perp}^{2} - \frac{(1-z)t}{z}\right) + \delta(t) \delta(\mathbf{k}_{\perp}^{2}) \left[P_{qg}(z) \ln \frac{1-z}{z} + 2\theta(1-z)z(1-z) \right] \Biggr\},$ (162b)

Tells us that PDFs should be evaluated at the beam radiation scale t

ordinary beam function: $B(t, x, \mu) = \int d^2k_{\perp} \mathcal{B}(t, x, \mathbf{k}_{\perp}^2, \mu)$ Stewart, Tackmann, Waalewijn (2009)

POWER CORRECTIONS IN PP AND DIS

Universal nonperturbative shift in 3 versions of DIS 1-jettiness:

Using factorization theorems and boost invariance properties of soft Wilson lines, can prove that:

$$\Omega_1^{\rm a} = \Omega_1^{\rm b} = \Omega_1^{\rm c}$$

D. Kang, CL, I. Stewart (2013)

Surprising relation also to leading NP correction to jet mass in pp to 1 jet

under way!

TMD resummation

$$\sigma(b, z_1, z_2; \mu_i, \nu_i; \mu, \nu) = U_{\text{tot}}(\mu_i, \nu_i; \mu, \nu) H(Q^2, \mu_H) \widetilde{S}(b; \mu_L, \nu_L)$$
$$\times \widetilde{f}_{\perp}(b, z_1; \mu_L, \nu_H) \widetilde{f}_{\perp}(b, z_2; \mu_L, \nu_H)$$

$$U_{\text{tot}}(\mu_{i},\nu_{i},\mu,\nu) = \exp\left\{4K_{\Gamma}(\mu_{L},\mu_{H}) - 4\eta_{\Gamma}(\mu_{L},\mu_{H})\ln\frac{Q}{\mu_{L}} - K_{\gamma_{H}}(\mu_{L},\mu_{H})\right\} + \left[-4\eta_{\Gamma}(1/b_{0},\mu_{L}) + \gamma_{RS}\left[\alpha_{s}(1/b_{0})\right]\ln\frac{\nu_{H}}{\nu_{L}}\right\}$$

Standard scale choices:

TMD resummation in momentum space

Kang, CL, Vaidya (2017)

Our scale choices:

$$\nu_{L}^{*} = \nu_{L}(\mu_{L}b_{0})^{-1+n}$$

$$\mu_{H} \sim \nu_{H} \sim Q$$
automatic damping of *b* integrand using terms actually in perturbative series
analytic formula:

$$I_{b} = \frac{2C}{\pi q_{T}^{2}} \sum_{n=0}^{\infty} \operatorname{Im} \left\{ c_{2n}\mathcal{H}_{2n}(\alpha, a_{0}) + \frac{i\gamma_{E}}{\beta} d_{2n+1}\mathcal{H}_{2n+1}(\beta, b_{0}) \right\}$$

$$\mathcal{H}_{n}(\alpha, a_{0}) = e^{\frac{-A(L-i\pi/2)^{2}}{1/1+a_{0}A}} \frac{1}{\sqrt{1+a_{0}A}} \frac{(-1)^{a}n!}{(1+a_{0}A)^{n}} \sum_{m=0}^{\ln/2} \frac{1}{m!} \frac{1}{(n-2m)!} \left\{ [A(\alpha^{2}-a_{0})-1](1+a_{0}A) \right\}^{m} (2\alpha z_{0})^{n-2m}}$$

$$P_{resummation} \prod_{NNLL+NLO} p_{pace} resummation} \prod_{NNLL+NLO} NNLL+NLO p_{pace} resummation} \prod_{resummation} NNLL+NLO p_{resummation} \prod_{resummation} \prod_{resummation} NNLL+NLO p_{resummation} \prod_{resummation} \prod_{resummation} \prod_{resummation} \prod_{resummation} \prod_{resummation} \prod_{resummation} \prod_{resummation} \prod_{resummation} NNL+NLO p_{resummation} \prod_{resummation} \prod_{re$$