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New observables 
Jet algorithms, substrucure, 

grooming

QCD

EFTs 
SCET, NRQCD,  

HQET, χPT

Parton 
showers, 

Monte Carlo

PDFs 
quasi-PDFs, 

nPDFs

Lattice QCD

Unitarity, 
Amplitudes

AdS/CFT  
AdS/QCD

Phases of QCD 
Confinement, QGP

pQCD 
NkLO, factorization, 

resummation

…



• Soft Collinear Effective Theory

• N-Jettiness, SCETI, N3LL resummation

• SCETII and N3LL resummed TMD distributions

• Subtractions and NNLO cross sections

• Non-Global Logarithms, fixed order and resummed

• Jet substructure and SCET+

• Outlook

Outline



Formation of Jets in QCD

p

K

⇡

⇡

⇢

↵s . 1

e or p

e or p

soft and collinear 
enhancements

Perturbative soft and 
collinear splittings happen 

at intermediate time
↵s . 1

Hadronization at late time 
at low energy scale ⇤QCD

↵s � 1

probability 
of splitting ⇠

1

Eg(1� cos �)

Production of a new jet suppressed by
↵s ⌧ 1

✓

Eg

• Need to resum large perturbative logs
• Separate pert. and non-pert. physics

• Both are problems of scale 
separation: a job for EFT 



History of Jets in QCD
• Existence of gluons: • Measurements of strong coupling:

• Boosted heavy particles in SM and BSM

b

b H

Higgs Jets

Top Jets

t

b

W

10

PDG, RPP (2015-16)

event 
shapes



Separation of scales
• Large logs in QCD arise from large ratios of physical scales defining the 

measurement or degree of exclusivity of a jet cross section.

• For jet cross sections, these are precisely ratios of hard to soft scales 
and ratios of collinear momentum components.

• e.g. measurement of jet mass

pc ⇠
⇣
Q,

m2
J

Q
,mJ

⌘

pS ⇠
⇣m2

J

Q
,
m2

J

Q
,
m2

J

Q
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p2J = (pc + ps)
2 = m2

J

µH = Q

µJ = mJ

µS =
m2

J

Q

Hierarchy of 
scales 

Hard

Jet

Soft

Factorize cross section 
into pieces depending 
on only one of these 
scales at a time.

p = (n̄ · p, n · p, p?)



• Modern tools for high precision resummation, factorization of 
perturbative and nonperturbative effects Bauer, Fleming, Luke, Pirjol, Stewart 

(1999-2001)

⌦C(Q, µ)⇥

hard 
matching 

coefficient

decoupled collinear 
jet/beam functions decoupled soft 

function
collinear 

to n2

collinear 
to n1

SCET:QCD:

Power 
expansion

hard scale
µH = Q

jet/beam scale µJ,B = Q
p

⌧

soft scale µS = Q⌧

N3LLNext-to-  
Leading Log  

(NLL)

Leading 
Log (LL)

NNLL

ln�(⌧) ⇠ ↵s(ln
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+ ↵2
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• RG Evolution • Resummation of large logs

Soft Collinear Effective Theory



Soft Collinear Effective Theory
• SCETI • SCETII

Theory for jets constrained by mass Theory for jets constrained by transverse momentum  
or for exclusive collinear hadrons

soft

collinear
hard

Q

anti-collinear

p2 � Q2�4

p2 � Q2�2

Q�2

p2 � Q2

a = 0

Remove hard modes 
from theory

E + pz

E � pz

Q

Q�2

soft

collinear hard

Q

anti-collinear

p2 � Q2

a = 0E + pz

E � pzQ⌘Q⌘2

Q

Q⌘

Q⌘2 p2 ⇠ Q2⌘2

Remove 
hard modes

• Hard, collinear, soft all separated by virtuality

• Collinear/soft decoupling and factorization

• Dim. Reg. regulates all divergences

• Hard separated from coll. and soft by virtuality, 
collinear & soft separated by rapidity

• Inherits SCETI collinear-soft decoupling

• Dim. Reg. regulates virtuality divergences but not 
rapidity divergences       need additional regulator

Bauer, Fleming, Luke (2000)  
Bauer, Fleming, Pirjol, Stewart (2001)

Bauer, Fleming, Pirjol, Rothstein, Stewart (2002)

Chiu, Jain, Neill, Rothstein (2011, 2012)



Challenges to Precision Jet Cross Sections

• Jet cross sections typically depend on 

• choice of jet algorithm

• jet sizes

• jet vetoes (for exclusive jet cross sections)

• These parameters generate a number of logarithms (non-
global logs, logs of radii R, etc.) in perturbation theory which 
are challenging to resum

• N-Jettiness: a global observable picking out N-jet final 
states by measurement of a single parameter, logs of which 
can be resummed in perturbation theory by standard RGE



N-jettiness
• A global event shape measuring degree to which final state is N-jet-like.  

(small N-jettiness vetoes events with more than N jets.)

p p

⌧N =
2

Q2

X

k

min{qA · pk, qB · pk, q1 · pk, . . . , qN · pk}

Stewart, Tackmann, Waalewijn (2010)

groups particles into regions, 
according to which vector qi 
is closest.

# beams # jets

qAqB

q1

qN

Factorization and 
Resummation-friendly



N3LL resummation with SCET
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

caption of Tab. II. Furthermore, we always consider five
active flavors in the running and do not implement bot-
tom threshold corrections, since our lowest scale in the
profile functions (the soft scale µS) is never smaller than
6 GeV in the tail where we perform our fit.

In Fig. 9 we display the normalized thrust distribution
in the tail thrust range 0.15 < τ < 0.30 at the differ-
ent orders taking αs(mZ) = 0.114 and Ω1(R∆, µ∆) =
0.35 GeV as reference values, and neglectingmb and QED
corrections. We display the case Q = mZ where the
experimental measurements from LEP-I have the small-
est statistical uncertainties. The qualitative behavior of
the results agrees with other c.m. energies. The colored
bands represent the theoretical errors of the predictions
at the respective orders, which have been determined by
the scan method described in Sec. VI.

In Fig. 9a we show the O(αs) (light/yellow), O(α2
s)

(medium/purple) and O(α3
s) (dark/red) fixed-order

thrust distributions without summation of large loga-
rithms. The common renormalization scale is chosen
to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
summing large logarithms.

In Fig. 9b the fully resummed thrust distributions at
NLL′ (yellow), NNLL (green), NNLL′ (purple), N3LL
(blue) and N3LL′ (red) order are shown, but without
implementing the soft nonperturbative function Smod

τ or
the renormalon subtractions related to the R-gap scheme.
The yellow NLL′ error band is mostly covered by the
green NNLL order band, and similarly the purple NNLL′

Compare fixed order:

e+e- C Parameter

Hoang, Kolodrubetz, Mateu, Stewart (2014)

DIS ep 1-Jettiness

Kang, CL, Stewart (preliminary, 2017)



High precision strong coupling

PDG, RPP (2015)

from SCET 
predictions 

for e+e-  
event shapes

present extractions

Hoang, Kolodrubetz, Mateu, Stewart (2015)



NNLL resummation for generic observables

Banfi, LoopFest 2017

• We do not always have a factorization theorem available to make SCET 
and its RG evolution to achieve resummation

• Monte Carlo implementation ARES (successor to NLL CAESAR) of 
emission amplitudes needed for NNLL

Banfi, McAslan, Monni, Zanderighi (2016)

Cambridge
/Durham 
Jet Rates



d�

dq2T dy
= �0H(Q2, µ)
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soft

collinear hard

Q

anti-collinear

p2 � Q2

a = 0E + pz

E � pzQ⌘Q⌘2

Q

Q⌘

Q⌘2 p2 ⇠ Q2⌘2

Chiu, Jain, Neill, Rothstein (2011, 2012)

High precision pT resummation at LHC

• SCETII • Rapidity Renormalization Group 



d�

dq2T dy
= �0⇡(2⇡)

2H(Q2, µ)

Z
db bJ0(bqT )eS(b, µ, ⌫) ef?

1 (b,Q, x1, µ, ⌫) ef?
2 (b,Q, x2, µ, ⌫)

ef(~b) ⌘
Z

d2qT
(2⇡)2

ei
~b· ~qT f( ~qT ) ef(~b) ⌘ 1
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New rapidity regulator and 3-loop 
anomalous dimension

• Computation of beam or soft functions requires regulation of rapidity divergences:

• Regulator: shift separation of soft Wilson lines defining soft function in Euclidean time

Li, Neill, Zhu (2016)



N3LL resummed pT spectrum

Li, Neill, Schulze, Stewart, Zhu  
(SCET2016, Argonne Advances in QCD 2016)

• 3-loop soft function diagrams:

• 3-loop rapidity anomalous dimension:

• N3LL resummed results:

resummed

envelope



NNLO Subtractions
Moult (LoopFest 2017)



N-Jettiness Subtractions
• Exploit factorization and 2-loop computations of ingredients for small ⌧N

Boughezal, Liu, Focke, Petriello (2015)  
Gaunt, Stahlhofen, Tackmann, Walsh (2015)

• High precision, numerical stability requires power corrections:



Subleading Power Corrections
• SCET well formulated to compute power corrections: Moult, Rothen, Stewart, 

Tackmann, Zhu (2016)

• Also computable in fixed-order QCD, dramatic improvement in          independence:⌧cut

Boughezal, Liu, Petriello 
(2016)



NNLO Results V+jet

Boughezal, Liu, Petriello 
(2016)

• N-jettiness subtraction method 
vs. antenna subtraction:

• vs. data:



NNLO Revolution

X. Liu DPF 2017



Non-global logs

• Global observable: 
(thrust, N-jettiness)

• Non-global observable: 
(double hemisphere mass,  
jet vetoes)

D. Neill SCET 2017



Non-global logs

• Start to spoil “global” resummation at 2 loops:

�(mH/mL) = �gl(mH/mL)


1 +

↵2
s

(2⇡)2
CFCA

⇡2

3
ln2

mH

mL
+ · · ·

�

Dasgupta, Salam (2002)

Dasgupta, Salam (2001)

Sng = exp


�CFCA

⇡2

3

✓
1 + (at)2

1 + (bt)c

◆
t2
�

Conjecture / fit to Monte Carlo resummation (large Nc):

t =
1

4⇡�0
ln

1

1� 2�0↵sL
L = ln

mH

mL

a = 0.85CA , b = 0.86CA , c = 1.33



Fixed-order computations
• Soft functions for non-global observables in SCET, two-loop computations,  

and subleading (single) NGLs Kelley, Schabinger, Schwartz, Zhu (2011); 
Hornig, CL, Stewart, Walsh, Zuberi (2011)

• 5 loops:

Schwartz, Zhu (2014)

• 12 loops!

Caron-Huot



Factorization and Resummation of NGLs

RG evolve, integrate over to obtain original 
non-global distribution, now resummed!

Larkoski, Moult, Neill 
(2015)



Resummed computations
Larkoski, Moult, Neill (2015)



Singularities and Buffers

• Buffer region and singularities in L 
reproduced by resummed calculation 
with jets, but not fixed-order calculation 
with partons

• Take fixed order series and apply 
conformal mapping obeying proper 
singularities in L and buffer region:

Larkoski, Moult, Neill (2016)



Conformal improvement  
of fixed-order NGLs

Caron-Huot Larkoski, Moult, Neill (2016)



Jet Substructure

1-prong 2-prong

3-prong:



Energy Correlators

Moult, Necib, Thaler (2016)

3-prong (top):

good discriminants:

2-prong:

1-prong (q vs g):

definite power counting, amenable to factorization and precision calculation

cf. Basham, Brown, 
Ellis, Love (1978);  
Larkoski, Salam, Thaler 
(2013)



Grooming and Soft Drop

contamination:

Larkoski, Marzani, Soyez, Thaler (2014)
grooming:



Soft Drop
• Simplifies theoretical calculations:

� = 0



Groomed substructure
• Top tagging:

• q vs g:

Moult, Necib, Thaler (2016)



Groomed substructure and SCET+
• Soft drop groomed energy correlators:

Frye, Larkoski, Schwartz, Yan (2016)

SCET+: Bauer, Tackmann, 
Walsh, Zuberi (2011)

free of NGLs; correlated hierarchical emissions groomed away



NNLL substructure calculations
Frye, Larkoski, Schwartz, Yan (2016)



Many other EFT directions

• Connection of NGLs and small-x evolution (BFKL)

• SCET with Glauber modes for factorization violating 
effects, small-x resummation, forward scattering

I. Rothstein and I. Stewart (2016)

• SCETG for jets in heavy-ion collisions A. Idilbi and A. Majumder (2008)
G. Ovanesyan and I. Vitev (2011)

• SCETEW for resummation of electroweak logs in colliders, 
dark matter production and annihilation Chiu, Golf, Kelley, Manohar (2007)  

Ovanesyan, Slatyer, Stewart (2014)
Baumgart, Rothstein, Vaidya (2014)  

etc. 

• SCET + NRQCD for improved description of quarkonia  
in jets, discriminate production mechanisms

Baumgart, Leibovich, Mehen, Rothstein (2014)  
Bain, Dai, Leibovich, Makris, Mehen (2016-17)



In the last several years, we have gained a 
collection of EFT and other powerful tools for 

high precision calculations of observables in 
multiscale jet-like processes, making possible 
fixed-order and resummed calculations to 

orders previously unachievable and the solution 
of problems previously intractable in QCD.



The future holds great promise



Extra slides



Jet Algorithms and Radii

• Example: e+e- to two jet cross section:
R

jet radius
jet veto

E0

• One-loop cross section in QCD:

• in a cone algorithm:  
 
 

• in a kT-type recombination (or Sterman-Weinberg) algorithm:  
 

�2-jet

�0
= 1 +

↵sCF

⇡

✓
�4 ln

2E0

Q
lnR� 3 lnR� 1

2
+ 3 ln 2

◆

�2-jet

�0
= 1 +

↵sCF

⇡

✓
�4 ln

2E0

Q
lnR� 3 lnR� ⇡2

3
+

5

2

◆

• Natural to use SCET to factorize and resum, but structure of logs is 
surprisingly subtle.



Soft and Soft-Collinear phase space
• collinear and soft phase space for cone and kT algorithms:

Chien, Hornig, CL (2015)

p+g

p�g
Q

Q

p+g = Rp�g

p+g = p�g /R

cn

cn̄

s

p+g

p�g
Q2⇤

2⇤

Q

s

cn̄

cn

pg = (p�g , p
+
g , p

?
g )

2E0

2E0



Soft and Soft-Collinear phase space
• Soft phase space splits into two, single-scale-sensitive regions:

Chien, Hornig, CL (2015)

p+g = Rp�g

p+g = p�g /R

p�g

p+g

2E0

ss scn
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E < E0

E < E0
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veto

(E
0
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4⇡

✓
8 ln2

µ

2E0
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◆

Ellis, Hornig, CL, Vermilion, Walsh (2010)
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3

◆
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4⇡

✓
8 lnR ln

µ2

4E2
0R

� 2⇡2

3

◆

2E0



SCET++

µS = Q⌧/R

Hard scale

Jet scale

Global soft 
(veto) scale

µH = Q

µ⇤ = 2⇤

µsc = 2⇤R

µJ = Q
p
⌧

Csoft scale

Soft-collinear  
scale

Q(1, ⌧,
p
⌧)

⇠ (Q,Q,Q)

Q⌧
⇣ 1

R2
, 1,

1

R

⌘

(E0, E0, E0)

E0(1, R
2, R)

Chien, Hornig, CL (2015)



• Integrated jet thrust in e+e-:
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,⇤
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• Improved perturbative convergence thanks to additional logs resummed 
after soft-collinear refactorization

Chien, Hornig, CL (2015)

Resummed jet thrust cross section



Resummed jet thrust cross section
• pp jet angularity differential distribution:

• Larger impact on differential shape

A. Hornig, Y. Makris, T. Mehen (2016)

without soft-collinear 
refactorization

with soft-collinear 
refactorization



NP Corrections

• Reminder: Dokshitzer-Webber model

CL, Sterman (2006, 2007)

observable dependent,  
calculable coefficient

universal 
nonperturbative 
parameter

conjecture from single 
soft gluon emission: 
Dokshitzer, Webber 
(1995, 1997)

ce

hei = heiPT + ce
⌦1

Q

⌦1

• SCET: First rigorous proof (and field theory definition of      )  
from factorization theorem and boost invariance of soft radiation:

soft radiation sees only direction, not energy, of original collinear partons, invariant to boosts along z

⌦1

⌦1 =
1

NC
Trh0|Y †

n̄Y
†
nET (⌘)YnY n̄|0i

proof to all orders in 
soft gluon emission:

“energy flow” 
operator

(one for each of ee, ep, pp)



Momentum Flow Operators

ET (⌘)|Xi =
X

i2X

|pi
T |�(⌘ � ⌘i)|Xi

pT⌘

present argument does not rely on explicitly constructing t̂, it is nevertheless possible to do
so, as we show in Sec. 3 B 1. In Sec. 3 B 2 we argue that in SCET we can choose the thrust
axis to be in the jet direction n appearing in the two-jet current, so that no t̂ operator need
act on the final state at all.

Using the thrust axis and event shape operators t̂ and ê, we can remove all dependence
on the final state in the factor δ(e − e(X)) in Eq. (11) and can therefore perform the sum
over the complete set of final states. This gives

dσ

de
=

1

2Q2

∫

d4x eiq·x
∑

i=V,A

Li
µν ⟨0| j

µ†
i (x)δ(e − ê)jν

i (0) |0⟩ . (14)

The expression above involves a delta function of the operator ê, which requires further
comment. Heuristically this delta function is a way of treating the factorization of all
moments of ê at the same time. To see this we first define the delta function operator
δ(e − ê) through a Taylor series expansion in ê:

δ(e − ê) = δ(e) + ê δ(1)(e) + · · · +
ên

n!
δ(n)(e) + · · · . (15)

From this expression it is clear that the nth term in the series is the nth moment of the event
shape distribution. Thus if we integrate Eq. (14) against en the delta function operator on
the right picks out the nth moment of the event shape distribution.

In order to factorize this matrix element, we need to match the full theory currents onto
operators in SCET, and to construct explicitly the operator ê in SCET. The operator ET (η)
is related to the energy-momentum tensor by [30, 31]

ET (η) =
1

cosh3 η

∫ 2π

0

dφ lim
R→∞

R2

∫ ∞

0

dt n̂iT0i(t, Rn̂) . (16)

In Sec. 3 A, we will prove Eq. (16) using the energy-momentum tensor Tµν written in terms
of fields corresponding to the hadrons in the state X. In the proof of factorization below, we
will instead use its presumably equivalent form in terms of quark and gluon fields in QCD
and SCET. We are free to use either form as an operator is independent of its representation.

C. Matching onto SCET

We now match the currents and energy flow operator onto SCET. The discussion in this
section is purposely kept brief, and for more details of the techniques used and for definitions
of our notation we refer the reader to Refs. [20, 21, 28]. To reproduce the endpoint region of
the two-jet event shape distribution, we match the QCD currents jµ

i onto SCET operators
containing fields in only two collinear directions:

jµ
i (x) =

∑

n1,n2

∑

p̃1,p̃2

Cn1n2
(p̃1, p̃2; µ)On1n2

(x; p̃1, p̃2) . (17)

The operator O can depend on the label directions n1 and n2, as well as the label momenta
p̃1, p̃2. Recall that, in SCET, collinear momenta pµ

c = p̃µ + kµ are divided into a large label
piece, p̃µ = (n̄ · p̃)nµ/2 + p̃µ

⊥, and a residual piece, kµ, where n̄ · p̃ is O(Q), p̃⊥ is O(Qλ), and

6

generic form of event shapes: e(X) =
1

Q

X

i2X

fe(⌘i)|pi
T | f⌧a(⌘) = e�|⌘|(1�a)e.g. angularities

where we have defined the vector and axial currents,

jµ
i = q̄a

fΓ
µ
i q

a
f , (8)

with Γµ
V = γµ and Γµ

A = γµγ5. The leptonic tensor is given by

LV
µν = −

e4

3Q2

(

gµν −
qµqν

Q2

) [

Q2
f −

2Q2vevfQf

Q2 − M2
Z

+
Q4(v2

e + a2
e)v

2
f

(Q2 − M2
Z)2

]

(9a)

LA
µν = −

e4

3Q2

(

gµν −
qµqν

Q2

)

Q4(v2
e + a2

e)a
2
f

(Q2 − M2
Z)2

, (9b)

where fermion f has electric charge Qf in units of e, and vector and axial charges vf , af

given by

vf =
1

2 sin θW cos θW
(T 3

f − 2Qf sin2 θW ), af =
1

2 sin θW cos θW
T 3

f . (10)

In Eq. (8) a sum over colors a and flavors f is understood.
Writing the four-momentum conserving delta function as the integral of an exponential,

and using the dependence on pX in the exponential to translate one of the two currents to
the position x we can write the distribution as

dσ

de
=

1

2Q2

∑

X

∫

d4x eiq·x
∑

i=V,A

Li
µν ⟨0| j

µ†
i (x) |X⟩ ⟨X| jν

i (0) |0⟩ δ(e − e(X)) , (11)

B. Eliminating the dependence on the final state

The delta function δ(e − e(X)) restricts the sum over final states to those states giving
the same value e of the observable event shape. This means that we cannot perform the sum
over the complete set of final states. However, as we will now show, it is possible to write
the event shape e(X) as the eigenvalue of an operator acting on the final state X. This
can be achieved using the definition of the transverse energy flow operator ET (η), which was
introduced in [21]. Its action on a hadronic state X is given by

ET (η) |X⟩ =
∑

i∈X

∣

∣pT
i

∣

∣ δ(η − ηi) |X⟩ , (12)

where pT
i is the transverse momentum of the ith particle with respect to the thrust axis, and

ηi is the rapidity of the ith particle. The thrust axis is defined to be the unit vector t which
maximizes the sum

∑

i |pi · t|. In the event shapes of Eq. (1), rapidities and transverse
momenta are measured with respect to this axis. Thus implicit in the action of ET (η) on
|X⟩ is the determination of this thrust axis t(X). Using the energy flow operator we define
an operator ê, which returns the value of the event shape for a given state X,

ê |X⟩ ≡ e(X) |X⟩ =
1

Q

∫ ∞

−∞

dη fe(η)ET (η; t̂) |X⟩ , (13)

where t̂ is an operator that returns the value of the thrust axis t(X) when acting on the final
state X, and we have denoted explicitly the dependence of ET (η) on this axis. Although the

5

operator action in terms of 
transverse momentum flow operator:

construct out of energy-momentum tensor of QCD:

measures total transverse momentum  
flowing through slice of sphere at rapidity  
from collision time t=0 to detector at

|pT |
⌘

t ! 1
R ! 1

since Lagrangian of SCET factors into collinear and 
soft sectors, so does the energy-momentum tensor:

Tµ⌫ ! Tn
µ⌫ + T n̄

µ⌫ + T s
µ⌫

Belitsky, Korchemsky, Sterman (2001)
Bauer, Fleming, CL, Sterman (2008)



Proof of universality

�heis =
1

Q

Z 1

�1
d⌘ fe(⌘)

1

NC
Trh0|T [Y †

nYn̄]ET (⌘)T [Y †
n̄Yn]|0i

Lorentz boosts by rapidity 
along z:

↵⇤�1
↵ ⇤↵

Yn = P exp

h
ig

Z 1

0
ds n ·As(ns)

i
Yn

|0i |0i
ET (⌘) ET (⌘ + ↵)

�heis =
1

Q

⇢Z 1

�1
d⌘ fe(⌘)

�⇢
1

NC
Trh0|T [Y †

nYn̄]ET (0)T [Y †
n̄Yn]|0i

�

ce ⌦1

CL, Sterman (2006, 2007)

• In general NP part of soft function must be modeled and is observable-dependent:

• The universality of the first moment, however, can be proven exactly:

S(e, µ,⇤) =

Z 1

0
de0SPT(e� e0, µ)FNP(e

0,⇤)

c⌧a =
2

1� a
for e+e- scaling is obeyed well by LEP datac⌧ = 2 cC = 3⇡e.g.
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

caption of Tab. II. Furthermore, we always consider five
active flavors in the running and do not implement bot-
tom threshold corrections, since our lowest scale in the
profile functions (the soft scale µS) is never smaller than
6 GeV in the tail where we perform our fit.

In Fig. 9 we display the normalized thrust distribution
in the tail thrust range 0.15 < τ < 0.30 at the differ-
ent orders taking αs(mZ) = 0.114 and Ω1(R∆, µ∆) =
0.35 GeV as reference values, and neglectingmb and QED
corrections. We display the case Q = mZ where the
experimental measurements from LEP-I have the small-
est statistical uncertainties. The qualitative behavior of
the results agrees with other c.m. energies. The colored
bands represent the theoretical errors of the predictions
at the respective orders, which have been determined by
the scan method described in Sec. VI.

In Fig. 9a we show the O(αs) (light/yellow), O(α2
s)

(medium/purple) and O(α3
s) (dark/red) fixed-order

thrust distributions without summation of large loga-
rithms. The common renormalization scale is chosen
to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
summing large logarithms.

In Fig. 9b the fully resummed thrust distributions at
NLL′ (yellow), NNLL (green), NNLL′ (purple), N3LL
(blue) and N3LL′ (red) order are shown, but without
implementing the soft nonperturbative function Smod

τ or
the renormalon subtractions related to the R-gap scheme.
The yellow NLL′ error band is mostly covered by the
green NNLL order band, and similarly the purple NNLL′

Compare fixed order:
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

caption of Tab. II. Furthermore, we always consider five
active flavors in the running and do not implement bot-
tom threshold corrections, since our lowest scale in the
profile functions (the soft scale µS) is never smaller than
6 GeV in the tail where we perform our fit.

In Fig. 9 we display the normalized thrust distribution
in the tail thrust range 0.15 < τ < 0.30 at the differ-
ent orders taking αs(mZ) = 0.114 and Ω1(R∆, µ∆) =
0.35 GeV as reference values, and neglectingmb and QED
corrections. We display the case Q = mZ where the
experimental measurements from LEP-I have the small-
est statistical uncertainties. The qualitative behavior of
the results agrees with other c.m. energies. The colored
bands represent the theoretical errors of the predictions
at the respective orders, which have been determined by
the scan method described in Sec. VI.

In Fig. 9a we show the O(αs) (light/yellow), O(α2
s)

(medium/purple) and O(α3
s) (dark/red) fixed-order

thrust distributions without summation of large loga-
rithms. The common renormalization scale is chosen
to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
summing large logarithms.

In Fig. 9b the fully resummed thrust distributions at
NLL′ (yellow), NNLL (green), NNLL′ (purple), N3LL
(blue) and N3LL′ (red) order are shown, but without
implementing the soft nonperturbative function Smod

τ or
the renormalon subtractions related to the R-gap scheme.
The yellow NLL′ error band is mostly covered by the
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Beam Function and PDFs
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Generalized Beam Function to 1-loop

Tells us that PDFs should be evaluated at the beam radiation scale t
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now known to 2 loops; 
anomalous dimension  
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Universal nonperturbative shift in 3 versions of DIS 1-jettiness:  

Surprising relation also to leading NP correction to jet mass in pp to 1 jet

POWER CORRECTIONS IN PP AND DIS
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Using factorization theorems and 
boost invariance properties of soft 

Wilson lines, can prove that:
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Stewart, Tackmann, 
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Experimental Coverage
Preliminary: Kang, CL, Stewart 
(2016)

HERA

EIC  
(high)

EIC  
(low)

existing HERA event 
shape analyses

New analyses of HERA data for 1-jettiness 
under way!

preliminary theoretical 
uncertainty (N3LL)



TMD resummation
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TMD resummation in momentum space

Our scale choices:

automatic damping of b integrand 
using terms actually in 
perturbative series
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