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Neutrino mass

keV

eV

MeV

GeV

TeV

meV

e

µ

t

ud
s
c b

t

1st 2nd 3rd

Neutrinos

3
"The tiny masses of neutrinos indicate that they may interact with the Higgs sector in a 

special way.”



The matter-antimatter asymmetry
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“The excess of matter over antimatter in the universe is one of the 
most compelling mysteries in all of science.”

Instead of starting with a baryon number violating process (baryogensis), 
leptogenesis relies on violating lepton number, then converting L into B.
Neutrinos could be the key to explaining the matter-antimatter asymmetry in the 
universe…

“Dirac” neutrinos 

“Majorana” neutrinos

The two descriptions are distinguishable only if mν≠0.
As a bonus, Majorana ns may be tied to the mystery of small n

masses

n ≠ n

n = n



Double beta decay

Some candidate nuclei: 76Ge, 82Se, 100Mo, 130Te, 136Xe

Atomic number (Z)
This process can only occur 

for a Majorana neutrino!

M.Goeppert-Mayer, 
Phys. Rev. 48 
(1935) 512
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Neutrinoless double beta decay
2νββ spectrum

(normalized to 1)
0νββ peak (5% FWHM)

(normalized to 10-6)

0νββ peak (5% FWHM)
(normalized to 10-2)

(light Majorana neutrino exchange mechanism ONLY)
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Effective Majorana mass
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Nuclear physics considerations

• The uncertainties 
on individual 
isotopes are related 
to nuclear structure.  

• There is not a clear 
winner based on 
phase space and 
matrix element 
considerations.
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Ideally, we would observe 0nbb in more than one 
isotope!

R
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28, 1350021 (2013).



Other mechanisms
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While it is convenient to think in terms of the light neutrino 
exchange mechanism, no reason to think it’s dominant!

Wick Haxton, DNP 2016



Connections to LHC physics
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Note that even in this case the decay implies Majorana masses,
except the relationship to the half-life is now a different one.

ppàeejj+X
(LHC@14TeV)

An observation of 0nbb is an observation of lepton number 
violation (DL=2), so collider searches are complementary.

Here’s a SUSY-inspired example, where generic LNV physics is 
inserted at the TeV scale:



How to search for 0nbb?

•Large exposure
•High isotopic abundance
•Good energy resolution
•Low background
•High detection efficiency

KamLAND-
Zen
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Low background
Massive effort on material radioactive purification and qualification 
using:

• Neutron activation analysis 
• Low background γ-ray spectroscopy
• α-counting and radon counting 
• High sensitivity GD-MS and ICP-MS 

Just for EXO-200, the database of characterized materials includes 
over 300 entries. See D.S.Leonard et al., Nucl. Instr. Meth. A591, 
490 (2008) and D.S. Leonard et al., arXiv:1703.10799



Low density trackers:
- NEXT, PandaX (136Xe gas 
TPC)
- SuperNEMO (foils and gas 
tracking, 82Se)

Pros: Superb topological 
information
Cons: Very large size

Liquid (organic) scintillators:
- KamLAND-ZEN (136Xe)
- SNO+ (130Te)

Pros: “Simple”, large detectors 
exist, self-shielding
Cons: Poor energy resolution, 
2ν background

Crystals:
- GERDA, Majorana
Demonstrator, LEGEND (76Ge)
- CUORE, CUPID (130Te)

Pros: Superb energy resolution, 
possibly 2-parameter 
measurement
Cons: Intrinsically fragmented
Liquid TPC:
- EXO-200, nEXO (136Xe)

Pros: Homogeneous with good 
E resolution and topology
Cons: Does not excel in any 
single parameter



Recent results (> 1025 yr half-life)
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Isotope Experiment Exposure
(kg yr)

Reference

76Ge GERDA 46.7 5.8 >8.0 <120-270 L. Pandola for 
GERDA Collab,
TAUP 2017

136Xe

EXO-200 177.6 3.7 >1.8 <147-398 Albert et al. arXiv: 
1707.08707 (2017)

KamLAND-
ZEN

504** 4.9 >11
(run 2)

<60-161 Gando et al., PRL 
117 (2016) 082503

*  Note that the range of “viable” NME is chosen by the experiments and uncertainties related to gA
are not included
** All Xe.  Fiducial Xe is more like ~150 kg yr

To achieve higher sensitivity, the next generation of 
experiments will be at the tonne-scale.



An opportunity for particle physics
“The most powerful probe of lepton 
number conservation, and whether 
neutrinos are Dirac or Majorana, is 
the observationof neutrinoless 
double-beta decay. These are 
questions and experiments of the 
greatest interest to particle 
physics.”

“Next-generation experiments will 
continue to benefit
from strong HEP and PA 
participation.”



Challenges of the tonne-scale
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Shielding a detector from MeV 
gammas is difficult!

Example: 
γ–ray interaction length 
in Ge is 4.6 cm, 
comparable to the size 
of a germanium detector.

Typical 0nbb
Q-values

G
am

m
a 

in
te

ra
ct

io
n 

cr
os

s 
se

ct
io

n

Shielding 0nbb decay detectors is much harder than shielding 
dark matter detectors

We are entering the “golden era” of 0nbb decay experiments as 
detector sizes exceed interaction length



Monolithic detectors
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LXe mass (kg) Diameter or length 
(cm)

5000 130
150 40
5 13

5kg 150kg

5000kg

2.5 MeV γ-ray
attenuation length
8.5cm = 



Background suppression
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All observables have a role in separating signal from background. 
A very large, homogeneous detector has great advantages but 
only if its energy resolution is sufficient to sufficiently suppress the 
2νbb mode. 



Example #1: the high resolution approach
Next Generation ton scale 76Ge 0νββ

• Build on the experience of GERDA and the 
MAJORANA DEMONSTRATOR, as well as 
contributions from other groups and 
experiments.

• Design sensitivity of ~1x1028 y for a 
background of 0.1 cnt/tonne-yr in the region of 
interest

• Requires background reduction of 30 relative 
to GERDA and MAJORANA DEMONSTRATOR.

• Envision a phased, stepwise implementation, 
starting with increased source mass in the 
GERDA cryostat:

e.g. 200 → 500-1000 kg

19LEGEND



Example #2: the very large Liquid scintillator approach
Beyond KamLAND-Zen 800

Higher energy resolution = lower 2ν background: KamLAND2-ZEN

expected σ(2.6MeV)= 4% → ~2％

1000+ kg xenon

target sensitivity   20 meV

Beyond? Super-KamLAND-Zen
in connection with Hyper-Kamiokande

target sensitivity 8 meV

Light collection gain
Winston cones x1.8

Higher q.e. PMTs x1.9

LAB-based liquid scint x1.4

Overall x4.8
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46 
cm

130 
cm

Example #3: The nEXO detector
A 5000 kg enriched LXe TPC, 
directly extrapolated from EXO-200

EXO-200
TPC

nEXO
TPC
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Preliminary artist view of nEXO 
in the SNOlab Cryopit



nEXO discovery potential
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nEXO 10 year discovery potential at T1/2=5x1027 yr
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Baseline design assumes:
• Existing measured materials
• 1% s/E energy resolution
• Factor of two improvement in SS/MS discrimination

nEXO sensitivity



Conclusions
• 0nbb is the most practical way to test the Majorana 

nature of neutrinos. An observation of 0nbb always 
implies new physics!

• Results from ~100 kg yr searches are here with 
sensitivities to half-lives > 1025 yr! No discovery yet…

• Tonne-scale searches for 0nbb are complementary to 
other searches for new physics in the particle physics 
community.

• The underlying physics of neutrino mass is within 
reach.
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