QCD Studies at High and Low Energies (Including PDFs)

Division of Particles and Fields, Meeting 2017 3rd August 2017, Fermilab

Federico Sforza (Tufts University)

on behalf of Alice, ATLAS, CMS, and LHCb Collaborations

Why to Study QCD?

QCD is everywhere at LHC:

- Study of soft QCD observables
- Element of MC event simulation:

parton-shower (PS), hadronization, underlying event (UE), multi parton interactions (MPI), ...

- Structure of the proton (PDFs)
- Hard QCD interactions

Why to Study QCD?

LHC now in the era of precision QCD measurements:

- Control and reduce syst. errors
- Improvements BSM searches
- Precision EWK physics
- Test state-of-the-art predictions
- Constraints on fundamental parameters

Impossible to cover everything... Presenting only a small personal selection of mainly LHC results from last two years

(Also note the plenary talks about flavor and QGP measurements, by <u>Steve Blusk</u> and <u>James Dunlop</u>)

QCD at Low & High Energy

Soft QCD and MC Tuning

Let's start from soft QCD:

- Non-perturbative effects in hadron collisions: hadronization, UE, MPI, beam-remnant interactions, long-range color-exchange
- Pheno models used in all MC generators → *correct "tuning" essential at LHC!*
- Possible thanks to a set of recent (and less recent) dedicated measurements

Soft QCD and High- p_{τ} Jets

8000 GeV

Events / '

Multijet + t

7000

6000

5000

4000

3000

2000

1000

CMS

Proliminary

Soft QCD at the basis of jet sub-structure:

→ important new tool for BSM searches and SM in boosted environments!

How to understand this new tool? Best way: differential measurement of sub-structure sensitive observables

New CMS analysis (CMS-PAS-SMP-16-010):

- Analysis of *jet-mass*
- Groomed jets *softdrop mass* (insensitive to non-global logs)

CMS-PAS-HIG

80 100 120 140 160 180 200

35.9 fb⁻¹ (13 TeV)

Multijet

Total Background

Events / 6 GeV

*и***ата-**ыкg

m_{sp} (GeV)

2500

2000

1500

1000

500

D 0.7

-0.05

60

80

100

120

ATLAS

 $WV \rightarrow hvJ$

Signal Region

s = 8 TeV. 20.2 fb

- Precision improvement for groomed jets in region $0.1 < m/p_{\tau} < 0.3$
- These are first steps, but can be used for tuning

QCD at Low & High Energy

F. Sforza (Tufts)

[arXiv:1706.01702]

WV

V+Jets

Top quark

Uncertainty

160

m₁[GeV]

140

Multijet

Strangeness in Soft QCD

Current approach to MC simulations plus tuning is *powerful, working fine...* \rightarrow *Could new studies re-define the basis of our models?*

Hadron Correlations in Soft QCD

- Shed light on early phases of hadronization \rightarrow beyond pheno models
- One specific example: excess of nearby same charge hadrons explained by Bose-Einstein interference, could other models be better?

- New ALTAS study of ordered hadron chains (STDM-2014-08)
- Test model of quantized fragmentation of 3D color strings

Soft QCD take-home questions: Are current models satisfactory? How can we understand deep mechanics? Which uncertainties will be reduced?

QCD at Low & High Energy

Analysis of Hard Collisions at LHC

Next step: accurate study of hard-scattering

- Possible thanks to running of $\alpha_{\rm s}$ and factorization theorem:

$$\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu_F) f_j(x_2, \mu_F) \hat{\sigma}_{ij}(p_1, p_2, \alpha_S(\mu_R), Q^2, \mu_R \mu_F)$$

Analysis of Hard Collisions at LHC

Next step: accurate study of hard-scattering

- Possible thanks to running of $\alpha_{\rm s}$ and factorization theorem:

$$\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 \, dx_2 f_i(x_1, \mu_F) f_j(x_2, \mu_F) \hat{\sigma}_{ij}(p_1, p_2, \alpha_S(\mu_R), Q^2, \mu_R \mu_F)$$

$\hat{\sigma}_{ii}$ represents hard production of:

- di-jet, multi-jets, γ + jets
- single V (V=W, Z), V+ jets, V+ HF-jets
- top-quark, Higgs, etc. etc.
- All rely on *perturbative QCD (pQCD)* calculations
 → are they good enough?
- Higher order (HO) corrections can be large for inclusive or differential (selection dependent) observables

Example, Higgs production: ~70% NLO to LO QCD correction, ~30% NNLO, N3LO also available!

√S /TeV

σ

Analysis of Hard Collisions at LHC

Next step: accurate study of hard-scattering

- Possible thanks to running of α_{s} and factorization theorem:

$$\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu_F) f_j(x_2, \mu_F) \hat{\sigma}_{ij}(p_1, p_2, \alpha_S(\mu_R), Q^2, \mu_R \mu_F)$$

PDFs are the other fundamental ingredient:

- Different processes can probe contribution form all partons
- Test of proton structure, reduction of syst. errors, SM couplings

QCD at Low & High Energy

σ

В

Di-jet Cross Section Measurements

Jets: most abundant process at LHC

- Differential measurements probe pQCD at the multi-TeV scale
- Analysis of Anti- k_t jets with $\Delta R = 0.4, 0.6/0.7$
- 5-10 % experimental syst. mostly JES & JER

CMS 13 TeV, 1st paper:

- CMS: EPJC76(2016)451
- And ATLAS preliminary ATLAS-CONF-2015-034

Final experimental precision reached at 8 TeV:

 $0 \le y_b < 1$

 $0 \le y^* < 1$

Uncertainties

300

+ Statistical

200

0.2

0.1

-0.1

-0.3

ertainty

- CMS 8 TeV measurement and ratio at 7, and 2.76 TeV: JHEP03(2017)156
- ATLAS 8 TeV: [arXiv:1706.03192]

9.0 6.0 7

Relative 50

-0.2

Jet energy resolution

Jet energy scale Other

Statistics

ATLAS

|v| < 0.5

 $70 \ 10^2$

s= 8 TeV, 20.2 fb anti-k, R= 0.4

2×10²

19.7 fb-1 (8 TeV)

1000

pT. avg [GeV]

CMS

Luminosity

Tota

500

QCD at Low & High Energy

F. Sforza (Tufts)

¹0³ 2×10³ p_{T,jet} [GeV]

Di-jet Cross Section Measurements

Jets: most abundant process at LHC

- Differential measurements probe pQCD at the multi-TeV scale
- Analysis of Anti- k_t jets with $\Delta R = 0.4, 0.6/0.7$
- 5-10 % experimental syst. mostly JES & JER

CMS 13 TeV, 1st paper:

- CMS: EPJC76(2016)451
- and ATLAS preliminary ATLAS-CONF-2015-034

Final experimental precision reached at 8 TeV:

ILLE IFF

 $0 \le y_b < 1$

 $0 \le y^* < 1$

Uncertainties

300

+ Statistical

200

0.2

0.1

-0.1

-0.3

ertainty

 CMS 8 TeV measurement and ratio at 7, and 2.76 TeV: JHEP03(2017)156

9.0 6.0

Relative 50

-0.2

Jet energy resolution

Jet energy scale

Statistics

ATLAS

|v| < 0.5

70 10²

s= 8 TeV, 20.2 fb anti-k, R= 0.4

2×10²

19.7 fb-1 (8 TeV)

1000

 $p_{T, avg}$ [GeV]

CMS

Luminosity

Tota

500

F. Sforza (Tufts)

0³ 2×10³ p_{T,jet} [GeV]

In-depth Analysis of Jet Production

Study of jet-jet correlations:

3D differential cross section:

QCD at Low & High Energy

F. Sforza (Tufts)

-0.1

Data 2012

Pythia8

····· Herwig++

---- Sherpa

Constraints on PDFs

E.g. data/theory discrepancy at high-pT and high boost: Theoretical uncertainties on predictions dN ⊗ M3 ⊗ 01.4 ⊗ 01.2 19.7 fb⁻¹ (8 TeV) are often larger than experimental ones CMS $2 \le y_b < 3$ [arXiv:1705.02628] $0 \le y^* < 1$ PDFs uncertainties dominate at high p_{T} • 3.0 1.0 Measurements can constrain theory • Experimental uncertainty Theoretical uncertainty MMHT 2014 - NLO@EW@NP - NLO®EW®NF 300 200 **HERAPDF Method (Hessian) CMS NLO** p_{T, avg} [GeV] No net of the net of • QCD analysis of HERAPDF method (Hessian) ≈ 4.0 $Q^2 = 1.9 \text{ GeV}^2$ jet data with DIS 0 3.5 X) 3.0 X 2.5 CMS HERA I+II DIS HERA I+II DIS + CMS dijets data (HERA) $O^2 = 1.9 \, \text{GeV}^2$ 2.5 JHEP03(2017)156 Fit of free 2.0 0.2 parameters of 1.5 3D di-jet: 1.0 **PDFs** models [arXiv:1705.02628] 0.5 0.4 Fract. uncert. **xFITTER** routines 0.0 uncert. 0.2 [arXiv:1410.4412] 0 -0.2 Rel 10^{-4} 10^{-3} 10^{-2} 10-1 10⁻¹ -3 -2 10 10 10 X Х Significant impact on gluon PDF Constraints on valence quark PDF F. Sforza (Tufts) QCD at Low & High Energy

•

Extraction of a Fundamental Constant: α_s

• Jet cross section measurements are probing the fundamental nature of pQCD

Direct measurement of α_s

Analysis	$\alpha_{s}(M_{z})$	Exp. error	scale	PDFs	
Inclusive jets	0.1164	+/- 0.0015	+0.0053 / -0.0028	+0.0025 / -0.0029	JHEP03(2017)156 (CMS)
3D jet cross sec.	0.1199	+/- 0.0015	+0.0031 /	-0.0020	[arXiv:1705.02628] (CMS)
TEEC	0.1162	+/- 0.0011	+0.0076 / -0.0061	+/-0.0017	[arXiv:1707.02562]
ATEEC	0.1196	+/- 0.0013	+0.0061 / -0.0013	+/-0.0017	(ATLAS)

QCD at Low & High Energy

V plus Jet Associate Production

- LHC hadronic initial states means that jets are *always produced*, also together with other particles undergoing investigation
- Associate production of W, Z bosons and hard-jets is often the main background for BSM and Higgs physics → need of reliable simulation
- Comparison of unfolded distributions sensitive to MC modeling & pQCD

First analysis of Z+jets 13 TeV on early 3 fb⁻¹ data (ATLAS EPJC77(2017)361) ... and full-glory analysis of Z+jet 8 TeV 20 fb⁻¹ data (CMS JHEP04(2017)022)

QCD at Low & High Energy

W plus Jets Production

$W(\rightarrow Iv)$ + jets analyses :

- v escapes direct detection, signaled by E_{T} imbalance
- Slightly larger syst. & larger backgrounds (top, multi-jet)
- **But:** complementary Z+jets & larger stat. → investigation of phase space corners e.g. collinear emission, *jet-jet correlations, etc.*
- CMS W+jets 8 TeV (*PRD95(2017)052002*) > 40 distributions!
- New! W+jets CMS 13 TeV also available: [arXiv:1707.05979]

[qd]

do/dΔR(µ,closest jet)

Q

LO/Data

W plus Heavy-Flavor Jets

- V+HF jets smaller cross section means larger relative background contributions
- HF jets identified using secondary vertexing, track impact-parameter, etc. Often combined using MVA

Experimentally challenging!

- *W*+*bb*@8 TeV CMS results: EPJC77(2017)92
- LHCb outstanding vertexing capability but limited jet reconstruction → succeeded in simultaneous extraction of W+bb, W+cc, tt using a 4D fit @8TeV!

N

Z plus Heavy-Flavor Jets

Multi-differential Z+HF measurement @8 TeV, CMS [arXiv:1611.06507]

- Use of ratio w.r.t. to light jets to cancel experimental syst.
- Test of 5FS vs 4FS ME calculations: b-quark from PDFs evolution or only from gluon splitting (mass-effects)
- Predictions differ but none describe data perfectly

Analysis of Z+c production: CMS-PAS-SMP-15-009

- c-jet extraction using semileptonic and D-meson decays
- Some tension at low $p_{\tau} \rightarrow$ but still large exp. uncertainties

19.8 fb⁻¹ (8 TeV)

CMS

Analysis of Single W, Z/γ^* Production

- Ultimate experimental precision in QCD measurements from single boson identification in leptonic final states → clean & high stat. samples
- Also partially covered in Andreas Jung's plenary talk
- % level accuracy already in early 13 TeV analyses
- Dominant uncertainty from lumi. determination (~2%)

- Reduced impact of syst. uncertainties using ratios or considering differential observables
- Also LHCb contributing to precision W, Z physics!

- Constraints on proton PDFs (valence and sea quarks)
- V-p_T high sensitivity to fixed-order, ME+PS, or resummed predictions differences

QCD at Low & High Energy

Drell-Yan Precision Analysis

Unfortunately reaching the final precision takes time... Run I still fundamental!

• Differential analysis of DY events at 7 and 8 TeV from ATLAS and CMS

Multi-differential high-precision measurements:

- DY kinematics described by 5 independent variables
- M_∥ & |Y| in Z→II used to maximize PDFs sensitivity

Notable examples:

- ATLAS W, Z 7 TeV ATLAS EPJC77(2017)367
- CMS W at 8 TeV EPJC76(2016)469
- Both resulting in strong constraints on PDFs
- New ATLAS at 8 TeV Z3D:
- 20 fb⁻¹ also allows fine binning
- Sensitivity to AFB:

QCD at Low & High Energy

More Information Using 7,8,13 TeV

How to achieve an even better precision?

- Ratio & double ratios at different \sqrt{s}
- First example of this kind of measurement: JHEP02(2017)117

$$\boldsymbol{R}_{t\bar{t}/Z}^{\text{tot/fid}}(i/j) = \left[\sigma_{t\bar{t}(i\text{TeV})}^{\text{tot}}/\sigma_{Z(i\text{TeV})}^{\text{fid}}\right] / \left[\sigma_{t\bar{t}(j\text{TeV})}^{\text{tot}}/\sigma_{Z(j\text{TeV})}^{\text{fid}}\right]$$

• Luminosity syst. cancels \rightarrow we are using Z cross section to normalize events

- $t\bar{t}$ + lever arm from multi- \sqrt{s} : *constraints on gluon PDF*
- Good agreement with prediction for data including 13 TeV measurements (~3% error on R_{tt/Z})
 - Some tension in 7/8 TeV results (~1% error on R_{tt/z})

F. Sforza (Tufts)

1.1 δx/gxg ATLAS 13 TeV, 3.2 fb⁻¹ 8 TeV. 20.2 fb¹ 7 TeV. 4.6 fb¹ 1.05 $Q^2 = m_{\star}^2$ 0.95 ATLAS-epWZ12 ATLAS-epWZ12+tt ATLAS-epWZ12+tt+Z 0.9 10⁻¹ 10⁻² Х

QCD at Low & High Energy

22

LHCb W, Z Precision Measurements

- 7, 8 TeV W, Z fiducial and differential cross section measurements in phase space complementary to ATLAS/CMS: 2.0<η_{lep}<4.5 JHEP01(2016)155
- Use of *W*, *Z* ratio and double ratio at different \sqrt{s} to cancel experimental uncertainties (<1% precision)

QCD at Low & High Energy

LHC 13 TeV Kinematics

ATLAS/CMS

Fixed Target

CDF/D0

 Q_2^2

Strangeness Content of the Proton

What else can we learn given the amount of information we have?

 $Q^2 = 1.9 \text{ GeV}^2$, x=0.023

▲ ABM12

▼ CT14

NNPDF3.0 MMHT14

ATLAS

- Early (2010) Run I W, Z ATLAS results pointed to possible enhancement of strangeness in PDFs
- Strangeness fraction (r_s) now measured in W, Z 7TeV EPJC77(2017)367:

More About Extraction of Fundamental SM Parameters

Indirect:

- Precise QCD measurements indirectly help any kind of measurement of fundamental parameters (or BSM search) at the LHC and beyond
- ATLAS W-mass is a recent example [arXiv:1701.07240]: several measurements (Vp_T, PDFs, etc.) allowed to pin down systematic uncertainties to the current level of precision (still QCD related systematics are dominant)

Combined	Value [MeV]	Stat.	Muon Unc	Elec. Unc	Recoil Unc	Bckg. Unc	QCD Unc	EW Unc	PDF Unc	Total Unc	χ^2/dof
				<u> </u>	0.110.	4 5	0.10.		0.0	10 5	
$m_{\rm T}$ - $p_{\rm T}^{\circ}, W^{\pm}, e$ - μ	80369.5	0.8	0.0	0.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

ATLAS

 $\Box D \rightarrow K I \nu$

• $D_s \rightarrow I v$

• NNPDF1.2

0.8

ATLAS-epWZ16

0.85

inner uncertainty: exp only

0.9

0.95

outer uncertainty: total

Direct:

- $|V_{cs}|$ element of CKM matrix related to strange density because of cs \rightarrow W
- ~25% of W cross section at 7 TeV due to it
- CKM elements can be extracted from QCD analysis of precision W, Z measurement!

 $V_{cs}| = 0.969 \pm 0.013 \text{ (exp)} + 0.006 \text{ (mod)} + 0.003 \text{ (par)} + 0.011 \text{ (thy)} + 0.005 \text{ (par)} + 0.011 \text{ (thy)}$

Measurement competitive with D-meson decays

 $|V_{cs}|$

1.05

CKM fit

Conclusions

QCD, at the basis of every interaction at the LHC, is a pervasive element of modern particle physics:

- Subject of a variety of challenging experimental measurements... only a small sub set shown
- Each measurement usually delivers an important message to the experimental and theoretical communities
- Comparison against state-of-the-art theory predictions
- Understanding of hadron properties and proton structure
- Reduction of uncertainties needed for "not easy" BSM searches
- Fundamental part of any SM precision measurements
- Probe of fundamental constants of Nature

Mastering QCD is both essential for the future of the LHC program and for the advancement of our knowledge

Thanks for your attention!

Questions?

Backup

Detectors

QCD at Low & High Energy

13

The QCD Domain at LHC

Proton-proton Cross Section

Total pp cross-section: ATLAS: [arXiv:1607.06605] TOTEM: [arXiv:1610.00603]

Inelastic pp cross-section: ATLAS, [arXiv:1606.02625] CMS-PAS-FSQ-15-005

UE In Z+jets and ttbar Events

Jet Grooming & Softdrop Mass

V+jets: Unfolding & Prediction Comparison

- Define fiducial volume of the measurement in phase space similar to experimental acceptance
- Use signal MC to remove *detector* effects (efficiencies, resolution, scales) on background subtracted data
- Compare unfolded data to available MC simulations or to fixed-order calculations (after correction for non-perturbative effects as fragmentation, underling event, etc.)

E.g. n-jets reco-vs-particle jets:

^Darticle level N_{jets}

Type of Prediction	MCs & Calculations "label"	Usage & Notes		
multi-partons (Np) LO ME+PS	Sherpa 1.X (up to Np = 4)	Wide usage in ATLAS Run I analyses		
	Madgraph5 (up to Np = 4)	Wide usage in CMS Run I analyses		
	ALPGEN (up to Np = 5)	Run I (and Run II) "workhorse"		
multi-parton (Np) NLO and LO ME+PS	Madgraph5 aMC@NLO (NLO up to Np = 2)	"Standard" in many Run II CMS analyses		
	Sherpa 2.X (NLO up to Np = 2)	"Standard" in many Run II ATLAS analyses		
	Powheg (NLO Np = 1)	Tested in Run I by CMS		
Fixed order NLO calculation	BlackHat + Sherpa (NLO up to Np = 5)	Tested in Run I, II (both ATLAS and CMS)		
Approximate NNLO	LoopSim (approx. NNLO for W+>=1jets)	Tested in Run I by ATLAS		
	HEJ (approx. to all orders for W+>=2 jets)			
Fixed order NNLO calculation	N-Jettiness (full NNLO QCD)	!! NEW !! Tested for fist time in Run II		

Drell-Yan Precision Analysis

Unfortunately reaching the final precision takes time... Run I still fundamental!

• Differential analysis of DY events at 7 and 8 TeV from ATLAS and CMS

A notable example: boson p_T

- ATLAS: EPJC76(5)1(2016) CMS: JHEP02(2016)096
- Sub-percent precision on differential shape, analysis of Z-peak and off-peak regions
- $p_T \ll M_Z \rightarrow$ soft-resummation, non-perturbative regime
- $p_T \sim M_Z \rightarrow fixed order calculations$

- Full boson p_T spectrum hard to model with a single prediction
- Ratio of Z to W p_T is important for W-mass measurement at LHC: \rightarrow Needed to transfer calibrations from Z to W with MeV accuracy

Collins-Soper frame

- Decay angle measured from an axis symmetric with respect to the two incoming partons
- Decay angle uniquely defined
- avoids potential ambiguity in the case that one or both partons have non-zero transverse momentum in the lab frame.

High-Mass Drell-Yan Analysis

Differential Measurement and PDFs

Differential cross-sections (e.g. vs rapidity) can disentangle contribution form different quark flavors in proton-proton collisions:

A practical example of shape sensitivity to peculiar effects:

Believed (i.e. in all PDFs) that strange-sea suppressed w.r.t. down-sea, *what if not true?*

- Shape of Z rapidity affected (~4% difference)
- W distributions not (may give absolute normalization)

QCD at Low & High Energy

F. Sforza (Tufts)

PDFs Measurement Using W, Z

The most precise W analyses:

- ATLAS W at 7 TeV EPJC77(2017)367 (together with Z)
- CMS at 8 TeV EPJC76(2016)469
- W⁺, W⁻ production difference encoded in W-asymmetry:

$$A_{\ell} = \frac{\mathrm{d}\sigma_{W+}/\mathrm{d}|\eta_{\ell}| - \mathrm{d}\sigma_{W-}/\mathrm{d}|\eta_{\ell}|}{\mathrm{d}\sigma_{W+}/\mathrm{d}|\eta_{\ell}| + \mathrm{d}\sigma_{W-}/\mathrm{d}|\eta_{\ell}|}$$

 Dedicated QCD analysis allows extraction of PDFs for valence and sea quarks

W plus c-jets

Photon and Photon plus Jets

- Inclusive photon cross section well reproduced by Pythia8 and Sherpa2 LO except for very high ET (>500 GeV)
- NNLO prediction available!
- Sherpa 2 with NLO has good description of photon kinematic
- But too hard Jet pT in gamma+jets events