DPF 2017

Perturbative Charm Production and the Prompt Atmospheric Neutrino Flux in light of RHIC and LHC

Ina Sarcevic

University of Arizona

Neutrinos from Cosmic Accelerators

Atmospheric neutrinos

Physics Today 2009

Neutrino fluxes

First Observation of HE Cosmic Neutrinos

Atmospheric Neutrino Flux

Cosmic rays at UHE incident on atmospheric nuclei

- Pions π^{\pm} , π^0 [$\tau \sim 10^{-8}$ s] Kaons K^{\pm} , K^0 [$\tau \sim 10^{-8}$ s] Conventional
- Charmed mesons D^{\pm} , D^{0} [$\tau \sim 10^{-12}$ s]

Prompt

$$D^+ \to \bar{K}^0 e^+ \nu_e$$
$$\to \bar{K}^0 \mu^+ \nu_\mu$$

- Evaluation of atmospheric neutrino flux depends on cosmic ray (CR) flux and composition
- Interactions of cosmic rays with air nuclei producing mesons (pions, kaons, D-mesons, etc) that decay into neutrinos.

Figure from https://astro.desy.de/

Cosmic Rays

Cosmic Ray (CR) Flux

From Table 1, Gaisser, Astropart. Phys. 35 (2012) 801

Dominant components of the atmospheric neutrino flux (schematic view)

 $E^{2.7}\phi_{\nu}$

Scaling by approximate CR energy spectrum

Atmospheric Neutrino Flux

Theoretical issues with charm production

Probes extremely low-x

$$\sigma(pp \to c\bar{c}X) \simeq \int dx_1 dx_2 G(x_1, \mu) G(x_2, \mu) \hat{\sigma}_{GG \to c\bar{c}}(x_1 x_2 s)$$

Theoretical QCD Approaches

- NLO perturbative QCD
- k_T factorization including low-x resummation
- Dipole model including saturation
- Include nuclear effects in p-Air collisions
- Charm fragmentation functions (Kniehl and Kramer; Braaten et al.)

Theoretical uncertainties

Uncertainties

- QCD of charm production
 - Scales: Renormalisation, factorisation
 - Heavy quark mass (m_c ~ 1.2–1.5 GeV)
 - Perturbative? Dipole model?
- Uncertainties in fragmentation $(c\bar{c} \rightarrow D)$
 - Modeled by fragmentation fn: Kramers-Kneihl, etc.
 - Fragmentation in event generators, e.g. PYTHIA

Reducing theoretical uncertainties

- Use total charm cross section measured up to LHC energies (ALICE, LHCb)
- Use differential charm distributions (transverse momentum and rapidity distributions measured by LHCb at 7TeV and 13TeV
- Evaluate charm production in several perturbative QCD approached: NLO pQCD, dipole model and k_T factorization approach.

Total charm cross section

Transverse momentum distribution at the LHC compared to LHCb data

A. Bhattacharya, R. Enberg, Y.S. Jeon, M.H. Reno, I. Sarcevic and A. Stasto, JHEP 1611 (2016) 167

Prompt Neutrino FLux

A. Bhattacharya, R. Enberg, Y.S. Jeong, M.H. Reno, I. Sarcevic and A. Stasto, JHEP 1611 (2016) 167

Summary

- Prompt neutrino flux probes pQCD at low x and low Q
- RHIC and LHC charm p_T and rapidity distribution, and the energy dependence of the total cross section reduce theoretical uncertainty in predicting prompt neutrino
- We evaluated prompt neutrino flux using NLO pQCD, dipole model and the k_T factorization approach, including nuclear effects.
- Measurements of prompt neutrinos with IceCube can provide valuable information about pQCD at small x.

Back-up Slides

Dipole Cross Sections

$$\begin{split} \sigma^{gp \to q\bar{q}X}(x,M_R,Q^2) &= \int dz \, d^2\vec{r} \, |\Psi_g^q(z,\vec{r},M_R,Q^2)|^2 \sigma_d(x,\vec{r}) \\ &|\Psi_g^q(z,\vec{r},M_R,Q^2=0)|^2 = \frac{\alpha_s(M_R)}{(2\pi)^2} \left[\left(z^2 + (1-z)^2\right) m_q^2 K_1^2(m_q r) + m_q^2 K_0^2(m_q r) \right], \\ &\sigma_d(x,\vec{r}) = \frac{9}{8} \left[\sigma_{d,em}(x,z\vec{r}) + \sigma_{d,em}(x,(1-z)\vec{r}) \right] - \frac{1}{8} \sigma_{d,em}(x,\vec{r}) & \text{Models: Soyez, AAMQS, Block, etc.} \\ &\frac{d\sigma(pp \to q\bar{q}X)}{dx_F} \simeq \frac{x_1}{\sqrt{x_F^2 + \frac{4M_{q\bar{q}}^2}{s}}} g(x_1,M_F) \sigma^{gp \to q\bar{q}X}(x_2,M_R,Q^2=0) \;, \\ &\text{LO gluon PDF} \end{split}$$

k_{T} Factorization approach

