Recent Measurements of Exclusive Hadronic Cross Sections at *BABAR* and the Implications for the Muon *g*-2 Calculation

David N. Brown University of Louisville For the BABAR Collaboration

> Meeting of the Division of Particles and Fields of the American Physical Society Fermilab, Batavia, IL 31 July – 03 August 2017

> > APS PARTICLES & FIELDS

DPF 2017

Outline

- The muon g-2 puzzle
- BABAR and ISR studies
- Recent hadronic cross section measurements

$$\begin{split} e^{+}e^{-} &\to \pi^{+}\pi^{-}\pi^{0}\pi^{0}, \quad \pi^{+}\pi^{-}\eta & \text{To Be Submitted} \\ e^{+}e^{-} &\to K^{0}_{S}K^{0}_{L}\pi^{0}, \quad K^{0}_{S}K^{0}_{L}\eta, \quad K^{0}_{S}K^{0}_{L}\pi^{0}\pi^{0} \text{ Phys. Rev. D95 (2017) 052001.} \\ e^{+}e^{-} &\to K^{0}_{S}K^{\pm}\pi^{\mp}\pi^{0}, \quad K^{0}_{S}K^{\pm}\pi^{\mp}\eta & \text{Phys. Rev. D95 (2017) 092005.} \end{split}$$

• Implications for muon g-2

The muon g-2 puzzle

- The magnetic dipole moment for Dirac particles can be written $\vec{\mu} = g \frac{e\hbar}{2mc} \vec{S}$
 - Dirac equation predicts g = 2 exactly
- Corrections from higher order processes cause g to differ from 2 by a small amount. Characterize with anomalous magnetic moment:

$$a_l = \frac{1}{2}(g_l - 2)$$

- For the electron, theory and experiment agree to great precision
- For the muon, they are in tension, which is the puzzle

Status of a_{μ} - "before"							
	$a_{\mu}^{theory} = a_{\mu}^{QED} + a_{\mu}^{Hadronic \ LO} + a_{\mu}^{Hadronic \ NLO} + a_{\mu}^{Hadronic \ LBL} + a_{\mu}^{Weak}$						
	$\gamma(k)$	k_{ρ} + 5 p $q_{1\mu}$	<i>W γ W ν ν ν ν</i>				
	From Quantum Electrodynamics (QED)	11 658 471.895	±0.008				
	Leading Order Hadronic Vacuum Polarization	692.3	±4.2				
	NLO Hadronic Vacuum Polarization	-9.8	±0.1				
	Hadronic Light by Light	10.5	±2.6				
\mathbf{X}	Weak Interactions	15.4	±0.1				
	a_{μ}^{theory}	11 659 180.2	±4.9				
	$a_\mu^{experiment}$ J.P. Miller <i>et al.,</i> Ann Rev Nucl Part Sci 2012 62:237-64	11 659 208.9	±6.3				
	$\Delta a_{\mu} = a_{\mu}^{experiment} - a_{\mu}^{theory} $	3.6σ 28 .7	±8.0				
DHMZ: Eur. Phys. J. C (2011) 71:1515 units of 10 ⁻¹⁰							

Brown: BABAR and g-2

The allure of a_{μ}

- Longstanding tension between experiment and theory could be a hint at New Physics (NP).
- Rich muon program here at Fermilab and at J-PARC addressing the experimental side.
- Other experiments, including BABAR, provide inputs for the theoretical calculations, particularly at low energies where perturbative QCD runs into difficulty.

The BABAR Experiment at SLAC

- Asymmetric-energy beams for boost
- Modern/state of the art detector
- 5 cylindrical subdetectors with a 40layer drift chamber
- Excellent electromagnetic calorimetry
- Multiple measurements for particle identification
- Excellent momentum resolution
- Primarily designed for study of *CP*-violation in *B* meson decays
- Quality and general-purpose design make it suitable for a large variety of studies

NIM A479,1 (2002), update: NIM A729, 615 (2013)

The BABAR Running Era

- Photon emitted by electron or positron Initial State Radiation (ISR)
 - Carries away energy allows "scan" of energies for remaining system
 - Easily identified back-to-back topology
 - High acceptance, even at threshold
 - Exploited heavily at BABAR for large number of hadronic cross sections

BABAR ISR Contributions

Study of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

To Be Submitted

Study of $e^+e^- \rightarrow \pi^+\pi^-\eta$

To Be Submitted

- Reconstruct via $\eta \rightarrow \gamma \gamma$ decay
- Highest energy range for this mode
- Most precise measurement
- ~8,000 signal events

Study of $e^+e^- \rightarrow \pi^+\pi^-\eta$

To Be Submitted

model 1: $\rho(770) - \rho(1450)$ fits ECM < 1.7 GeV model 2: $\rho(770) - \rho(1450) - \rho(1700)$ fits < 1.9 GeV model 3: $\rho(770) - \rho(1450) + \rho(1700)$ fits < 1.9 GeV model 4: $\rho(770) - \rho(1450) + \rho(1700) + \rho(2150)$ fits < 2.2 GeV relative phases 0 (+) and 180° (-)

Implications for both a_{μ} and hadronic $\mathcal T$ decays!

Modes with Kaons

reconstructed as a pair of opposite charge tracks with a displaced vertex via its decay $K_{\rm S}^0 \to \pi^+ \pi^-$

 K_L^0

identified as an isolated energy cluster in the calorimeter, cluster shape not consistent with a photon.

• Validated via

K[±] identified via standard charged-particle
PID system utilizing specific ionization, timing,
Cerenkov radiation, calorimetry

Improved energy range and cross-section uncertainties. First observation for J/ψ decays to these states

Brown: BABAR and g-2

Study of $e^+e^- \rightarrow K^0_S K^0_L \pi^0$, $K^0_S K^0_L \eta$, $K^0_S K^0_L \pi^0 \pi^0$

Phys. Rev. D95 (2017) 052001.

Very significant contribution from $\phi\eta$

No significant contribution from K^*K^*

08/01/2017

Study of $e^+e^- \rightarrow K^0_S K^{\pm} \pi^{\mp} \pi^0$, $K^0_S K^{\pm} \pi^{\mp} \eta$ Phys. Rev. D95 (2017) 092005. $K^0_S K^{\pm} \pi^{\mp} \eta$

3 $K_S^0 K^{\pm} \pi^{\mp} \pi^0$ $K^0_S K^{\pm} \pi^{\mp} \eta$ 0.8 Completing the $KK\pi$ modes 0.6 2 o (nb) (qu) 0.4 Ω 0.2 0 3 2.5 1.5 2 3 3.5 3.25 3.5 1.75 2.5 2.75 2 2.25 3.75 E_{c.m.} (GeV) E_{c.m.} (GeV)

Significant contributions from J/ψ obvious

Brown: BABAR and g-2

Total $KK\pi(\pi)$ cross section

- All possible modes now measured by BABAR
- No more need to rely on isospin arguments
- Improves precision on inputs to g-2 calculations

$$a_{\mu}^{KK\pi} = (2.45 \pm 0.15) \times 10^{-10}$$
$$a_{\mu}^{KK\pi\pi} = (0.85 \pm 0.05) \times 10^{-10}$$

Brown: BABAR and g-2

Status of
$$a_{\mu}$$
 – "after"

 $a_{\mu}^{theory} = a_{\mu}^{QED} + a_{\mu}^{Hadronic \ LO} + a_{\mu}^{Hadronic \ NLO} + a_{\mu}^{Hadronic \ NNLO} + a_{\mu}^{Hadronic \ LBL} + a_{\mu}^{Weak}$

From Quantum Electrodynamics (QED)		11 658 471.885			±0.004
ading Order Hadronic Vacuum Polarization	Pafar		692.8		± 3.3
O Hadronic Vacuum Polarization	Бејбі	e.	-9.87	-	±0.09
NLO Hadronic Vacuum Polarization			1.24		±0.01
idronic Light by Light			10.5		±2.6
Weak Interactions			15.4		±0.1
theory u	1	1 659	181.9		±4.2
$a_{\mu}^{experiment}$			11 659 208.9		
$a_{\mu} = a_{\mu}^{experiment} - a_{\mu}^{theory}$	3.6	σ	27.0		±7.6

M. Davier, arXiv 1612.02743 (2017).

Summary and Conclusions

- BABAR has made considerable use of the ISR technique to study e⁺e⁻ annihilation across a broad energy range.
 - Including several new hadronic modes reported here.
- Important to improve our knowledge of muon g-2
 - the puzzle continues, more input needed!
 - More on the way! Stay Tuned.

21