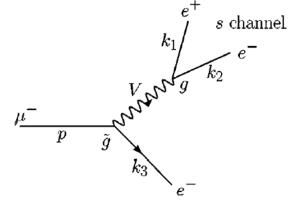


Search for the Lepton Flavor Violating Decay in $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$ Nafisa Tasneem University of Victoria, Canada.

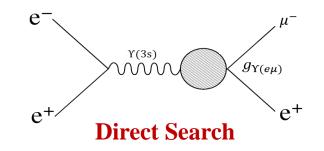
On Behalf of BaBar Collaboration All Results Are Preliminary

The 2017 Division of Particles and Fields meeting July 31 – August 4, 2017 Fermilab, Batavia, IL

Charged Lepton Flavor Violation

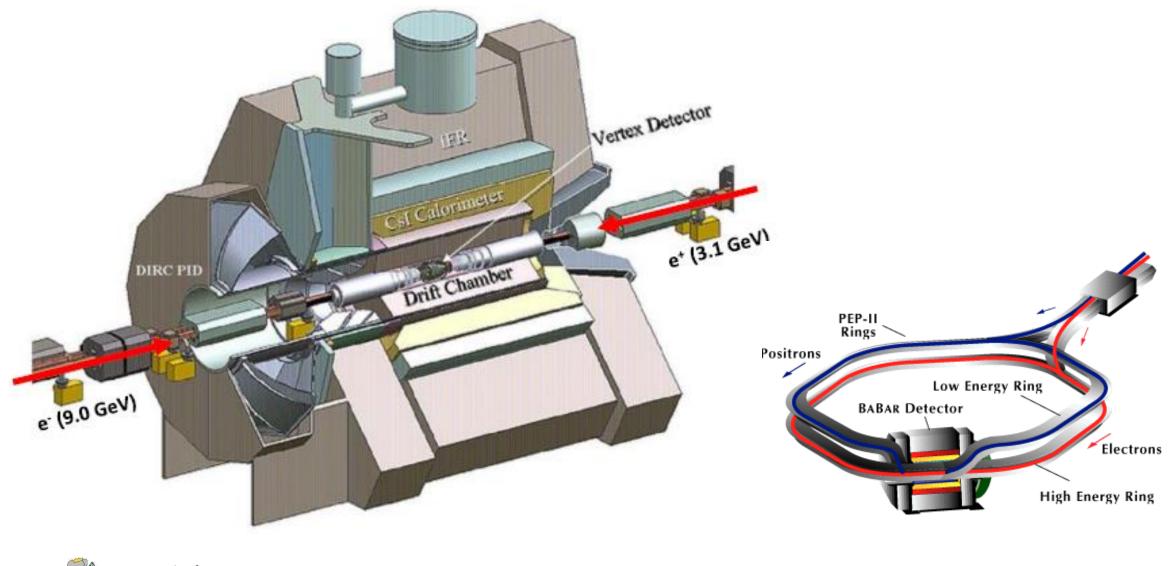

- CLFV highly suppressed in SM, allowed in many BSM models + clear exp. signature = "NP"
- Theoretical constraints on the limit (indirect): BF($\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$) < 2.0 × 10⁻⁸ (2000) [1]
- No experimental measurement of the decay $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$ yet!

Some e i unu p i Limits							
Measurements	Results	CL (%)	Collaboration				
$BF(\Upsilon(3S)\to e^\pm\tau^\mp)$	< 5.0 × 10 ⁻⁶	90	BaBar Collaboration (2010) [2]				
$BF(\Upsilon(3S) \to \mu^\pm \tau^\mp)$	< 4.1 × 10 ⁻⁶	90	BaBar Collaboration (2010) [2]				
$\mathrm{BF}(\Upsilon(3S) \to \mu^\pm \tau^\mp)$	$< 20.3 \times 10^{-6}$	95	CLEO Collaboration (2008) [3]				


Some $e^{\pm}\tau^{\mp}$ and $\mu^{\pm}\tau^{\mp}$ Limits

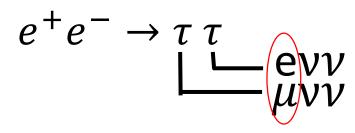
Some of the direct experimental bounds from vector particles decay

			¥V
Measurements	Results	CL (%)	Collaboration
$BF(\Phi \to e^{\pm} \mu^{\mp})$	< 2.0 × 10 ⁻⁶	90	SND Collaboration (2010) [4]
$BF(J/\Psi\to e^\pm\mu^\mp)$	< 1.6 × 10 ⁻⁷	90	BES III Collaboration (2013) [5]
$BF(Z^0 \to e^{\pm} \mu^{\mp})$	$< 7.5 \times 10^{-7}$	95	ATLAS Collaboration (2014) [6]

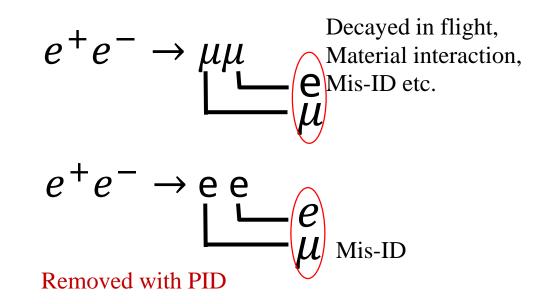


Indirect Search Provides limit assuming Unitarity

The BaBar Detector at PEP-II


Data Sample, Signal and Backgrounds

Data $\Upsilon(3S)$, $\sqrt{s} = 10.355$	Luminosity (fb ⁻¹)	Upsilon Numbers	
(3%) Pre-blinded Sample	0.93±0.01	$(4.06 \pm 0.04) \times 10^{6}$	
Unblinded Sample	27.02 ± 0.16	$(117.7 \pm 1.2) \times 10^{6}$	
Total	27.96 ±0.16	$(121.7 \pm 1.2) \times 10^{6}$	
MC Signal (for Background	Generators		
$e^+e^- ightarrow \mu^+\mu^-$	KK2F		
$e^+e^- \rightarrow e^+e^-$	BHWIDE		
$e^+e^- \rightarrow \tau^+\tau^-$	KK2F		
$e^+e^- \rightarrow uds$	EvtGen		
$e^+e^- \rightarrow c\bar{c}$	EvtGen		
Generic $\Upsilon(3S)$ MC		EvtGen	

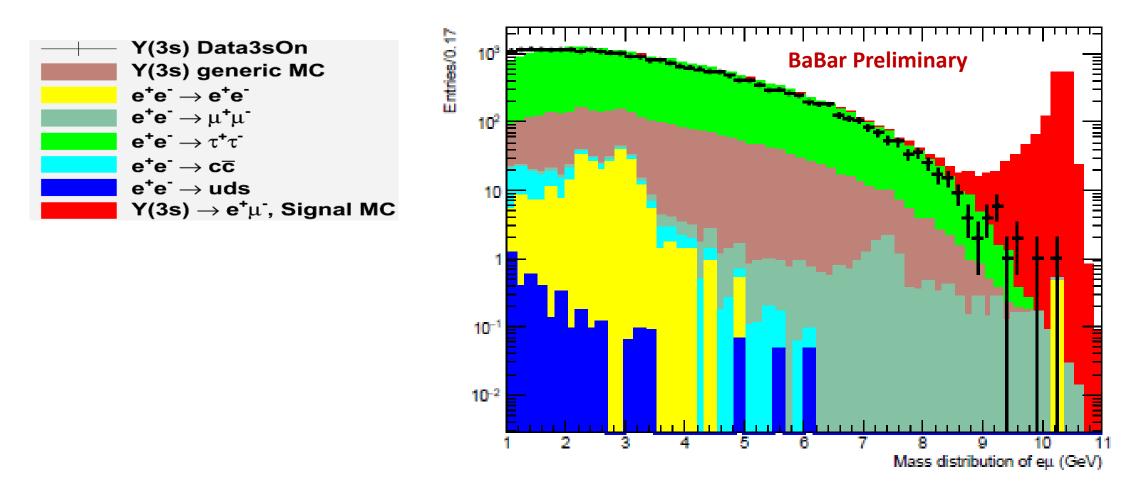

MC signal: $e^+e^- \rightarrow \Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$: 103000 events

Sources of Main Backgrounds

Removed with kinematics cuts

Control Data Sample

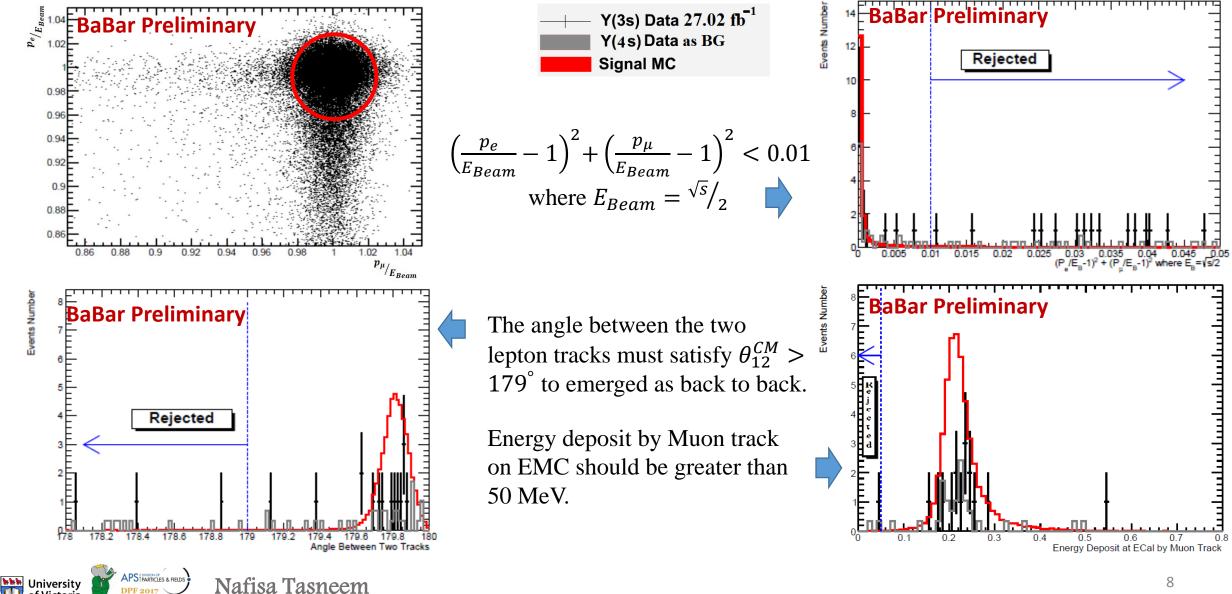
Data	Luminosity (fb ⁻¹)	Purpose
Data $\Upsilon(4S)On$ Resonance, $\sqrt{s} = 10.58$ Preselected as $e^{\pm}\mu^{\mp}$ events	78.31 ± 0.35	Estimate Continuum Background Systematics
Data Y(4S)On Resonance, $\sqrt{s} = 10.58$ Preselected as $\mu^{\pm}\mu^{\mp}$ events	78.31 ± 0.35	Systematics
Data $\Upsilon(4S)$ Off Resonance	7.752 ± 0.04	BG Control Sample
Data $\Upsilon(3S)$ On Resonance, $\sqrt{s} = 10.355$ Preselected as $\mu^{\pm}\mu^{\mp}$ events	27.96 ± 0.16	Systematics
Data $\Upsilon(3S)$ Off Resonance	2.62 ± 0.02	BG Control Sample


Analysis Methodology

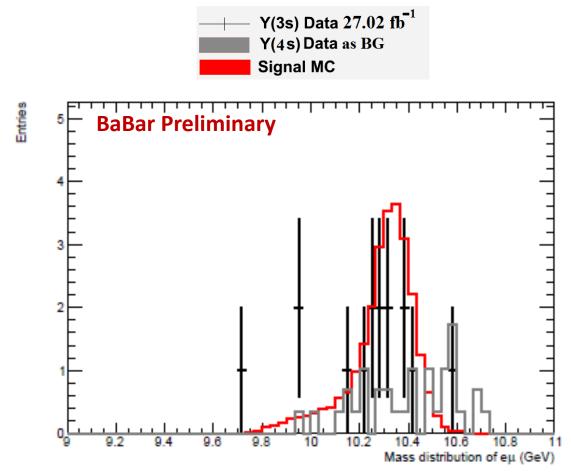
- **Pre-Selection**. A Background filter to select $e^{\pm}\mu^{\mp}$ events
- User defined Selection. Applied on the pre-selected events
- **PID Selection.** Multivariate Technique applied, 16 different PID selector used in optimization $\binom{S}{\sqrt{B}}$

Pre-Selection:	User defined Selection:
 Distance of closest approach of any track vertex w.r.t. the beam spot in Drift Chamber in x - y plane < 1 cm and in z < 4 cm. 	2 tracks (1 electron and 1 muon in the final state), one in each hemisphere,
Number of hits in the Drift Chamber > 0 . Transverse Momentum $p_T > 100$ MeV.	$24^{\circ} < \theta_{Lab} < 130^{\circ}$ EMC acceptance for both tracks.
Exactly 2 oppositely charged tracks ;	Lepton momenta must satisfy the following condition
Polar angle of the two tracks: $2.8 < (\theta_1 + \theta_2) < 3.5$	$(n)^2 (n)^2 (n)^$
Sum of momentum of the two tracks $ P_1 + P_2 > 9$ GeV.	$\left(\frac{p_e}{E_{Beam}} - 1\right)^2 + \left(\frac{p_{\mu}}{E_{Beam}} - 1\right)^2 < 0.01 \text{ where } E_{Beam} = \frac{\sqrt{s}}{2}$
One and only one electron of two tracks defined by $E/P > 0.8$	Angle between the two lepton tracks must satisfy $\theta_{12}^{CM} > 179^{\circ}$ to ensure they are emerged as back to back.
Acolinearity angle associated with the two tracks < 0.1 radians in CM.	Energy deposit by Muon track on the Electromagnetic Calorimeter should be greater than 50 MeV.

Data/MC Comparison



Distribution of $e^{\pm}\mu^{\mp}$ mass before applying any user defined selection criteria, only preselection criteria has applied for 3% pre-unblinded sample.


Selection Criteria in (N-1) plots

(N-1) plots \rightarrow all cuts applied except that on the variable plotted

J of Victoria

All Selection Criteria Applied

Mass distribution of $e^{\pm}\mu^{\mp}$ after all selection criteria are applied

Data, BG Selection Summary & Signal Efficiency in (N-1) Cuts

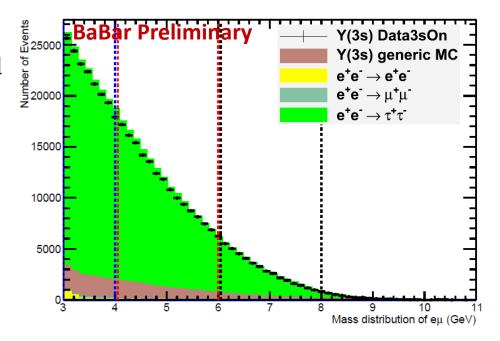
(N-1) Selection	Signal Efficiency ε _{eμ}	<i>BG Events</i> Y(3S) MC	BG Events Y(4S)On	Candidate Y(3S)On (27.02 fb ⁻¹)
Pre-selection	82612	7134301	152445188	
PID selection	0.2355 ± 0.0013	0	14.7 ± 2.3	18
Lepton Momentum	0.2684 ± 0.0012	82.7 ± 6.03	263.4 ± 9.7	302
Back to back	0.2402 ± 0.0013	0.44 ± 0.44	37.7 ± 3.7	39
EMC acceptance	0.2495 ± 0.0013	0	13.9 ± 2.2	17
EMC Energy	0.2452 ± 0.0013	0	17.6 ± 2.5	19
All Cuts	$0.2342 \pm 0.0013_{STAT}$	0	$12.2 \pm 2.1_{\text{STAT}}$	15

- BG events are the equivalent events on 27.0 fb⁻¹
- Uncertainties are statistical

University of Victoria

Note: For the 3% Pre-blinded sample (0.93 fb⁻¹): $N_{Data}=1$, agrees with BG estimate: 0.43 ± 0.07 events

Systematic Uncertainty and Background


Systematic Uncertainty on Efficiency:

- Tracking, PID, kinematics, trigger determined using controlled sample of tau's in the "**Side Bands**" where "lepton momentum" and "back to back" cuts are reversed: **1.2%**
- Systematic uncertainty on "lepton momentum" cut: 2.9%
- Systematic uncertainty on "back to back" cut: 1.1%

Systematic Uncertainty on $N_{Y(3S)}$: [8]

• Total Uncertainty on $N_{Y(3s)}$ at Run 7 Dataset: 1%

Source of BG	No. of events after all selection criteria
Continuum	$\Upsilon(4S)$ On Data: 12.2 ± 2.3
Peaking	$\Upsilon(3S)$ MC: 0 ± 0.9

Mass distributions for $\Upsilon(3S)$ On data and MC control samples (τ -pair)

Summary on Efficiency, Background and Candidate

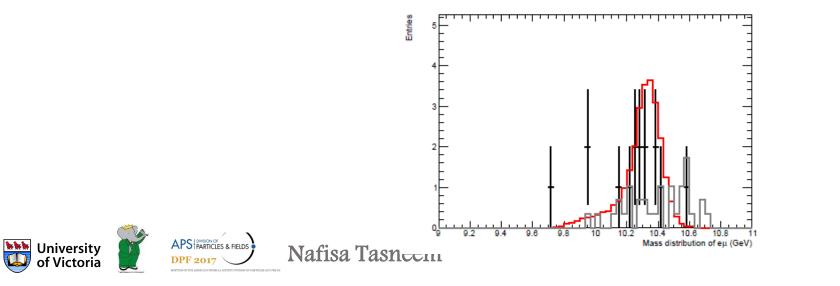
Values	Sources	Uncertainties
ε _{sig} (SYST)	 In the "Lepton. Momentum" cut In the "Back to back" cut In all other cuts on the Side bands 	0.029 0.011 0.012
$\epsilon_{SIG} (SYST \oplus STAT)$		$\begin{array}{c} 0.2342 \pm 0.0077_{SYST} \pm 0.0013_{STAT} \\ 0.2342 \pm 0.0078 \end{array}$
$ \begin{array}{ c c c c c } N_{\Upsilon} & (0.93 \ fb^{-1}) \\ N_{\Upsilon} & (27.02 \ fb^{-1}) \end{array} \end{array} $		$\begin{array}{c} (4.06\pm0.04)\times10^{6} \\ (117.7\pm1.2) \ \times10^{6} \end{array}$
Background (0.93 fb ⁻¹) Background (27.0 fb ⁻¹)		$\begin{array}{c} 0.42 \pm 0.7 \\ 12.2 \pm 2.3 \end{array}$

Candidate seen (0.93 fb ⁻¹) Candidate seen (27.0 fb ⁻¹)	1 15

Results: Branching Fraction and Upper limit

$$BF = \frac{N_{Data} - N_{BG}}{\varepsilon_{sig} \times N_{\Upsilon}} = (1.0 \pm 1.4_{STAT (N_{DATA})} \pm 0.8_{SYST}) \times 10^{-7}$$

Measurements	Upper Limit with Confidence Level of 90%					
	Observed U	pper limit	Expected Upper limit			
$\Upsilon(3S) \to e^{\pm} \mu^{\mp}$	Barlow Method [9]	CLs Method [10]	Barlow Method	CLs Method		
Unblinded Data Sample (27.0 fb ⁻¹)	< 3.6 × 10 ⁻⁷	< 3.6 × 10 ⁻⁷	< 2.3 × 10 ⁻⁷	< 2.8 × 10 ⁻⁷		



Conclusion

• On behalf of the BaBar Collaboration we presented the preliminary result on experimental upper limits of a data sample (27.02 fb⁻¹)

$$BF(\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}) < 3.6 \times 10^{-7}$$
 with Confidence Level of 90%

• This is the first reported experimental upper limits on $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$

Reference

1. S. Nussinov, R. D. Peccei, and X. M. Zhang, Phys. Rev. D 63, 016003 (2000).

2. B. Aubert et al. Search for the Lepton-Flavor Violating Decays, BABAR-CONF-08/020,2008. (BABAR Collaboration)

3. 5. W. Love et al., Search for Lepton Flavor Violation in Upsilon Decays, Phys. Rev. Lett. 101, 201601, 2008. (CLEO Collaboration)

4. M. N. Achasov, K. I. Beloborodov, A.V. Bergyugin et al., Phys. Rev. D 81, 057102 (2010).

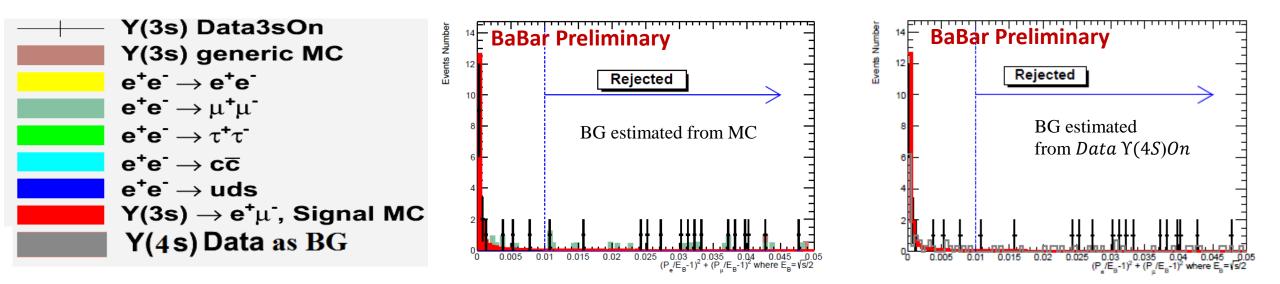
5. Ablikim. M.et al. 13L PRD 87 112007 (BES III Collaboration).

6. G. Aad et al. Physical Review D 90, 072010 (2014). (Atlas collaboration)

7 J. P. Lees et al. (BABAR Collaboration), Time-Integrated Luminosity Recorded by the BABAR Detector at the PEP-II e+e- Collider, Nucl. Instrum. Meth, A 726:203-213, 2013.

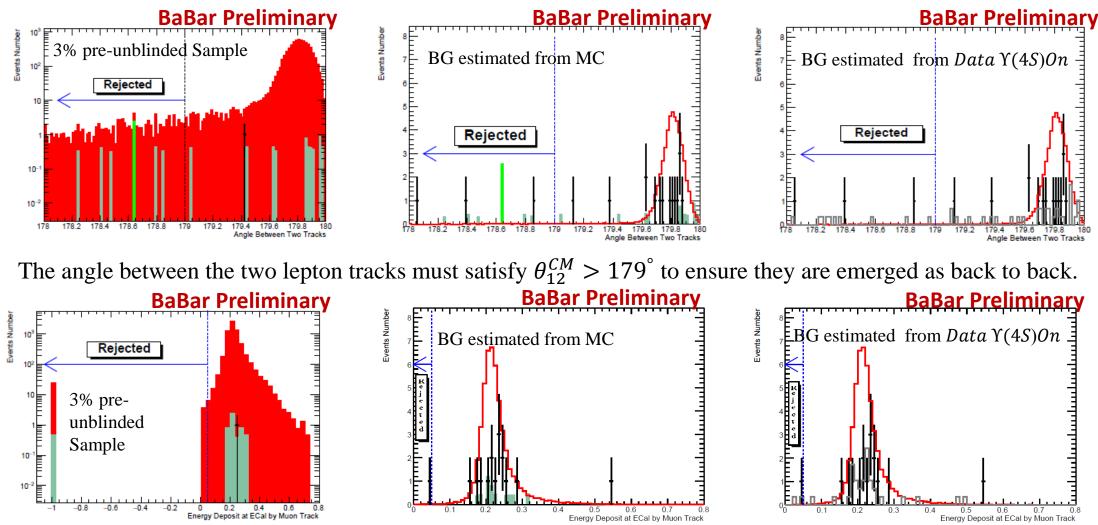
8. Phys. Rev. Lett. 104, 151802

9. R. Barlow, "A calculator for Confidence Intervals", March 2002


10. A. L. Read, \Presentation of search results: The CL(s) technique", J.Phys. G28 (2002) 2693-

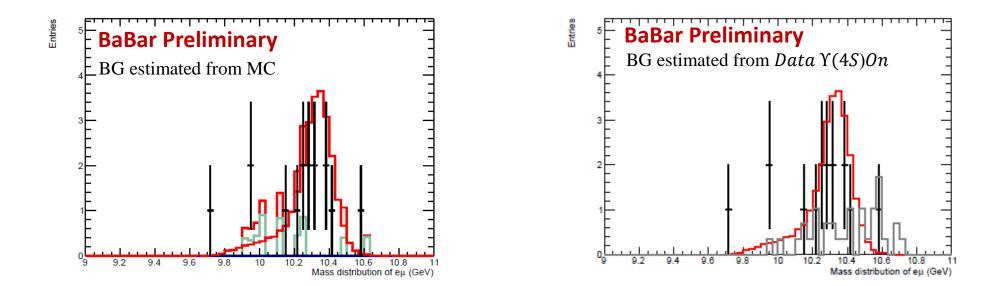
278 2704.; Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells, \Asymptotic formulae for

279 likelihood-based tests of new physics," Eur.Phys.J. C71 (2011) 1554, Erratum: Eur.Phys.J. 280 C73 (2013) 2501.

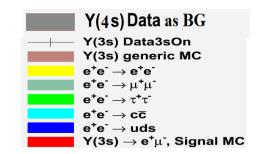

Back up:1 Selection Criteria

The lepton momenta must satisfy the following condition which is defining a circle of radius 0.1 centered at (1,1) in the $\frac{p_e}{E_{Beam}}$ vs $\frac{p_{\mu}}{E_{Beam}}$ plane. $\left(\frac{p_e}{E_{Beam}}-1\right)^2 + \left(\frac{p_{\mu}}{E_{Beam}}-1\right)^2 < 0.01$ where $E_{Beam} = \frac{\sqrt{s}}{2}$

Backup: 2 Selection Criteria in (N-1)



Energy deposit by Muon track on the Electromagnetic Calorimeter should be greater than 50 MeV.



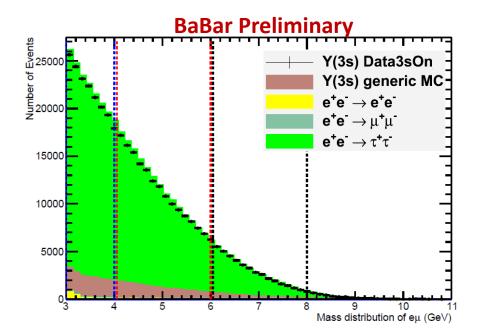
1 7

Back up: 3 All Selection Criteria Applied

Mass distribution of $e^{\pm}\mu^{\mp}$ after all selection criteria are applied in the $\Upsilon(3S)$ data (within 27.02 /fb).

Back up: 4 Data, BG Selection Summary & Signal Efficiency in (N-1) Cuts

Selection		Survived BG Events on MCs		BG Events	Υ(4S)0ff	Y(4S)On	Y(3S)0ff	Y(3S)On	
(27.02 fb ⁻¹)	ε _{eµ}	μμ	ττ	Bhabha	Y(3S) MC				
Pre-selection	82612	22649650	13333831	599556063	7134301	148286975	152445188	257079590	
PID selection	0.2355 ± 0.0013	4.7 ± 1.4	0	0	0	3.6 ± 3.6	14.7 ± 2.3	0	18
Lepton Momentum	0.2684 ± 0.0012	54.0 ± 4.61	91.4 ± 6.3	24.9 ± 14.4	82.7 ± 6.03	210.2 ± 26.9	263.4± 9.7	288.4 ± 54.5	302
Back to back	0.2402 ± 0.0013	9.07 ± 1.9	43.3 ± 43.3	0	0.44 ± 0.44	68.8 ± 15.8	37.7 ± 3.7	51.50 ± 23.03	39
EMC accpt	0.2495 ± 0.0013	5.1 ± 1.4	0	0	0	7.2 ± 5.1	13.9 ± 2.2	0	17
EMC Energy	0.2452 ± 0.0013	5.1 ± 1.4	0	0	0	3.6 ± 3.6	17.7 ± 2.5	0	19
All Cuts	0.2342 ± 0.0013	4.7 ± 1.4	0	0	0	3.6 ± 3.6	12.20 ± 2.09	0	15

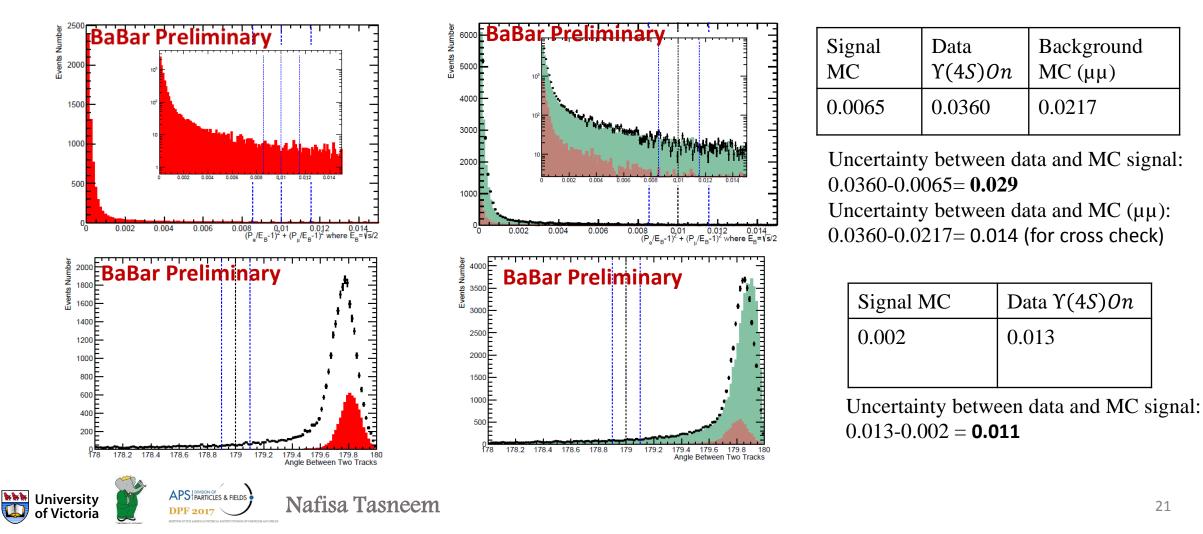


APS | DMISION OF PARTICLES & FIELDS

Nafisa Tasneem

Survived events are the equivalent events on 27.0 fb⁻¹

Back up: 5 Systematic Uncertainty in the Sidebands


Mass distributions for $\Upsilon(3S)$ On data and MC control samples (τ -pair)

R± σ_{R}	0.9825	0.9795	1.0072	
	± 0.0029	± 0.0032	± 0.010	

Non tau BGs Generic $\Upsilon(3S)$, $\mu^+\mu^-$, Bhabha, uds, $c\bar{c}$

Back up 6: Systematic Uncertainty in the "lepton mom plane" cut in the "back to back" cut

Back Up:Results: Branching Fraction and Upper limitBF = $\frac{N_{\text{Data}} - N_{BG}}{\varepsilon_{sig} \times N_{\Upsilon}} = (1.0 \pm 1.4_{STAT (N_{DATA})} \pm 0.8_{SYST}) \times 10^{-7}$

Measurements	Upper Limit with Confidence Level of 90%			
$\Upsilon(3S) \to e^\pm \mu^\mp$	Observed Upper limit		Expected Upper limit	
	Barlow Method [9]	CLs method [10]	Barlow Method	CLs method
3% Pre-blinded sample (0.93 fb ⁻¹)	< 3.7 × 10 ⁻⁶	< 3.0 × 10 ⁻⁶	< 2.7 × 10 ⁻⁷	< 2.2 × 10 ⁻⁶
Blinded Sample (27.0 fb ⁻¹)	< 3.6 × 10 ⁻⁷	< 3.6 × 10 ⁻⁷	< 2.3 × 10 ⁻⁷	< 2.8 × 10 ⁻⁷

