

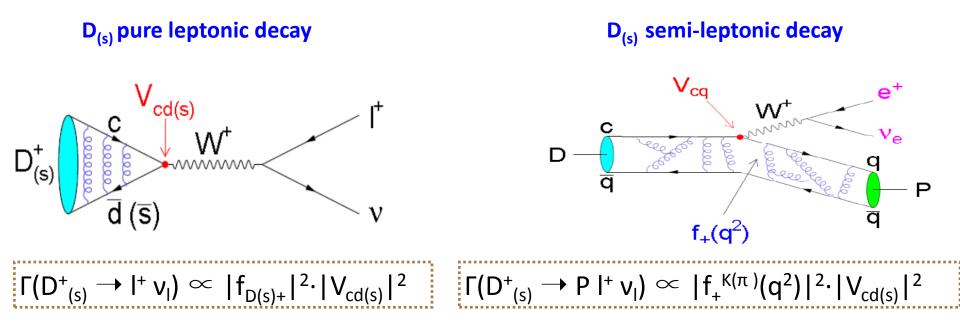
Pure and semi-leptonic decays of D_(s) at BESIII

Huijing LI

(On behalf of BESIII Collaboration) (Institute of High Energy Physics, Beijing, China)

August 3, 2017

MEETING OF THE AMERICAN PHYSICAL SOCIETY DIVISION OF PARTICLES AND FIELDS


Outline

Introduction

- $\begin{array}{c} \succ D_{(s)} \text{ pure leptonic decay} \\ D^+ \rightarrow l^+ \nu, (l = \mu, \tau) \\ D_s^+ \rightarrow l^+ \nu, (l = \mu, \tau) \end{array}$
- $\begin{array}{c|c} & \searrow & \mathsf{D}_{(s)} \text{ semi-leptonic decay} \\ & \mathsf{D}^{0(+)} \rightarrow & \mathsf{P} \ \mathsf{I}^+ \ \mathsf{v} \ (\mathsf{P}=\ \mathsf{K},\ \pi;\ \mathsf{I}=\ \mathsf{e},\ \mu) \\ & \mathsf{D}^{0(+)} \rightarrow & \mathsf{a0}(980)^{-(0)} \ \mathsf{e}^+ \ \mathsf{v}_{\mathsf{e}} \\ & \mathsf{D}_{\mathsf{s}}^{+} \rightarrow & \mathsf{K}^{(*)0} \ \mathsf{e}^+ \ \mathsf{v}_{\mathsf{e}} \end{array}$
- > D rare decay
 - $\begin{array}{ccc} D^+ & \rightarrow & \gamma \; e^+ \, \nu_e \\ D^+ & \rightarrow & D^0 \; e^+ \; \nu_e \end{array}$

> Summary

Main goals

- Decay constant f_{D(s)+}, form factor f₊^{K(π)}(0): better calibrate Lattice QCD
- CKM matrix element |V_{cs(d)}|: better test the unitarity of the CKM matrix.

$$U = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

Beijing Electron Positron Collider (BEPCII)

See Hajime and Bai-Cian's talks at BESIII

A double-ring collider with high luminosity

South

BESIII

detector

Beam energy: 1.0 -2.3 GeV

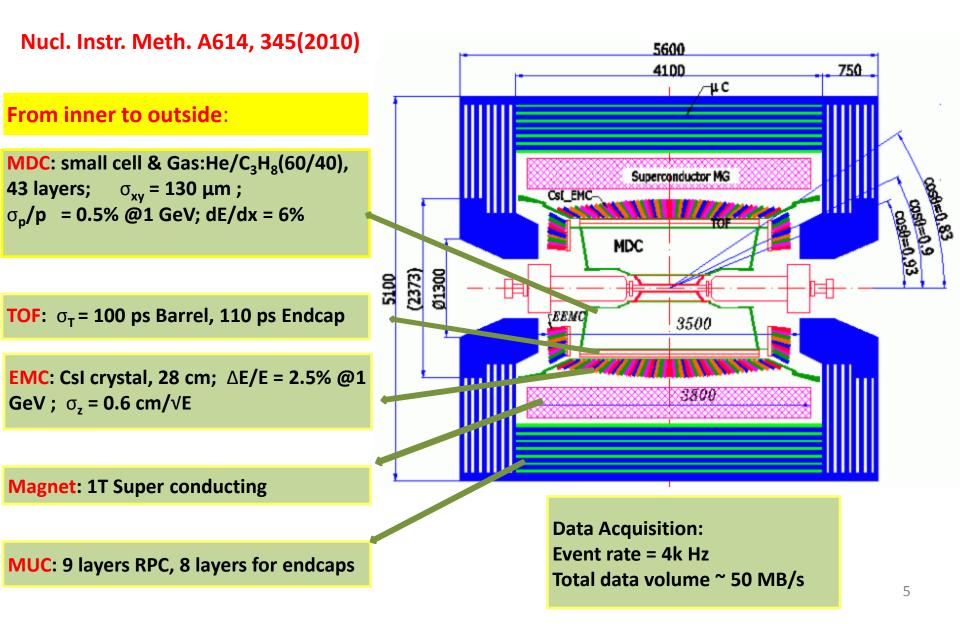
Cian's talks at BESIII in the afternoon on August 1st.

View details | Export -

Quark and Lepton Flavor

13:30 - 15:15 Boom: Bacetrack

LINAC


11:00

2004: started BEPCII upgrade, BESIII construction 2008: test run 2009-now: BESIII physics run

 1989-2004(BEPC): L_{peak} = 1.0 x 10³¹ /cm²s

 2009-now(BEPCII) L_{peak} = 1.0 x 10³³/cm²s (Achieved on Apr 5th, 2016)

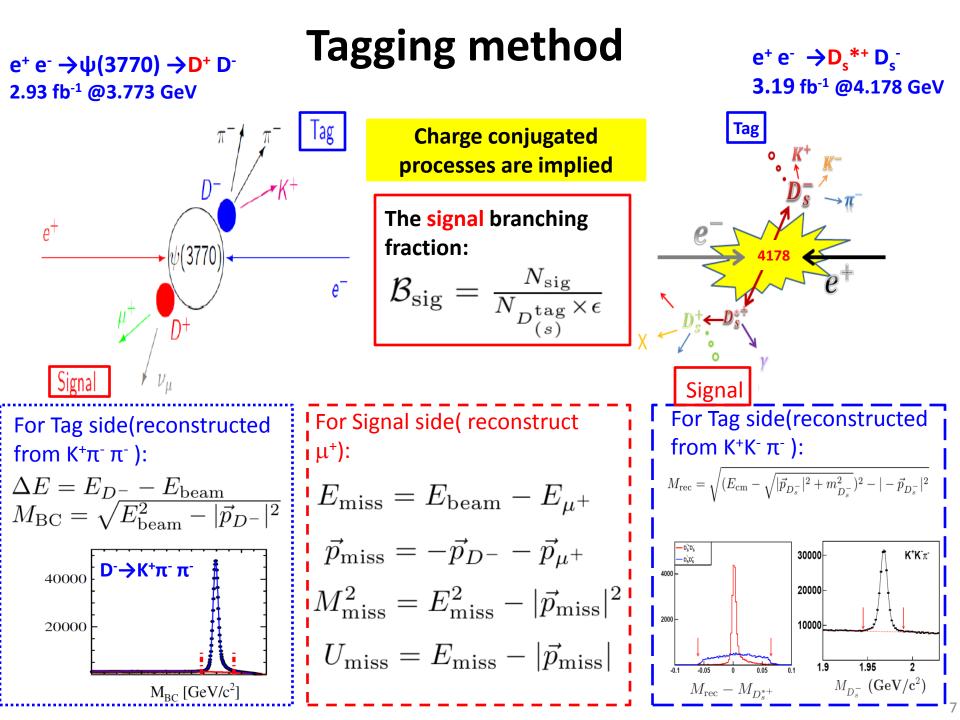
BESIII detector

D⁰⁽⁺⁾ and D_s⁺ data set at BESIII

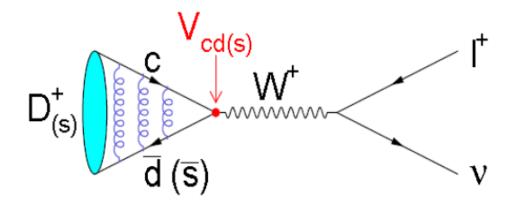
➤ D⁰⁽⁺⁾ data:

- Taken @ E_{cm} = 3.773 GeV.
- Integrated luminosity = 2.93 fb⁻¹ (The world's largest e⁺e⁻ annihilation sample taken at the mass-threshold).
- cross section: $\sigma(e^+e^- \rightarrow D^0\overline{D}^0) \approx 3.6 \text{ nb} \Rightarrow 21 \text{ M } D^0 \text{ produced}!$
- cross section: $\sigma(e^+e^- \rightarrow D^+D^-) \sim 2.9 \text{ nb} \Rightarrow 16 \text{ M D}^+ \text{ produced}!$

 $> D_s^+$ data:


- @E_{cm} = 4.009 GeV.
 - Integrated luminosity = 0.482 fb⁻¹
 - $\sigma(e^+e^- \rightarrow D_s^+D_s^-) \sim 0.3 \text{ nb} \Rightarrow 0.3 \text{ M} D_s \text{ produced.}$
 - D_s is produced in pair with equal mass.

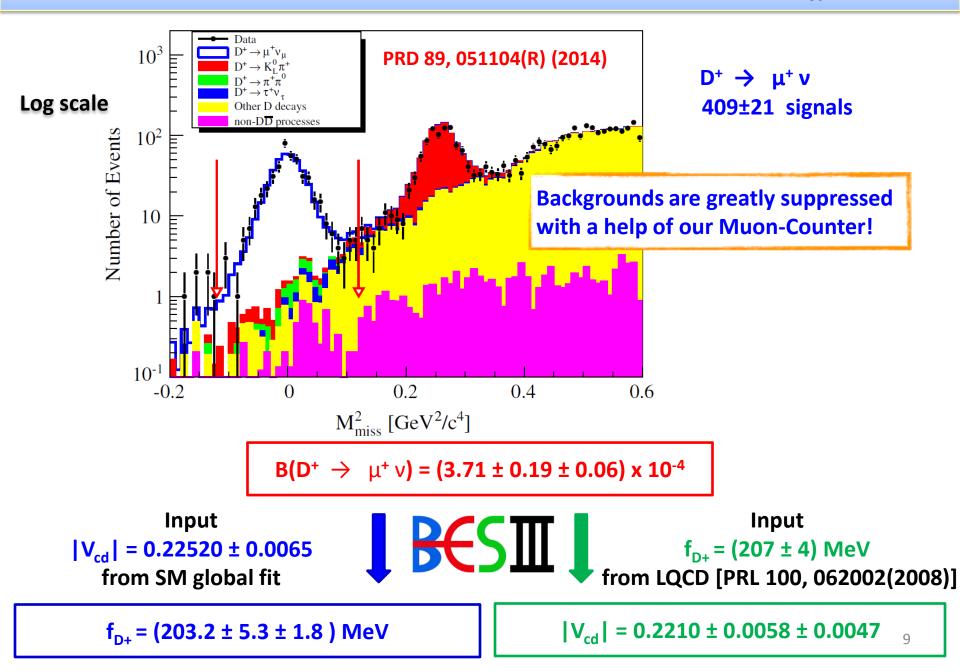
■@E_{cm} = 4.178 GeV.


•Based on the data accumulated in 2016!

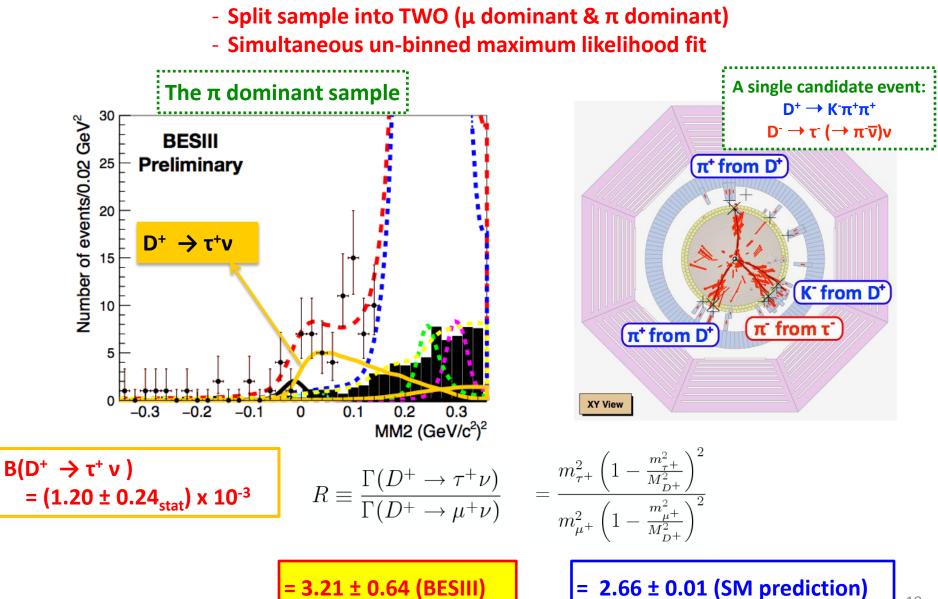
•Integrated luminosity = 3.19 fb⁻¹

• $\sigma(e^+e^- \rightarrow D_s^*D_s) \sim 1 \text{ nb} \Rightarrow \sim 6 \text{ M } D_s \text{ produced}!!$

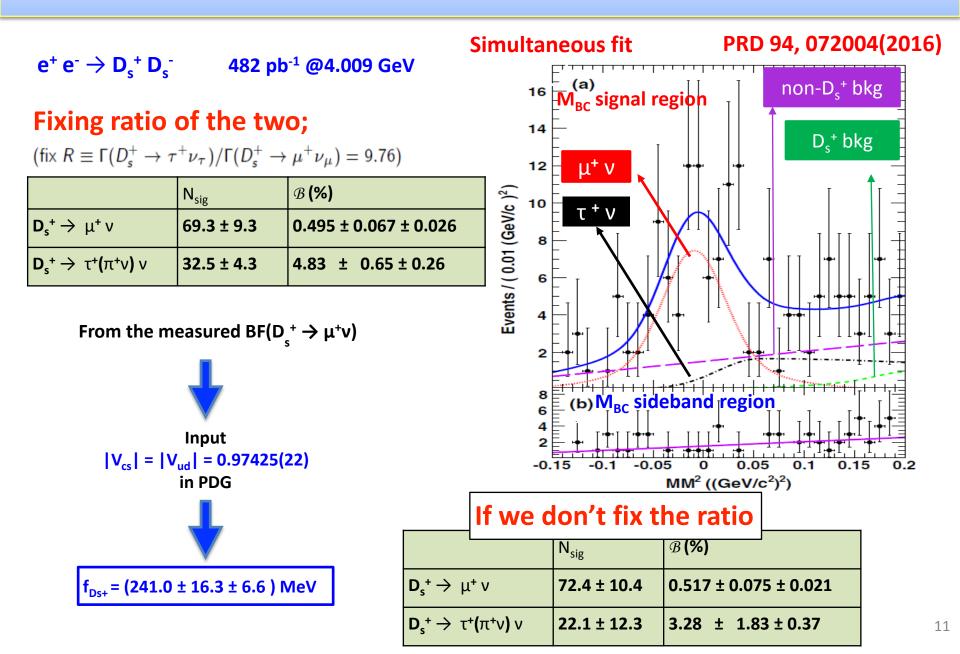
D_(s)⁺ pure leptonic decay

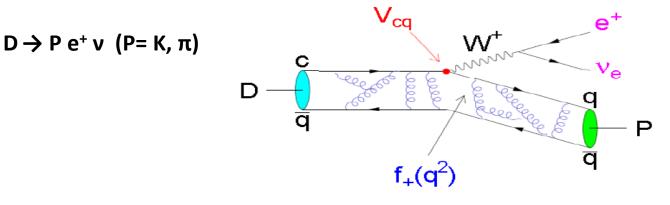

In the SM:
$$\Gamma(D_{(s)}^+ \to l^+ \nu) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} |V_{cd(s)}|^2 m_l^2 m_{D_{(s)}^+} (1 - \frac{m_l^2}{m_{D_{(s)}^+}^2})^2$$

Measure the product of $f_{D(s)+}$ and $|V_{cd(s)}|$ directly


Bridge to precisely measure

- Decay constant $f_{D(s)+}$ with input $|V_{cd(s)}|^{CKM fitter}$
- CKM matrix element $|V_{cd(s)}|$ with input $f^{LQCD}_{D(s)+}$

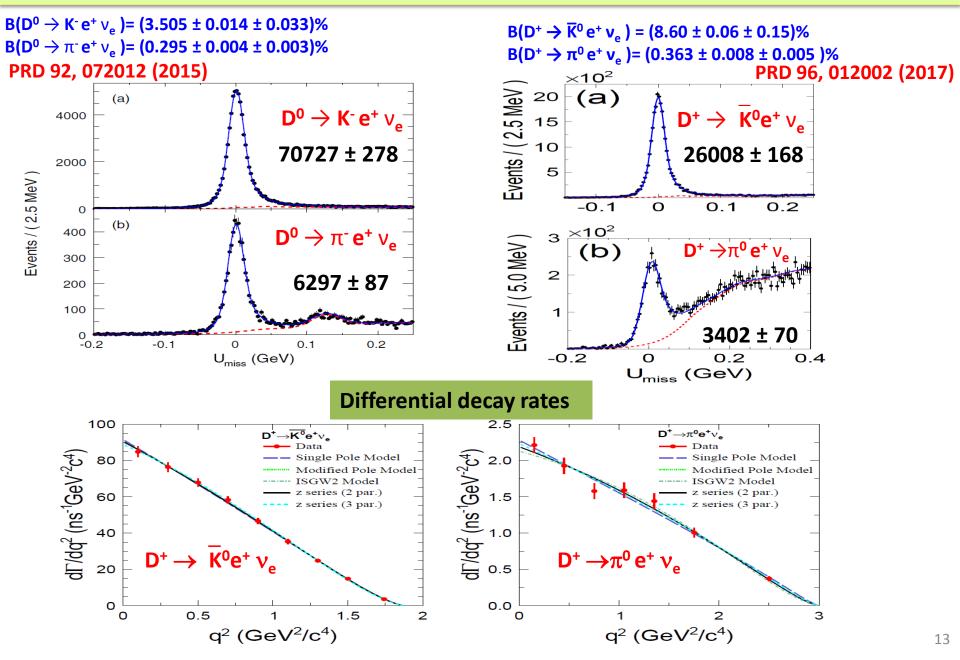

Precision measurements of B(D⁺ $\rightarrow \mu^+ \nu$), f_{D+} and |V_{cd}|


First evidence for D⁺ $\rightarrow \tau^+ \nu$ via $\tau^+ \rightarrow \pi^+ \nu$ (> 4 σ)

$D_{s}^{+} \rightarrow l^{+} \nu (l = \mu, \tau)$ decays

D_(s) semi-leptonic decay

Differential rates: $\frac{d\Gamma}{dq^2} = X \frac{G_F^2 p^3}{24\pi^3} |f_+(q^2)|^2 |V_{cd(s)}|^2$ (X = 1 for K⁻, π^-, \bar{K}^0 ; X = 1/2 for π^0)


Bridge to precisely measure

- Form factors $f_{+}^{D \rightarrow K(\pi)}(0)$ with input $|V_{cd(s)}|^{CKM \text{ fitter}}$
 - -- Single pole form $f_{+}(q^{2}) = \frac{f_{+}(0)}{1 - q^{2}/M_{\text{pole}}^{2}}$ -- ISGW2 model -- Series expansion -- Modified pole model $f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{M_{\text{pole}}^{2}}\right)\left(1 - \alpha \frac{q^{2}}{M_{\text{pole}}^{2}}\right)}$

$$f_{+}(q^{2}) = f_{+}(q_{\max}^{2})(1 + \frac{r^{2}}{12}(q_{\max}^{2} - q^{2}))^{-2} \qquad f_{+}(t) = \frac{1}{P(t)\Phi(t, t_{0})}a_{0}(t_{0})\left(1 + \sum_{k=1}^{\infty}r_{k}(t_{0})[z(t, t_{0})]^{k}\right)$$

• CKM matrix element $|V_{cd(s)}|$ with input $f_{+}^{LQCD, D \rightarrow K(\pi)}(0)$

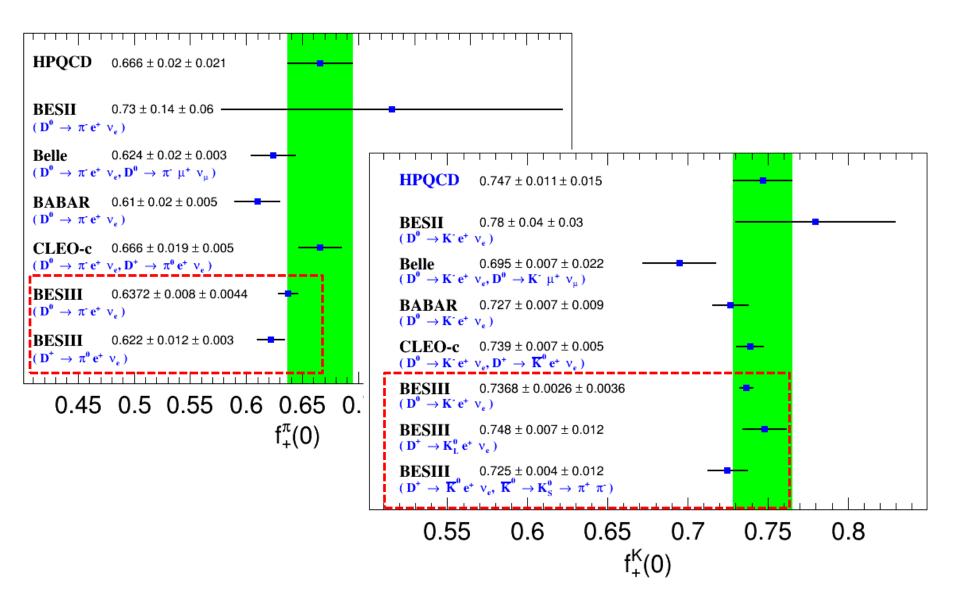
$D \rightarrow K(\pi) e^+ v_e$

Other D \rightarrow K(π) I⁺ v₁ at BESIII

 $\begin{array}{ll} - & B(D^+ \rightarrow K_L^{\ 0}e^+ \nu_e^{\ }) &= (4.481 \pm 0.027 \pm 0.103) \,\% & [PRD \, 92, \, 112008 \, (2015)] \\ - & B(D^+ \rightarrow K_S^{\ 0} (\rightarrow \pi^0 \pi^0) \, e^+ \nu_e^{\ }) &= (8.59 \pm 0.14 \pm 0.21) \,\% & [CPC \, 40, \, 113001 \, (2016)] \\ - & B(D^+ \rightarrow K_S^{\ 0} (\rightarrow \pi^+ \pi^- / \pi^0 \pi^0) \, \mu^+ \nu_{\mu}^{\ }) = (8.72 \pm 0.07 \pm 0.08) \,\% & [EPJC \, 76, \, 369 \, (2016)] \\ - & B(D^+ \rightarrow \pi^0 \, \mu^+ \nu_{\mu}^{\ }) &= (0.342 \pm 0.011 \pm 0.010) \,\% & Preliminary \\ - & B(D^0 \rightarrow \pi^- \mu^+ \nu_{\mu}^{\ }) &= (0.267 \pm 0.007 \pm 0.007) \,\% & Preliminary \end{array}$

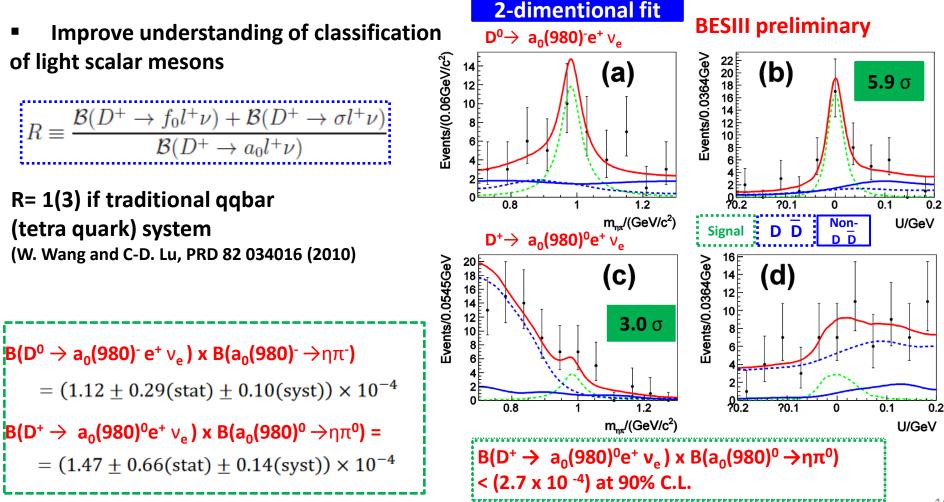
□Isospin conservation: consistent

$$\frac{\Gamma(D^0 \to \pi^- \mu^+ \nu)}{2\Gamma(D^+ \to \pi^0 \mu^+ \nu)} = 0.990 \pm 0.054 \quad \text{within uncertainty} \quad \frac{\Gamma(D^0 \to \pi^- e^+ \nu)}{2\Gamma(D^+ \to \pi^0 e^+ \nu)} = 1.03 \pm 0.03 \pm 0.02$$
$$\frac{\Gamma(D^0 \to K^- \mu^+ \nu)}{\overline{\Gamma(D^+ \to \overline{K}^0 \mu^+ \nu)}} = 0.963 \pm 0.044 \quad \text{within errors} \quad \frac{\Gamma(D^0 \to K^- e^+ \nu)}{\Gamma(D^+ \to \overline{K}^0 e^+ \nu)} = 1.03 \pm 0.01 \pm 0.02$$


Leptonic universality: consistent with the predicted value 0.97 [ZPC 46, 93 (1990); PRD 69, 074025 (2004); PLB 633, 61 (2006)]

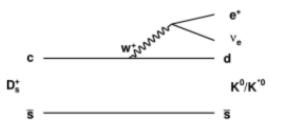
$$\frac{B(D^{+} \to \pi^{0} \mu^{+} \nu)}{B(D^{+} \to \pi^{0} e^{+} \nu)} = 0.921 \pm 0.045 \quad \text{within } 1.1\sigma \quad \text{Preliminary}$$

$$\frac{B(D^{0} \to \pi^{-} \mu^{+} \nu)}{B(D^{0} \to \pi^{-} e^{+} \nu)} = 0.918 \pm 0.036 \quad \text{within } 1.5\sigma \quad \text{Preliminary}$$


$$\frac{\Gamma(D^{+} \to \bar{K}^{0} \mu^{+} \nu)}{\Gamma(D^{+} \to \bar{K}^{0} e^{+} \nu)} = 0.988 \pm 0.033 \quad \text{within error}$$

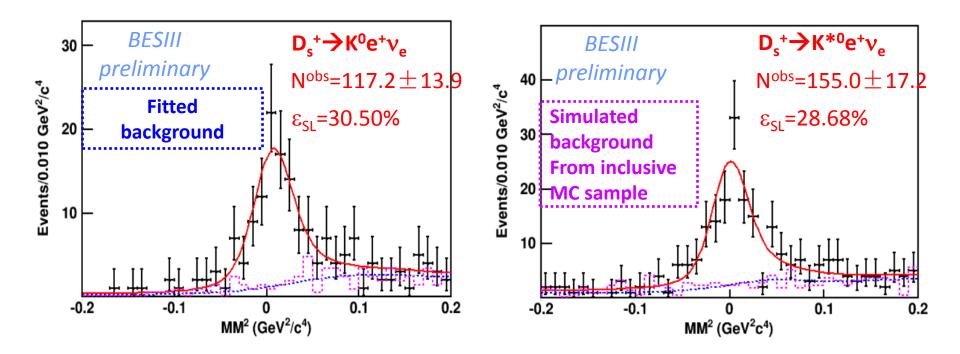
Comparisons of FFs by $D \rightarrow K(\pi) e^+ v_e$

Search for $D^{0(+)} \rightarrow a_0(980)^{-(0)} e^+ v_e$

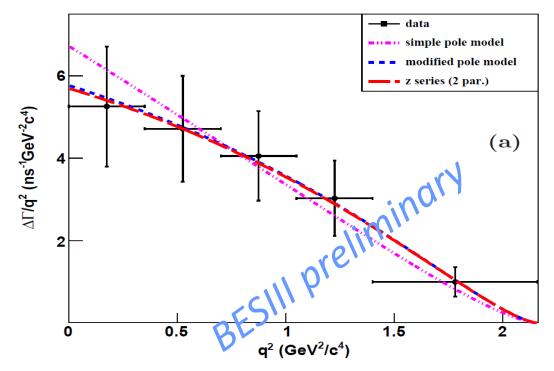

- Nontrivial internal structure of light hadron mesons.
- With chiral unitarity approach in the coupled channels, BF is predicted to be ~5 x 10⁻⁵.

NEW result based on the 4178 MeV data! $D_s^+ \rightarrow K^{(*)0} e^+ v_a$

- Based on the data accumulated last year! - Taken @ $E_{cm} = 4178 \text{ MeV}$ - Integrated luminosity = 3.19 fb⁻¹ - $\sigma(e^+e^- \rightarrow D_s^*D_s) \approx 1 \text{ nb} \Rightarrow \approx 6 \text{ M } D_s \text{ produced}!!$


Cabibbo-suppressed

Currently measurements are only from one single experiment

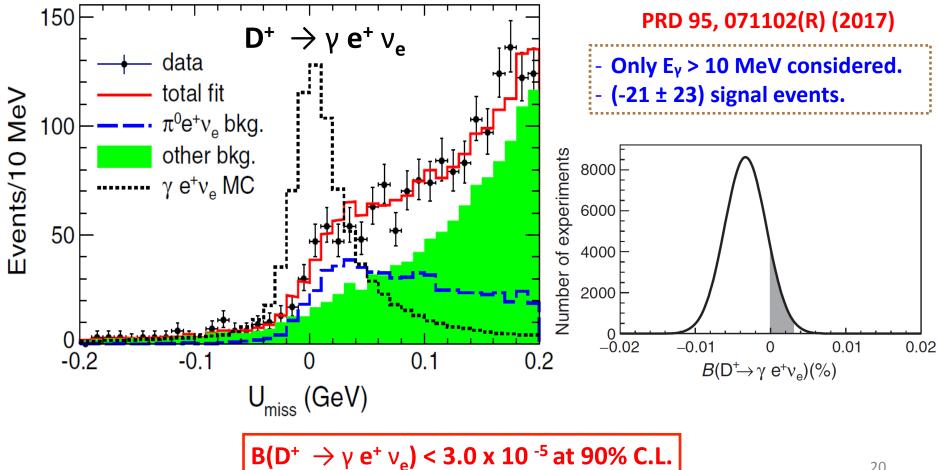

$\Gamma(D_s^+ \to K^*(892$	$)^0 e^+ \nu_e \) / \Gamma_{\text{total}}$					Γ_{29}
$VALUE(10^{-2})$	EVTS	DOCUMENT IL)	TECN	COMMENT	
$0.18 \pm 0.04 \pm 0.01$	32	HIETALA	2015		Uses CLEO data	
· · · We do not use the f	ollowing data for ave	erages, fits, limits, etc. • •	•			
$0.18 \pm 0.07 \pm 0.01$	7.5	YELTON	2009	CLEO	See HIETALA 2015	
$\Gamma(D_s^+ \to K^0 e^+ \nu_e$ $VALUE(10^{-2})$	EVTS	DOCUMENT IE)	TECN	COMMENT	Γ ₂₈ /
$0.39 \pm 0.08 \pm 0.03$	42	HIETALA	2015	1201	Uses CLEO data	
					USES CLEO dala	
	following data for ave	erages, fits, limits, etc. • •	•			
$0.37 \pm 0.10 \pm 0.02$	14	YELTON	2009	CLEO	See HIETALA 2015	

Branching fraction of $D_{s^+} \rightarrow K^{(*)0} e^+ v_e$

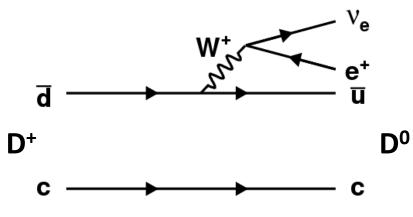
Channel	Measured BFs $[\times 10^{-3}]$	Predicated BFs [$\times 10^{-3}$]	
$D^+_{m{s}} ightarrow K^0 e^+ u_{m{e}}$	3.9 ± 0.9 [PDG2017]	2.0 [1]	
	$3.25 \pm 0.38 \pm 0.14$ [BESIII preliminary]	3.2 [2] 3.90 ^{+0.74} [3]	
		2.9 [4]	- Consistent with the PDG.
$D^+_{s} ightarrow K^{*0} e^+ u_{e}$	1.8 ± 0.4 [PDG2017]	2.2 [5]	- Still, statistically limited.
	$2.38 \pm 0.26 \pm 0.12$ [BESIII preliminary]	1.9 [2]	- Fitting error dominates systematics.
		$2.33^{+0.29}_{-0.30}$ [3]	
		1.7 [4]	

Form factor measurement from $D_{s^+} \rightarrow K^0 e^+ v_e$

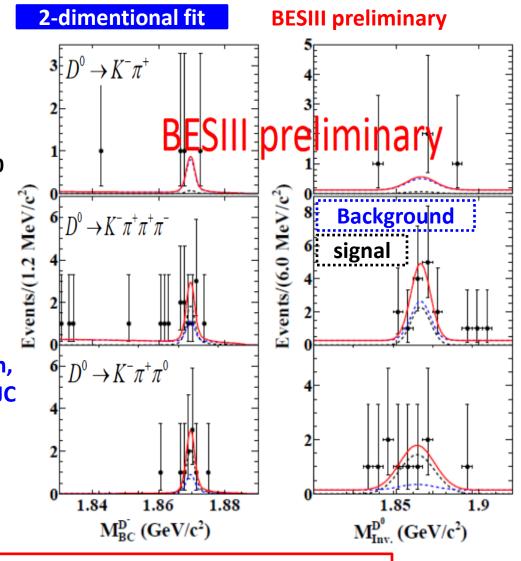
□ The preliminary results for form factors:


Model	Parameter	Value	$f_{+}(0)$
Simple pole	$f_{+}(0) V_{cd} $	$0.175 \pm 0.010 \pm 0.001$	$0.778 \pm 0.044 \pm 0.004$
Modified pole model	$f_{+}(0) V_{cd} $	$0.163 \pm 0.017 \pm 0.003$	$0.725 \pm 0.076 \pm 0.013$
	α	$0.45 \pm 0.44 \pm 0.02$	
Series two parameters	$f_{+}(0) V_{cd} $	$0.162 \pm 0.019 \pm 0.003$	$0.720 \pm 0.084 \pm 0.013$
	r_1	$-2.94 \pm 2.32 \pm 0.14$	

Inserting $|V_{cd}| = 0.22492 \pm 0.00050$ obtained by CKMfitter, the $f_+(0)$ can be obtained. 19


Search for the radiative leptonic decay $D^+ \rightarrow \gamma e^+ \nu_a$

- Not subject to the helicity suppression rule due to the presence of a radiative photon.
- Predicted rates are reachable range :


e.g., J.-C. Yang and M.-Z. Yang predict B(D⁺ $\rightarrow \gamma e^+ \nu_a$) ~ 2×10⁻⁵ via Factorization.

Search for the rare decay $D^+ \rightarrow D^0 e^+ v_e$

Applying the SU(3) symmetry for the light quarks, this rare decay branching fraction can be predicted by theoretical calculation, and its theoretical value is 2.78 x 10⁻¹³ [EPJC 59, 841 (2009)]

 $B(D^+ \rightarrow D^0 e^+ v_e) < 8.7 \times 10^{-5} at 90\% C.L.$

Summary

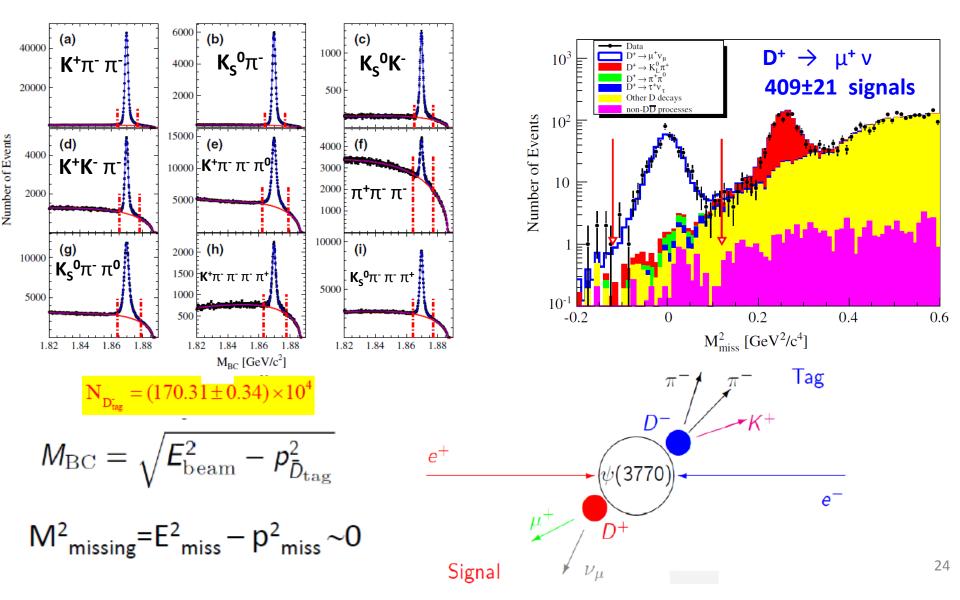
 $\label{eq:constraint} & \texttt{With 2.93, 0.482, 3.19 fb^{-1} data taken at 3.773, 4.009, 4.18 GeV, BESIII have studied} \\ D_{(s)}^{+} \rightarrow |^{+} \nu, D^{0(+)} \rightarrow \texttt{K}(\pi) |^{+} \nu \text{ and } D_{s}^{+} \rightarrow \texttt{K}^{(*)0} e^{+} \nu_{e}^{-}, \text{ and searched for } D^{0(+)} \rightarrow a_{0}(980)^{-(0)} e^{+} \nu_{e}^{-}, \\ \gamma \ e^{+} \nu_{e}^{-} \text{ and } D^{0} e^{+} \nu_{e}^{-}. \end{aligned}$

There are some uncovered analyses at BESIII (see backup parts): D⁺→ K⁻ π⁺ e⁺ ν_e, D_s⁺ → η e⁺ ν_e.
 Some other analyses are on going at BESIII @ 3.773 GeV: D⁺ → η^(') e⁺ ν_e, D⁺ → X e⁺ ν_e....

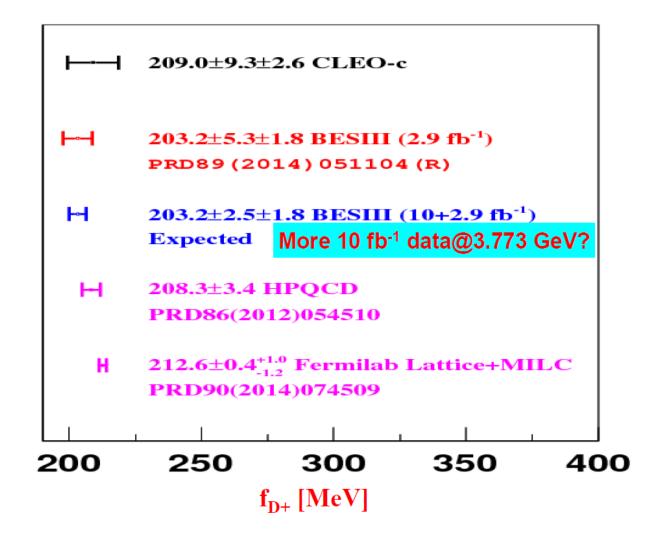
Improved measurements of decay constant f_{D+} and form factor $f_{+}^{D \to K(\pi)}$ (q²), which are important to test and calibrate LQCD calculations.

Improved measurements of CKM matrix element |V_{cs(d)}|, which are important to test the CKM matrix unitarity.

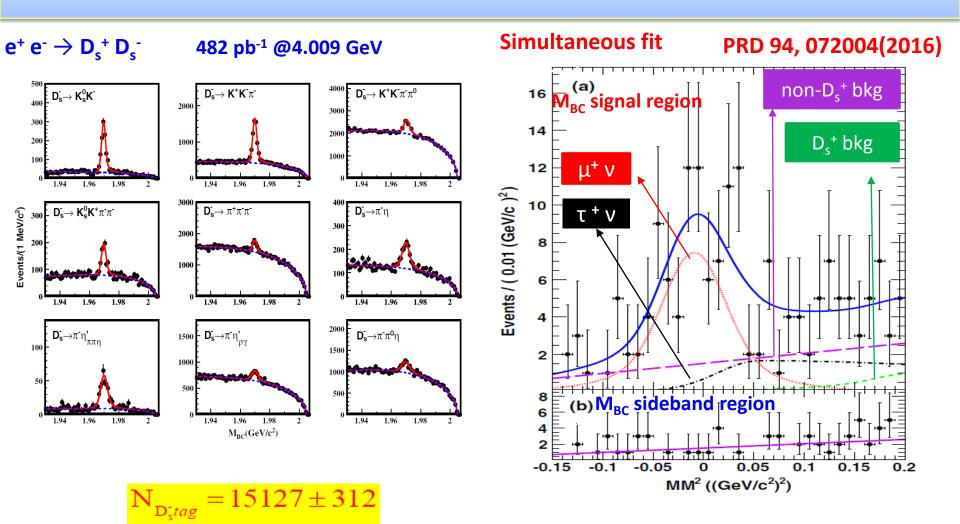
↔ Based on 3.19 fb⁻¹ data at 4.178 GeV accumulated in 2016, the measurements of f_{Ds+} and $|V_{cs}|$ by $D_{s}^{+} \rightarrow |^{+} \nu$, the form factor studies of $D_{s}^{+} \rightarrow \eta^{(')} e^{+} \nu_{e}$... can be expected in the near future.


Thanks for your attention!

Back up


Precision measurements of B(D⁺ $\rightarrow \mu^+ \nu$), f_{D+} and |V_{cd}|

 $e^+e^- → ψ$ (3770) → D⁺ D⁻ 2.93 fb⁻¹ @3.773 GeV


PRD 89, 051104(R) (2014)

Comparison of f_{D+} and prospect at BESIII

$D_{s}^{+} \rightarrow |^{+} v$ (| = μ , τ) decays

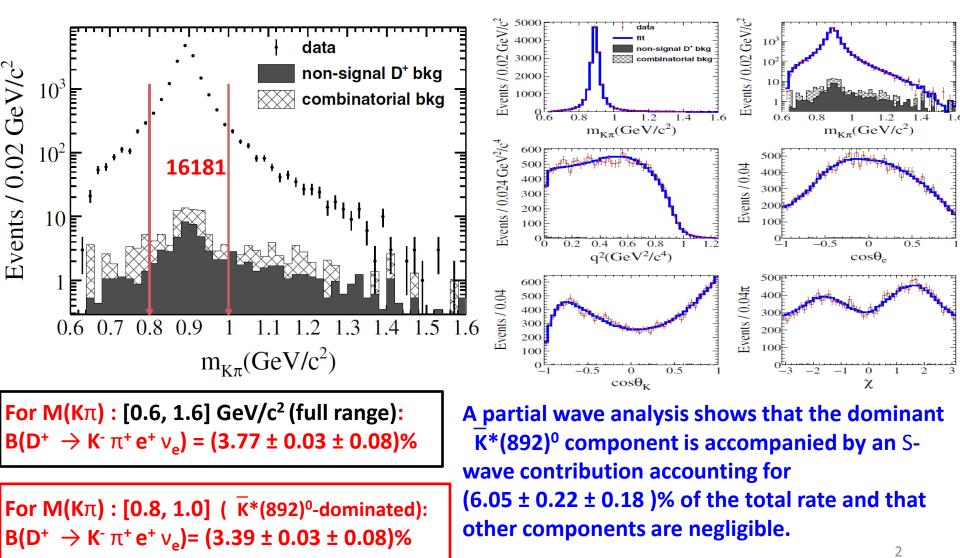
Comparison of f_{Ds+} and prospect at BESIII

~3fb⁻¹ data @4.18 GeV in hand

 μ counter of BESIII may help to suppress background in $D_s^+ \rightarrow \mu^+ \nu$

```
Roughly estimated with CLEO-c results
```

If systematic is the same as CLEO-c measurement

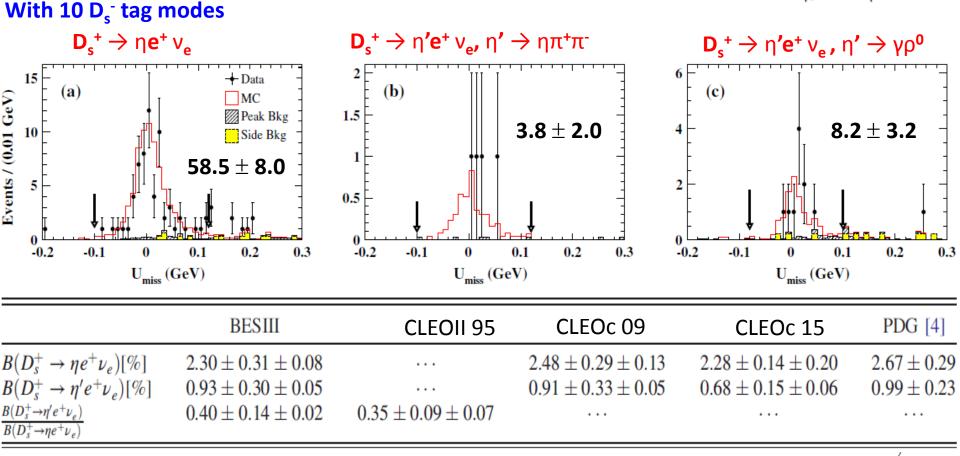

Result at 4.009 GeV is not included due to large error

 $D_s^+ \rightarrow \tau^+ \nu$ will further improve measurement

τ+ν(μ⁺ν⊽) Belle 265.8± 8.4± 13.5 Belle τ⁺ν(e⁺ν⊽) 254.4± 7.8± 8.5 CLEO-c $\tau^+\nu(\pi^+\nabla)$ 269.8± 9.6± 10.4 $\tau^+\nu(e^+(\mu^+)\nu\nabla) = 245.5\pm 8.6\pm 12.2$ Babar CLEO-c $\tau^+ v(e^+ v \overline{v})$ 252.8± 11.2± 5.5 CLEO-c $\tau^+\nu(\rho^+\nabla)$ 258.0±13.3± 5.2 CLEO-c $\tau^+\nu(\pi^+\nabla)$ 278.2±17.5±4.4 Belle u⁺v 249.8± 6.5± 5.0 Babar μ⁺v 265.9± 8.4± 7.7 CLEO-c µ⁺v 257.6± 10.3± 4.3 Expected ^{µ⁺v} 258.5± 4.1± 4.3 120 140 160 180 260 280 300 200 220 240 f_{D⁺} (MeV)

Study of $D^+ \rightarrow K^- \pi^+ e^+ \nu_e$

PRD 94, 032001 (2016)


Measurements of BFs of $D_s^+ \rightarrow \eta^{(\prime)} e^+ v_e$

 $e^+ e^- \rightarrow D_s^+ D_s^-$ 482 pb⁻¹ @4.009 GeV

PRD 94, 112003 (2016)

 $U_{\rm miss} \equiv E_{\rm miss} - |\vec{p}_{\rm miss}| \sim 0$

- Benefit the understanding of the source of difference of inclusive decay rates of D⁰⁽⁺⁾ and D_s⁺
- Complementary information to understand | | ' mixing.

$D_{s^+} \rightarrow K^0 e^+ v_e$

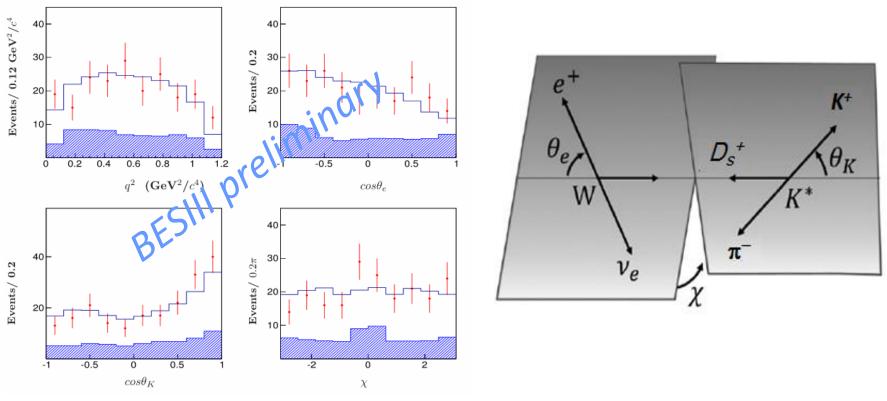
The correlation matrix including both statistical and systematic Uncertainties. [preliminary]

$0.00 < q^2 <= 0.3$	$35 \ 0.35 < q^2 <= 0.70$	$0.70 < q^2 <= 1.05$	$1.05 < q^2 <= 1.40$	$1.40 < q^2 <= q_{\max}^2$
$\rho_i^{\text{stat+syst}}$ 1.000	-0.154	0.016	-0.000	0.001
-0.154	1.000	-0.117	0.011	-0.001
0.016	-0.117	1.000	-0.102	0.008
-0.000	0.011	-0.102	1.000	-0.075
0.001	-0.001	0.008	-0.075	1.000

In the calculation of the systematic covariance matrix, we have considered the systematic uncertainties arising from the uncertainties in the number of D_s^- tags, D_s^+ lifetime, MC statistics, $E_{\gamma max}$ cut, M_{Ks0e+} cut, fits to MM² distribution, tracking and PID efficiencies.

$D_{s^+} \rightarrow K^{*0} e^+ v_e$

The differential decay rate for $D_s^+ \to K^{*0} e^+ \nu_e$ can be expressed in terms of three helicity amplitudes $(H_+(q^2), H_-(q^2) \text{ and } H_0(q^2))$


$$\begin{aligned} \frac{d^{5}\Gamma}{dm_{K\pi}dq^{2}d\cos\theta_{K}d\cos\theta_{e}d\chi} &= \frac{3}{8(4\pi)^{4}}G_{F}^{2}|V_{cd}|^{2}\frac{p_{K\pi}q^{2}}{M_{D_{s}}^{2}}\mathcal{B}(K^{*0}\to K^{+}\pi^{-})|\mathcal{BW}(m_{K\pi})|^{2} \\ &\times [(1+\cos\theta_{e})^{2}\sin^{2}\theta_{K}|H_{+}(q^{2},m_{K\pi})|^{2} \\ &+ (1-\cos\theta_{e})^{2}\sin^{2}\theta_{K}|H_{-}(q^{2},m_{K\pi})|^{2} \\ &+ 4\sin^{2}\theta_{e}\cos^{2}\theta_{K}|H_{0}(q^{2},m_{K\pi})|^{2} \\ &+ 4\sin\theta_{e}(1+\cos\theta_{e})\sin\theta_{K}\cos\theta_{K}\cos\chi H_{+}(q^{2},m_{K\pi})H_{0}(q^{2},m_{K\pi}) \\ &- 4\sin\theta_{e}(1-\cos\theta_{e})\sin\theta_{K}\cos\theta_{K}\cos\chi H_{-}(q^{2},m_{K\pi})H_{0}(q^{2},m_{K\pi}) \\ &- 2\sin^{2}\theta_{e}\sin^{2}\theta_{K}\cos2\chi H_{+}(q^{2},m_{K\pi})H_{-}(q^{2},m_{K\pi})]. \end{aligned}$$

The helicity amplitudes of $H_{+}(q^{2})$, $H_{-}(q^{2})$ and $H_{0}(q^{2})$ take the form of $H_{\pm}(q^{2}) = (M_{D_{s}} + m_{K\pi})A_{1}(q^{2}) \mp \frac{2M_{D_{s}}P_{K\pi}}{M_{D_{s}} + M_{K\pi}}V(q^{2})$ and $H_{0}(q^{2}) = \frac{1}{2m_{K\pi}q}[(M_{D_{s}}^{2} - m_{K\pi}^{2} - q^{2})(M_{D_{s}} + m_{K\pi})A_{1}(q^{2}) - \frac{4M_{D_{s}}^{2}p_{K\pi}^{2}}{M_{D_{s}} + M_{K\pi}}A_{2}(q^{2})],$ $A_{i}(q^{2}) = \frac{A_{i}(0)}{1 - q^{2}/M_{A}^{2}}$ and $V(q^{2}) = \frac{V(0)}{1 - q^{2}/M_{V}^{2}}$, $r_{V} = \frac{V(0)}{A_{1}(0)}$ and $r_{2} = \frac{A_{2}(0)}{A_{1}(0)}.$ The Breit-Wigner function of K^{*0} line shape takes the form as $\mathcal{BW}(M_{K\pi}) = \frac{\sqrt{m_{0}\Gamma_{0}(p/p_{0})}}{m_{0}^{2} - m_{K\pi}^{2} - im_{0}\Gamma(m_{K\pi})} \frac{B(p)}{B(p_{0})}$ where $B(p) = \frac{1}{\sqrt{1 + R^{2}p^{2}}}$ with R = 3 GeV⁻¹ and $\Gamma(m_{K\pi}) = \Gamma_{0}(\frac{p}{p_{0}})^{3} \frac{m_{0}}{m_{K\pi}}(\frac{B(p)}{B(p_{0})})^{2}.$

$D_{s^+} \rightarrow K^{*0} e^+ v_e$

Following the same parametrization used in;

[1] BESIII Collaboration, M. Ablikim, *et al.*, Phys. Rev. D 94, 032001 (2016).
[1] CLEO Collaboration, S. Dobbs, *et al.*, Phys. Rev. Lett. 110, 131802 (2013).

The preliminary results for form factors:

 $r_{\rm V}$ =1.67±0.34 ±0.16 and r_2 =0.77 ± 0.28±0.07

The first errors are statistical and the second are systematic.