Hadronic decays of $D_{(s)}$ at BESIII

Bai-Cian Ke

Department of Physics Carnegie Mellon University

On Behalf of the BESIII Collaboration

baiciank@andrew.cmu.edu

DPF 2017, Fermilab

Outline

- BEPCII and BESIII
- BESIII Data Taken near DDbar Threshold
- Analysis Technique
- $D_{S}^{+} \rightarrow \eta' X \text{ and } D_{S}^{+} \rightarrow \eta' \rho^{+}$
- $D^+ \rightarrow \omega \pi^+$ and $D^0 \rightarrow \omega \pi^0$
- $D^+ \rightarrow K_S K_S K^+$, $K_S K_S \pi^+$ and $D^0 \rightarrow K_S K_S (K_S)$
- $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ (amplitude analysis)
- $D^0 \rightarrow K_S K^+ K^-$
- $D_s^+ \rightarrow \omega \pi^+ and D^0 \rightarrow \omega K^+$
- $D_S \rightarrow pn^{bar}$
- Summary

Beijing Electron Positron Collider (BEPCI) New Two-Ring Machine

BESIII Detector

 $\mathbf{4}$

BESIII Data Taken near DD Threshold

• 2.9 fb⁻¹ dataset at $\psi(3770)$ resonance

 $M_{D0} = 1864.84 \text{ MeV}$ $M_{D+} = 1869.62 \text{ MeV}$

 $2 M_{D0} = 3729.68 \text{ MeV}$ $2 M_{D+} = 3739.24 \text{ MeV}$

0.48 fb⁻¹ dataset at center of mass energy 4.009 GeV

$$M_{DS} = 1968.47$$
 MeV

- Advantages of $D\overline{D}$ pair production near threshold:
 - The $D\overline{D}$ events are clean; not enough energy for even one additional pion
 - Tagging reduces background from light-quark "continuum" and other charm final states
 - Double tag technique can provide access to absolute BFs
 - Many systematic uncertainties cancel with tagging technique
- New 3.19 fb⁻¹ dataset at E_{cm} 4.178 GeV
 - D_s^{\pm} are produced mostly via $e^+e^- \rightarrow D_s D_s^*$

Important Variables

• Beam-Constrained Mass (M_{BC})

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\vec{p}_D|^2}$$

 $M_{\rm BC}$ peaks at D mass: momentum conservation

• Energy Difference (ΔE)

$$\Delta E = E_D - E_{\text{beam}}$$

 ΔE peaks at zero: energy conservation

Typically cut on ΔE , then fit to $M_{\rm BC}$ obtain yield

DTag Technique

- There are two types of samples used in the DTag technique: single tag (ST) and double tag (DT).
- Single tag: only one D or \overline{D} meson is reconstructed through a chosen hadronic decay.
- Double tag: both D and \overline{D} are reconstructed,
- The D reconstructed through the studied hadronic decay is called "the signal side".
- The D reconstructed through well-known and clean hadronic decay modes is called "the tag side".
- (Charge-conjugate states are implied throughout this talk.)

Branching Fraction and Tagging

• Single tag (ST)

$$N_{\rm tag}^{\rm ST} = 2N_{D^0\bar{D}^0}\mathcal{B}_{\rm tag}\varepsilon_{\rm tag}$$

- Double tag (DT)
 - $N_{\rm tag,sig}^{\rm DT} = 2N_{D^0\bar{D}^0}\mathcal{B}_{\rm tag}\mathcal{B}_{\rm sig}\varepsilon_{\rm tag,sig}$

 $\varepsilon_{\mathrm{tag,sig}} pprox \varepsilon_{\mathrm{tag}} \varepsilon_{\mathrm{sig}}$ (factorization)

where $N_{D^0\bar{D}^0}$ is the total number of produced $D^0\bar{D}^0$ pairs, $\mathcal{B}_{tag(sig)}$ is the branching fraction of the tag (signal) side, and the ε are the corresponding efficiencies.

$$\blacktriangleright \mathcal{B}_{\text{sig}} = \frac{N_{\text{tag,sig}}^{\text{DT}}}{N_{\text{tag}}^{\text{ST}}} \frac{\varepsilon_{\text{tag}}}{\varepsilon_{\text{tag,sig}}}$$

 $N_{D^0\bar{D}^0}$, $\mathcal{B}_{\mathrm{tag}}$ are canceled. $\varepsilon_{\mathrm{tag}}$ is approximately canceled due to factorization

This is the basic idea for branching fraction. Equations used in analysis vary case by case.

Measurements of the branching fraction of $D_s^+ \rightarrow \eta' X$

Single tag nine tag modes

A two-dimensional fit to M_{BC} (tag) vs. $M(\eta'_{\pi+\pi-\eta})$ (signal) is performed to obtain the DT yields.

 $\mathcal{B}(D_s^+ \to \eta' X) = (8.8 \pm 1.8 \pm 0.5)\%$

Measurements of the branching fraction of $D_s^+ \rightarrow \eta' \rho^+$

Using the DT samples from $D_s^+ \rightarrow \eta' X$ analysis, invariant mass cuts on η' and ρ^+ are applied to enrich the $D_s^+ \rightarrow \eta' \rho^+$ signal events.

A two-dimensional fit to the distribution of $M_{_{BC}}$ vs. $cos\theta_{_{\pi^+}}$ to determine the signal yield.

Observation of the Singly Cabibbo-Suppressed Decay $D^+ \rightarrow \omega \pi^+$ and Evidence for $D^0 \rightarrow \omega \pi^0$

Chose six (five) decay modes for $D^{+(0)}$.

In order to have a better solution for $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ background, DT samples $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ vs. tag modes are reconstructed first. Then fits to $\pi^+\pi^-\pi^0$ mass are performed.

Note that we are searching for $\omega \rightarrow \pi^+\pi^-\pi^0$.

FIG. 1. $M_{\rm BC}$ distributions of ST samples for different tag modes. The first two rows show charged *D* decays: (a) $K^+\pi^-\pi^-$, (b) $K^+\pi^-\pi^-\pi^0$, (c) $K_S^0\pi^-$, (d) $K_S^0\pi^-\pi^0$, (e) $K_S^0\pi^+\pi^-\pi^-$, (f) $K^+K^-\pi^-$, the latter two rows show neutral *D* decays: (g) $K^+\pi^-$, (h) $K^+\pi^-\pi^0$, (i) $K^+\pi^-\pi^+\pi^-$, (j) $K^+\pi^-\pi^0\pi^0$, (k) $K^+\pi^-\pi^+\pi^-\pi^0$. Data are shown as points, the (red) solid lines are the total fits and the (blue) dashed lines are the background shapes. *D* and \overline{D} candidates are combined.

DT $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ vs. tag modes

Fits to M3 π distributions of signal and sideband regions to obtain the signal and peaking background yields, respectively.

Events counts in sidebands are projected into the signal region with scale factors.

ModeH	$N_{\omega(\eta)}$	$N^{ m bkg}_{\omega(\eta)}$	$N_{ m sig}^{ m obs}$
$D^+ o \omega \pi^+$	100 ± 16	21 ± 4	79 ± 16
$D^0 \to \omega \pi^0$	50 ± 12	5 ± 5	45 ± 13
$D^+ o \eta \pi^+$	264 ± 17	6 ± 2	258 ± 18
$D^0 o \eta \pi^0$	78 ± 10	3 ± 2	75 ± 10

Mode	This work	Previous measurements
$D^+ \rightarrow \omega \pi^+$	$(2.79\pm0.57\pm0.16)\times10^{-4}$	$< 3.4 \times 10^{-4}$ at 90% C.L.
$D^0 \rightarrow \omega \pi^0$	$(1.17\pm0.34\pm0.07)\times10^{-4}$	$< 2.6 \times 10^{-4}$ at 90% C.L.
$D^+ \rightarrow \eta \pi^+$	$(3.07\pm0.22\pm0.13)\times10^{-3}$	$(3.53\pm0.21)\times10^{-3}$
$D^0 \rightarrow \eta \pi^0$	$(0.65\pm0.09\pm0.04)\times10^{-3}$	$(0.68\pm0.07)\times10^{-3}$

PRL 116, 082001 (2016)

Measurements of the branching fractions for $D^+ \rightarrow K_s K_s K^+$, $K_s K_s \pi^+$ and $D^0 \rightarrow K_s K_s (K_s)$

Single tag the signal mode. The combinatorial $\pi^+\pi^-$ pair background is the main issue.

An invariant mass cut, $M_{\pi+\pi-}$, is applied during the reconstruction of K_s , but the combinatorial $\pi^+\pi^-$ (not from K_s) pairs may also satisfy the cut. To remove this background, the 2D or 3D sideband regions are studied.

For modes with two K_s:
$$N_{\text{net}} = N_{K_s^0 \text{sig}} - \frac{1}{2}N_{\text{sb1}} + \frac{1}{4}N_{\text{sb2}} - N_{\text{other}}^b$$

For mode with three K_s: $N_{\text{net}} = N_{K_s^0 \text{sig}} - \frac{1}{2}N_{\text{sb1}} + \frac{1}{4}N_{\text{sb2}} - \frac{1}{8}N_{\text{sb3}} - N_{\text{other}}^b$

Decay modes	$N_{K_S^0 ext{sig}}$	N _{sb1}	N _{sb2}	N _{sb3}	N ^b _{other}	N _{net}	€ (%)	$\mathcal{B}~(imes 10^{-4})$
$D^+ \rightarrow K^0_S K^0_S K^+$	3616 ± 66	97 ± 19	6 ± 8	-	18 ± 2	3551 ± 67	8.27 ± 0.04	25.4 ± 0.5
$D^+ \rightarrow K^0_S K^0_S \pi^+$	5643 ± 88	1464 ± 68	69 ± 19	-	31 ± 3	4897 ± 94	10.72 ± 0.04	27.0 ± 0.5
$D^0 \rightarrow K^0_S K^0_S$	888 ± 36	626 ± 31	3 ± 6	-	0	576 ± 39	16.28 ± 0.30	1.67 ± 0.11
$D^0 \to K^0_S K^0_S K^0_S$	622 ± 27	24 ± 8	14 ± 6	0	16 ± 3	597 ± 27	3.92 ± 0.05	7.21 ± 0.33

15 Physics Letters B 765 (2017) 231–237

Amplitude Analysis of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

Double tag: $D^0 \rightarrow K^-\pi^+\pi^+\pi^- vs. D^{0bar} \rightarrow K^+\pi^-$

Using only the cleanest tag mode, since amplitude analysis requires a clean sample.

An unbinned likelihood fit is performed using the signal PDF given by

$$f_{S}(p_{j}) = \frac{\epsilon(p_{j})|M(p_{j})|^{2}R_{4}(p_{j})}{\int \epsilon(p_{j})|M(p_{j})|^{2}R_{4}(p_{j})dp_{j}}$$

Four-body phase-space: R_4 Measurement efficiency: ε

Total amplitude: $M(p_j) = \sum c_n A_n(p_j)$

Amplitude	ϕ_i	Fit fraction (%)
$\overline{D^0[S]} o ar{K}^* ho^0$	$2.35 \pm 0.06 \pm 0.18$	$6.5 \pm 0.5 \pm 0.8$
$D^0[P] \to \bar{K}^* \rho^0$	$-2.25 \pm 0.08 \pm 0.15$	$2.3\pm0.2\pm0.1$
$D^0[D] o \bar{K}^* ho^0$	$2.49 \pm 0.06 \pm 0.11$	$7.9\pm0.4\pm0.7$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$	0(fixed)	$53.2 \pm 2.8 \pm 4.0$
$D^0 \to K^- a_1^+ (1260), a_1^+ (1260)[D] \to \rho^0 \pi^+$	$-2.11 \pm 0.15 \pm 0.21$	$0.3\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$	$1.48 \pm 0.21 \pm 0.24$	$0.1\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$	$3.00 \pm 0.09 \pm 0.15$	$0.7\pm0.2\pm0.2$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$	$-2.46 \pm 0.06 \pm 0.21$	$3.4 \pm 0.3 \pm 0.5$
$D^0 \rightarrow (\rho^0 K^-)_A \pi^+, (\rho^0 K^-)_A [D] \rightarrow K^- \rho^0$	$-0.43 \pm 0.09 \pm 0.12$	$1.1\pm0.2\pm0.3$
$D^0 \to (K^- \rho^0)_{\rm P} \pi^+$	$-0.14 \pm 0.11 \pm 0.10$	$7.4\pm1.6\pm5.7$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} \rho^0$	$-2.45 \pm 0.19 \pm 0.47$	$2.0\pm0.7\pm1.9$
$D^0 \rightarrow (K^- \rho^0)_V \pi^+$	$-1.34 \pm 0.12 \pm 0.09$	$0.4\pm0.1\pm0.1$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$	$-2.09 \pm 0.12 \pm 0.22$	$2.4\pm0.5\pm0.5$
$D^0 \rightarrow \overline{K}^{*0}(\pi^+\pi^-)_{\rm S}$	$-0.17 \pm 0.11 \pm 0.12$	$2.6\pm0.6\pm0.6$
$D^0 \to (\bar{K}^{*0}\pi^-)_V \pi^+$	$-2.13 \pm 0.10 \pm 0.11$	$0.8\pm0.1\pm0.1$
$D^0 \rightarrow ((K^-\pi^+)_{\text{S-wave}}\pi^-)_{\text{A}}\pi^+$	$-1.36 \pm 0.08 \pm 0.37$	$5.6\pm0.9\pm2.7$
$D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$	$-2.23 \pm 0.08 \pm 0.22$	$13.1 \pm 1.9 \pm 2.2$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{S}}$	$-1.40 \pm 0.04 \pm 0.22$	$16.3 \pm 0.5 \pm 0.6$
$D^0[S] \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm V}$	$1.59 \pm 0.13 \pm 0.41$	$5.4\pm1.2\pm1.9$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{V}}$	$-0.16 \pm 0.17 \pm 0.43$	$1.9\pm0.6\pm1.2$
$D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$	$2.58 \pm 0.08 \pm 0.25$	$2.9\pm0.5\pm1.7$
$D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$	$-2.92 \pm 0.14 \pm 0.12$	$0.3\pm0.1\pm0.1$
$D^0 \to (K^- \pi^+)_{\rm S, mana} (\pi^+ \pi^-)_{\rm T}$	$2.45 \pm 0.12 \pm 0.37$	$0.5\pm0.1\pm0.1$

$$FF(n) = \frac{\sum_{k=1}^{N_{\text{gen}}} |\tilde{A}_{\mathbf{n}}(p_{j}^{k})|^{2}}{\sum_{k=1}^{N_{\text{gen}}} |M(p_{j}^{k})|^{2}}$$

$$A_n(p_j) = P_n^1(m_1)P_n^2(m_2)S_n(p_j)F_n^1(p_j)F_n^2(p_j)F_n^D(p_j)$$

Propagator

Spin factor

Blatt-Weisskoft barrier factor¹⁶

Four-body decay is in a five-dimensional phase-space. Here are 1D projections onto two- or three-body system.

Component	Fit fraction (%)	Mark III's result	E691's result
$D^0 o ar{K}^{*0} ho^0$	$12.3 \pm 0.4 \pm 0.5$	$14.2\pm1.6\pm5$	$13\pm2\pm2$
$D^0 \to K^- a_1^+ (1260)(\rho^0 \pi^+)$	$54.6 \pm 2.8 \pm 3.7$	$49.2\pm2.4\pm8$	$47\pm5\pm10$
$D^0 \to K_1^-(1270)(\bar{K}^{*0}\pi^-)\pi^+$	$0.8\pm0.2\pm0.2$	$6.6 \pm 1.9 \pm 3$	
$D^0 \to K_1^-(1270)(K^-\rho^0)\pi^+$	$3.4\pm0.3\pm0.5$		
$D^0 \to K^- \pi^+ \rho^0$	$8.4\pm1.1\pm2.5$	$8.4\pm2.2\pm4$	$5\pm3\pm2$
$D^0 ightarrow ar{K}^{*0} \pi^+ \pi^-$	$7.0\pm0.4\pm0.5$	$14.0\pm1.8\pm4$	$11\pm2\pm3$
$D^0 o K^- \pi^+ \pi^+ \pi^-$	$21.9\pm0.6\pm0.6$	$24.2\pm2.5\pm6$	$23\pm2\pm3$

17

PHYSICAL REVIEW D **95,** 072010 (2017)

Branching-fraction measurement of $D^0 \rightarrow K_s K^+ K^-$

$$\mathcal{B}_{D^{0} \to K^{0}_{S}K^{+}K^{-}} = \frac{N^{sig}}{\epsilon_{BF} \cdot \mathcal{B}_{K^{0}_{S} \to \pi\pi} \cdot \mathcal{L} \cdot 2\sigma_{D^{0}\overline{D}^{0}}}$$

qq/Ddbar background peaks in $\rm m_{\rm \scriptscriptstyle KS}$ non-KS background peaks in $\rm m_{\rm \scriptscriptstyle BC}$

PDF models for Signal and background

- ▷ Signal: $S(\vec{x}) = CB2(m_{BC}) \times Gauss(m_{KS})$
- $P \quad qq/D\overline{D}: B1(\vec{x}) = (Argus + Gauss)(m_{BC}) \times (Gauss + pol0)(m_{KS})$
- ▷ non-KS: $B2(\vec{x}) = CB2(m_{BC}) \times pol1(m_{KS})$

Simultaneous fit of common parameters

Fix shape parameters and determine yields:

$$\begin{aligned} PDF(m_{BC}, m_{KS}) &= N_{sig} \times S(m_{BC}, m_{KS}) \\ &+ N_{Bkg_{KS}} B_1(m_{BC}, m_{KS}) \\ &+ N_{Bkg_{nonKS}} B_2(m_{BC}, m_{KS}) \end{aligned}$$

 $BF_{data}(D^0 \to K^0_{s}K^+K^-) = (4.622 \pm 0.045 \,(\text{stat.}) \pm 0.181 \,(\text{sys.})) \times 10^{-3}$

- Relative uncertainty: 4.0 %
- ▶ PDG(2014) value: $(4.47 \pm 0.34) \times 10^{-3} \rightarrow \text{Deviation } 0.81 \sigma$
- Ongoing Dalitz plot analysis

Preliminary results on observation of $D_s^{\ +} \to \omega \pi^+ \ and \ \omega K^+$

With 3.19 fb⁻¹ data @ 4.178GeV collected by the BESIII

Double tag: One $M_{rec} > 2.1 \text{ GeV}$

- Best candidate: average mass of two D_s mesons closet to PDG value.
- K_s^0 veto for $D_s^+ \to \omega K^+$ to suppress the background from $D_s^+ \to \overline{K}^{*0}K^+$: If $|m_{\pi\pi} - 0.4976| < 0.03 \text{GeV}$, $L_{decay}/\sigma_{L_{decay}} > 2.0$, veto this event.

Signal mode	Branching fraction (10^{-3})	Statistical significance (σ)
$D_s^+ \to \omega \pi^+$	$1.85 \pm 0.30(stat.) \pm 0.19(sys.)$	7.7
$D_s^+ \to \omega K^+$	$1.13 \pm 0.24(stat.) \pm 0.14(sys.)$	6.2

Preliminary result for $D_s \rightarrow pn^{bar}$

With 3.19 fb⁻¹ data @ 4.178GeV collected by the BESIII

Double tag

- Kinematic fit to improve missing neutron resolution
- Constraint the 4 momenta of the total events, the two Ds and Ds* mass, set anti-neutron 4 momenta free: (7-4)C
- Set two hypotheses to select the one with smaller χ^2
 - $Ds^* \rightarrow \gamma Ds(\rightarrow tag modes)$
 - $Ds^* \rightarrow \gamma Ds(\rightarrow p\bar{n})$
- No peaking background
- Signal efficiency $\sim 48\%$ from inclusive MC

Preliminary result

$$\mathcal{B}_{D_s \to p\bar{n}} = \frac{1}{\mathcal{B}_{D_s^* \to \gamma D_s}} \cdot \frac{N_{DT}}{N_{ST}} \cdot \frac{\epsilon_{ST}}{\epsilon_{DT}}$$
$$= \frac{1}{\mathcal{B}_{D_s^* \to \gamma D_s}} \cdot \frac{\sum N_{DT}}{\sum (N_{ST} \cdot \frac{\epsilon_{DT}}{\epsilon_{ST}})}$$

By combining the 11 tag modes together, we obtain (only statistic error here):

$$\mathcal{B}_{D_s^+ \to p\bar{n}} = (1.22 \pm 0.10) \times 10^{-3}$$
 preliminary

Signal:MC shape ⊗GaussianBackground:Argus function

- Statistically limited.
- Uncertainty due to baryon ID dominates the systematic
- Confirm CLEO-c's measurement with greatly improved accuracy
- Consistent with the prediction of the enhanced BR due to long-distance effect via hadronic loop

5

Summary

- DTag and DD^{bar} therehold data allow us to perform inclusive and exclusive branching fraction measurement
- Double tag proves clean samples for amplitude analysis
- Many D^o and D⁺ studies have been published
- More D_s studies are on-going (based on 3.19 fb⁻¹ data at $E_{cm} = 4.178$ GeV)