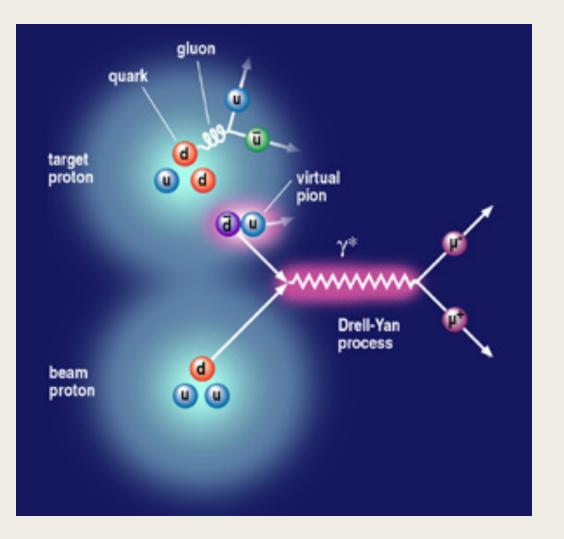
NC STATE UNIVERSITY

REFINEMENT OF THE PION PDF IMPLEMENTING DRELL-YAN EXPERIMENTAL DATA

Patrick Barry¹, Nobuo Sato², W. Melnitchouk³, Chueng-Ryong Ji¹ pcbarry@ncsu.edu North Carolina State University¹ University of Connecticut² Thomas Jefferson National Accelerator Facility³

Drell-Yan process



- Two hadrons collide
- Do not need to be protons!
- One donates a quark, other an antiquark
- Quarks annihilate into a virtual photon
- Dilepton production
- Measure differential crosssection of lepton/antilepton pair

Cross section

$$\frac{d^2\sigma}{dQ^2dY} = \frac{4\pi\alpha^2}{3N_cQ^2s} \sum_{i,j} \int dx_1 dx_2 \tilde{C}_{ij}(x_1, x_2, s, M, \mu_f) f_{i/N_1}(x_1, \mu_f) f_{j/N_2}(x_2, \mu_f)$$

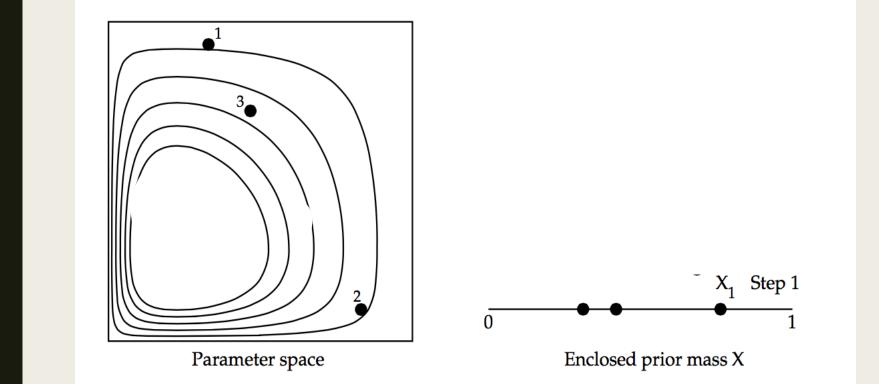
- Cross-section differential in invariant mass of lepton pair, Q^2 , and rapidity, Y
- The momentum fractions of the initial hadrons are x_1, x_2
- Parton distribution functions (PDFs) are $f_i(x, Q^2)$
- Sum over all partons

PDFs

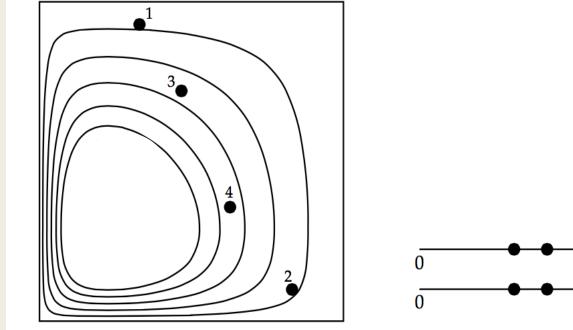
- Parameterize the PDF at $Q_0^2 = 1 \text{GeV}^2$ as: $f(x, \mu^2) = N x^a (1 - x^b)$
- Definitions: $q_v = \overline{u}_v = d_v$; $q_s = 2(u + \overline{d} + s)$; g
- Use sum rules to fix N_{q_v} , N_g
- We fit *a*, *b* for the valence, sea, and gluon, and *N* for the sea
- PDFs are evolved using DGLAP in Mellin space

- Monte Carlo fitting method
- Create parameter space to have a uniform prior over a specified range
- Sample points in parameter space closer and closer to the maximum likelihood
- Weights produced with each sample based on proximity to maximum likelihood
- Provides errors without assumption of linear error propagation

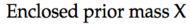
$$Var(\mathcal{O}) \propto \sum_{k} (\mathcal{O}_{k} - E(\mathcal{O}))^{2}$$



- Start with random points on line of 0 < X < 1.
- X = 0 is the point of highest likelihood.



Parameter space

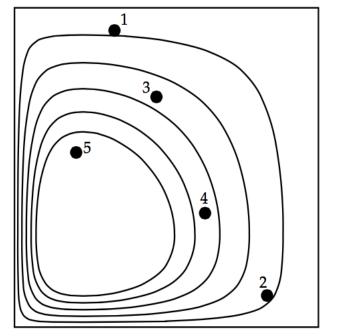


X₂ Step 2

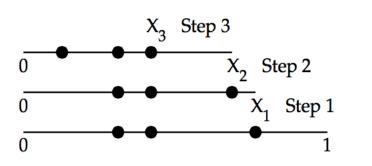
 \overline{X}_1 Step 1

1

- Start with random points on line of 0 < X < 1.
- X = 0 is the point of highest likelihood.
- Delete point of lowest likelihood and make it the upper-bound on new sampling boundary

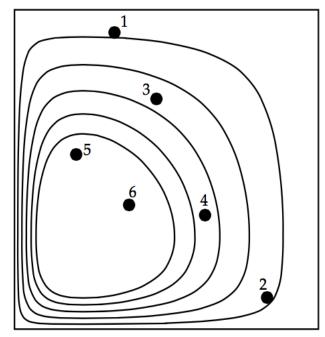


Parameter space

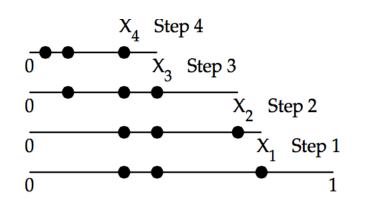


Enclosed prior mass X

- Start with random points on line of 0 < X < 1.
- X = 0 is the point of highest likelihood.
- Delete point of lowest likelihood and make it the upper-bound on new sampling boundary

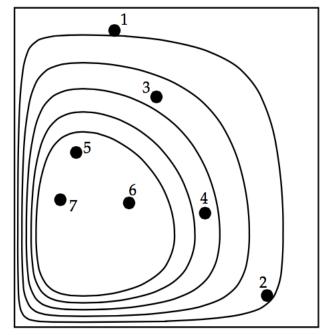


Parameter space

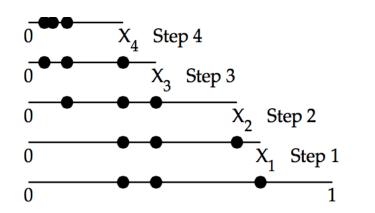


Enclosed prior mass X

- Start with random points on line of 0 < X < 1.
- X = 0 is the point of highest likelihood.
- Delete point of lowest likelihood and make it the upper-bound on new sampling boundary
- Keep randomly sampling until a threshold is reached

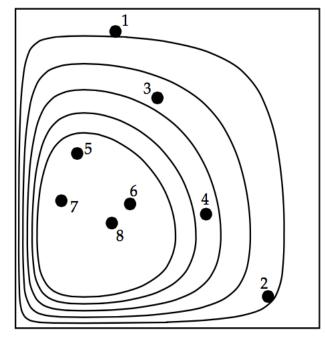


Parameter space

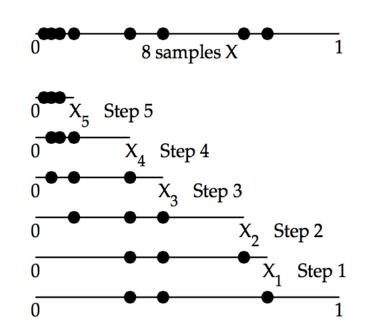


Enclosed prior mass X

- Start with random points on line of 0 < X < 1.
- X = 0 is the point of highest likelihood.
- Delete point of lowest likelihood and make it the upper-bound on new sampling boundary
- Keep randomly sampling until a threshold is reached



Parameter space



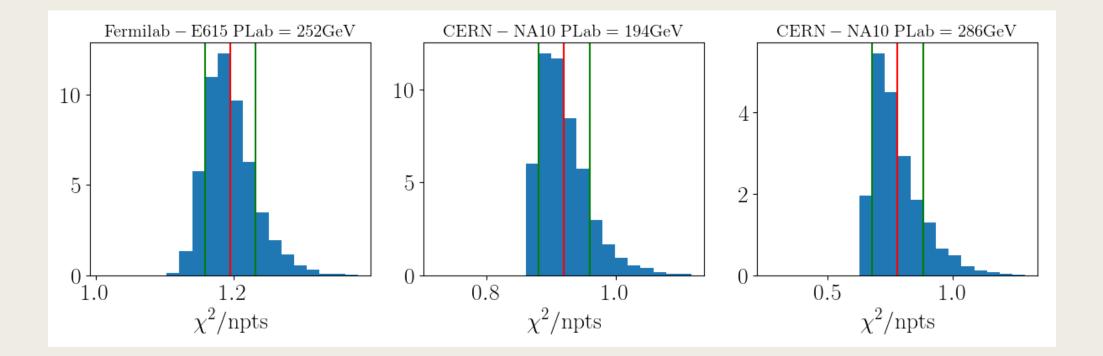
Enclosed prior mass X

- Start with random points on line of 0 < X < 1.
- X = 0 is the point of highest likelihood.
- Delete point of lowest likelihood and make it the upper-bound on new sampling boundary
- Keep randomly sampling until a threshold is reached

Datasets & Constrictions

- For Drell-Yan, we use E615 and NA10 datasets
- π^- beam incident on a Tungsten target
- Consider only $0 < x_F < 0.9$ and 4.16 < Q < 8.34 to avoid J/Ψ and Υ production

Drell-Yan fits



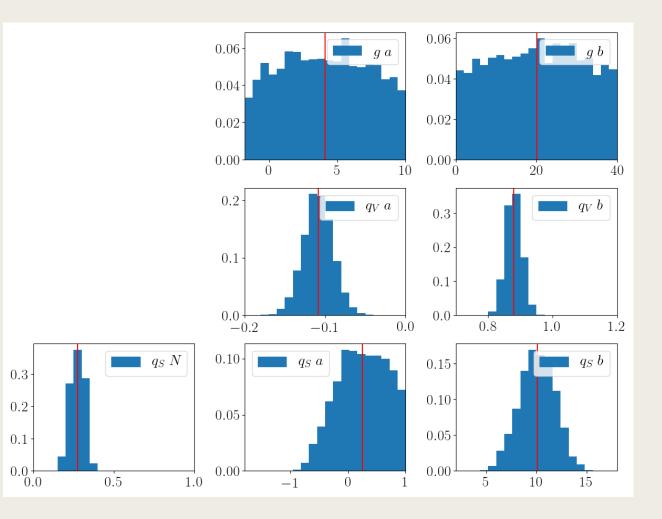
Drell-Yan fits

- q_v is well-constrained by Drell-Yan
- q_s has large spread in parameters
- *g* has almost not constrain

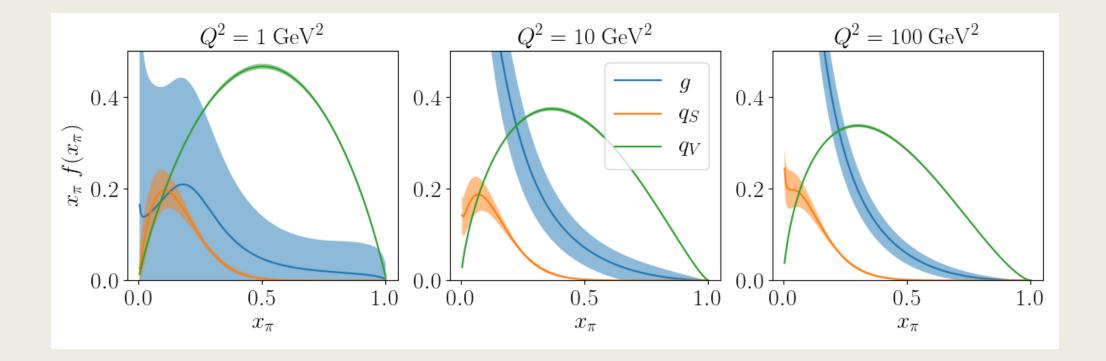
0.3-

0.2 -

0.1

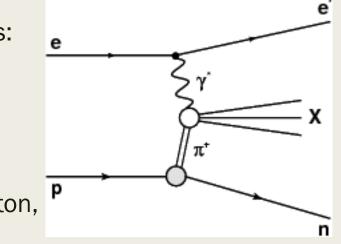


Drell-Yan fits



Leading Neutron

- Add in data from HERA (ZEUS & H1) to perform global fit
- Detect neutrons in coincidence with outgoing electrons:
- Neutron has most of the energy of the proton
- Incoming electron barely strikes the surface of the proton, knocking out a pion from the pion cloud
- Focuses on small x_{π} , whereas Drell-Yan focuses on large x_{π}



Leading Neutron

Observable in H1 data is

$$F_2^{LN(3)}(x,Q^2,y) = f_{\pi^+n}(y) F_2^{\pi}(x_{\pi},Q^2)$$

- Where $f_{\pi^+n}(y)$ is the splitting function from the proton, and $F_2^{\pi}(x_{\pi}, Q^2)$ is the pion structure function (depends on pion PDF)
- Observable in ZEUS is

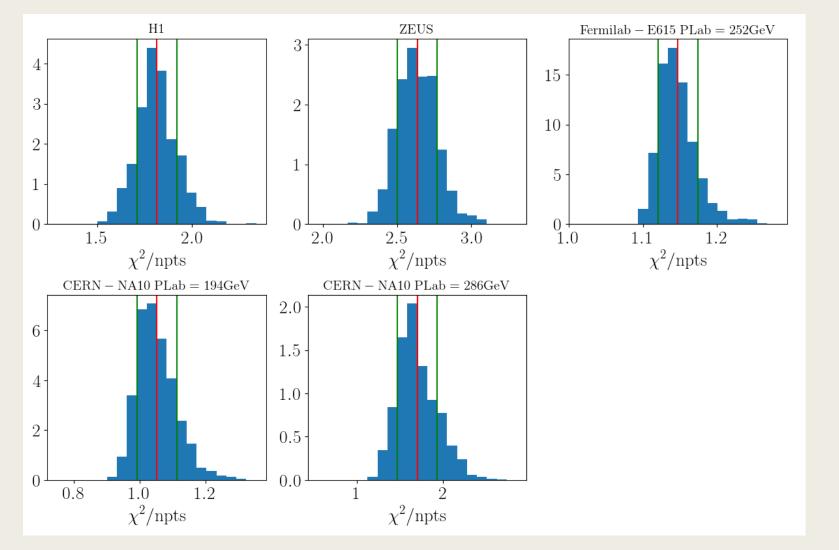
$$r(x_{\pi}, Q^{2}, y) = f_{\pi^{+}n}(y) \frac{F_{2}^{\pi}(x_{\pi}, Q^{2})}{F_{2}^{p}(x, Q^{2})} \Delta y$$

- where $F_2^p(x, Q^2)$ is the proton structure function

Datasets & Constrictions

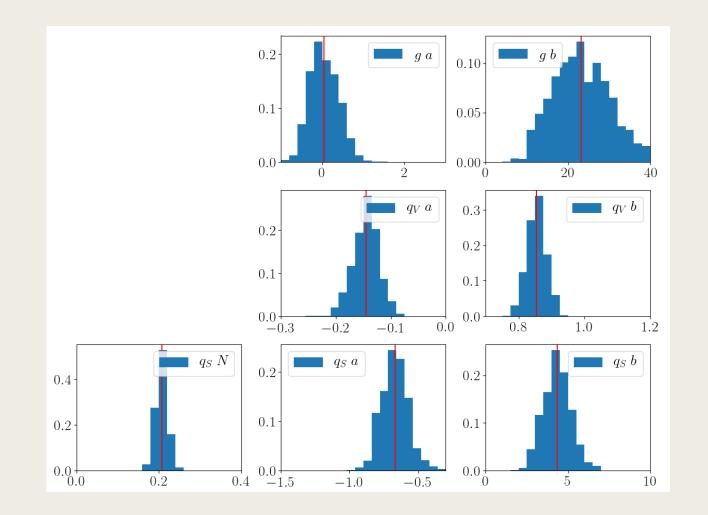
- For Drell-Yan, we use E615 and NA10 datasets
- π^- beam incident on a Tungsten target
- Consider only $0 < x_F < 0.9$ and 4.16 < Q < 8.34 to avoid J/Ψ and Υ production
- For Leading Neutron, we use H1 and ZEUS datasets
- We consider cuts on data based on maximum $y = x_{\pi}/x$ values

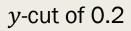
LN results



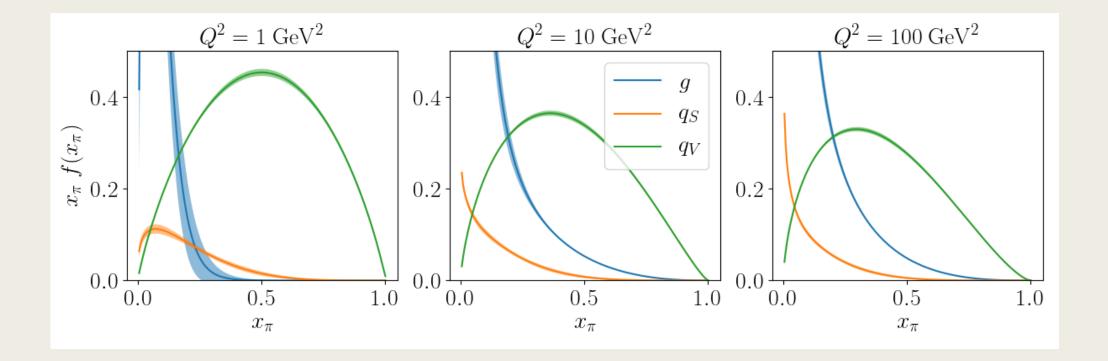
y-cut of 0.2

LN results





LN results



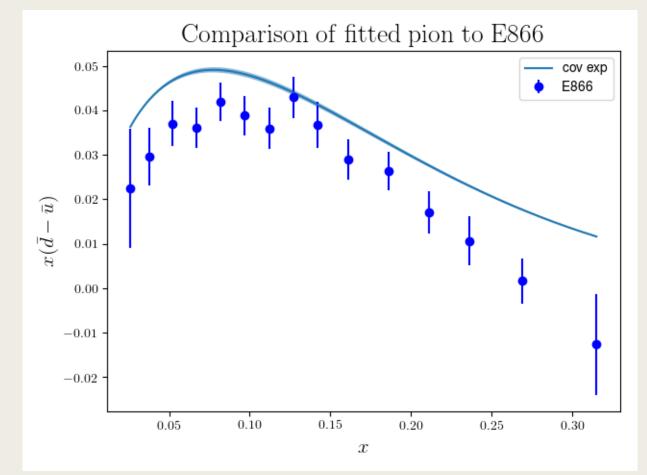
Conclusion

- First attempted fit to both high- x_{π} and low- x_{π} regions using Drell-Yan and Leading Neutron data
- Use of nested sampling algorithm to improve errors
- Next steps: to include threshold resummation in our calculation

BACKUP SLIDES

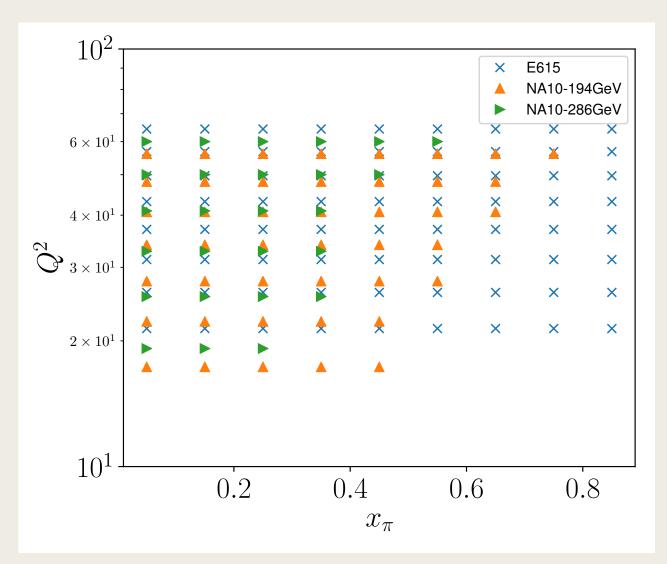
Prediction of E866

• Can make a prediction of E866 data for $\bar{d} - \bar{u} = (f_{\pi^+n} - \frac{2}{3}f_{\pi^-\Delta^{++}}) \otimes \bar{q}_{\nu}^{\pi}$ using our valence π PDF, where f_{π^+n} and $f_{\pi^-\Delta^{++}}$ are the splitting functions from the proton



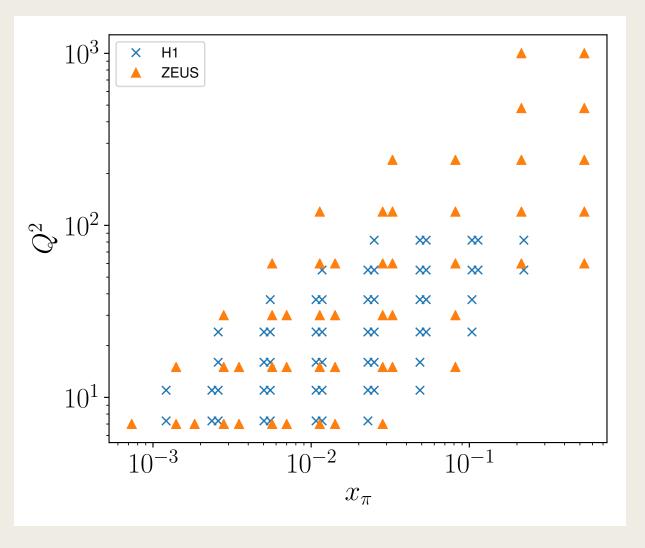
Kinematics - DY

- Hard cut-offs for $4.16^2 < Q^2 < 8.34^2$
- More available data for large- x_{π}



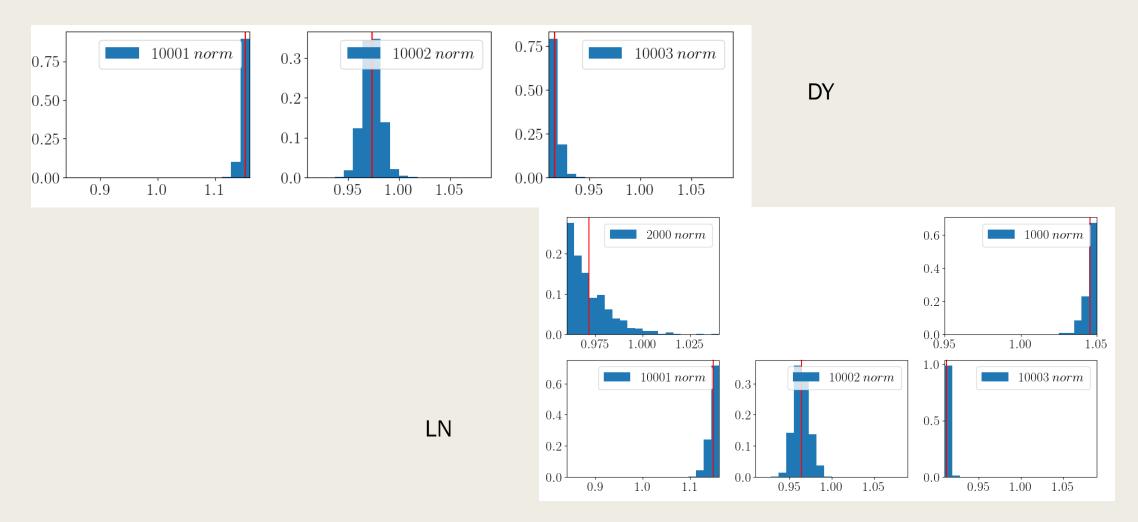
Kinematics - LN

• *y*-cut of 0.2



Normalization Parameterization

For all datasets with overall normalization uncertainty, we fit to within the reported percentage around 1.



Mellin Transformation

$$f_i^n(\mu) \equiv \int_0^1 dx x^{n-1} f_i(x,\mu)$$

- Analogous to the Fourier transform
- Transform from *x*-space to Mellin space (exponents of *x*)

WHY??

• We know how PDFs evolve in scale based on DGLAP:

 $\frac{\partial f_i(\mu_f^2)}{\partial ln(\mu_f^2)} = DGLAP$

Mellin Inversion

■ After evolution, invert back into *x*-space

$$f_i(x,\mu) = \frac{1}{2\pi \mathbf{i}} \int_{C_n} dn x^{-n} f_i^n(\mu)$$

- For each value on the contour, we do the DGLAP evolution
- At large enough contour radius, integrand converges

