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Atmospheric neutrinos

@ CRinteract with atmosphere producing
hadronic shower

» Decays produce v

® v, v, produced at ~1:2:0

@ similar rate of v and v

» however, x-sec for 7 smaller than for v
= at detection less v than v
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Neutrino oscillations with atmospheric neutrinos
up-going v [i.e. cos(e) -1, L=1.3 10* km]
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@ Several baselines available >1%'zf\\ WL/ o ]
» L/E dependency on oscillation E"OIOE\VN‘ K\f N \;
» Many orders of magnitude in E ' 10 102t E (GeV)
@ IceCube/DeepCore: rue k, (&€
» See clear v, disappearance @ IceCube/DeepCore not (very) sensitive to:

» Neutrino mass ordering, dcp, Ve appearance
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Neutrino oscillations with atmospheric neutrinos
up-going v [i.e. cos(e) -1, L=1.3 10* km]
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@ Several baselines available
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» L/E dependency on oscillation X/ A L \
» Many orders of magnitude in E ' 10 102
@ IceCube/DeepCore: true E, (GeV)

» See clear v, disappearance @ IceCube/DeepCore not (very) sensitive to:
» Neutrino mass ordering, dcp, Ve appearance
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lceCube
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lceCube

Living Quarters
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lceCube

Living Quarters
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The lceCube Detector

IceCube Lab
. IceTop
:‘/ 81 Stations

324 optical sensors

50m ——

IceCube Array
86 strings including

8 DeepCore strings
5160 optical sensors

asom DeepCore

8 strings-spacing optimized
for lower energies
480 optical sensors

\

Eiffel Tower

2450 m
2820 m
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@ Instrument 1 Gton of ice

@ Optimized for TeV-PeV neutrinos
» Astrophysical v discovered!

@ Atits center: DeepCore

IceCube DOM
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IceCube-DeepCore

@ DeepCore:

>

4

~10 Mton region
with

denser instrumentation |

Located in clearest
ice

lower E threshold
study neutrino
oscillations
Surrounding
detector used as
active veto against
atmospheric u
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IceCube  DeepCore
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1000m

1450m 2100m
2450m 2450m
Instrumented Depth
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Detecting neutrinos in lceCube

@ v interact in ice surrounding strings

4 =,y
hadronic
n shower

@ Charged particles moving at greater
than speed of light in ice = Cherenkov
light cone

@ 3D array of PMTs detect produced light
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Measurement strategy

charge

t
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@ Main background is atmospheric
» Use IceCube as veto to reject atm p events

@ Reconstruct v energy and direction
» oscillation distance (L) given by zenith

@ Measure oscillation by fitting L x E x PID

t
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Comparison to last published results

IC2014 analysis

@ Results in PRD 91, 072004 (2015)
@ Focus on v, CC “golden events”

» Clear p tracks
» Several non-scattered photons

@ Use only up-going events

Similarities in both analyses

@ Atmospheric i background shape
estimated from data

@ v reconstruction resolution similar
@ Both are 3 year data sets (not same)

This analysis
(arXiv:1707.07081)

@ Order of magnitude increase in statistics

@ Reconstruction fits full event topology
with likelihood-based method

» Can fit events with scattered photons
» Can reconstruct all events
@ PID variable separates sample in two
@ Full sky analysis
» Better control of systematic
uncertainties
@ Fitting includes term accounting for
statistical uncertainty from prediction
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http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.072004

Sample used in this analysis

Track-like ‘

‘ Cascade—likq

5000 —— — r———— :
@ 12 w C C @ l’l’atm ) )
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” e VT Hatm .
g Nv_ ata
2 3000 22 | BvNC 1 @ PID variable separates
e LSS 4
o - .
o sample in two:
£ 2000 ? % ;:5:5:;:5:;:513;5{9 =2 |l P .
0. 0.0.0.0.0.0.0.0.0. -
g ok :::::::::::::::::::::;v' 4’;“ » Track: vy CC enriched
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Systematics used in analysis and best fit

. Best Fit
Parameters Priors NH IH
Flux and cross section parameters

Neutrino event rate [% of nominal] no prior 85 85 .
A~y (spectral index) 0.00+0.10 -0.02 -0.02 3
Ve + e relative normalization [%] 100+20 125 125 3
NC relative normalization [%] 100+20 106 106 <
A(v/7) [0], energy dependent 0.00+1.00 -0.56 -0.59 E
A(v/P) [o], zenith dependentt 0.00+1.00 -0.55 -0.57 o
My (resonance) [GeV] 1.12+0.22 0.92 0.93 -
Detector parameters g
overall DOM efficiency [%)] 100+10 102 102 o
relative DOM efficiency, lateral [o] 0.0+1.0 0.2 0.2 s
relative DOM efficiency, head-on [a.u.] no prior  -0.72 -0.66 =
Background 2
Atm. p contamination [% of sample] no prior 55 5.6 u=?
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v, disappearance oscillation analysis

Cascade-like Track-like
. : : . . : : .
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space (E,cos 0, PID) —
projected onto L/E for
illustration

» x2/ndf = 117/119

@ Deficit of neutrinos on

Cascade-like sample

@ Fitting to data done in 3D

coming from v, id-ed as

cascades
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v, disappearance oscillation analysis

2 T
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@ Contours calculated using
Feldman-Cousins.

@ Result consistent with other
experiments.

@ Using data from 3 years of
detector operations.

@ This measurement is still
statistics limited!

Amg, =2.317011 < 1073 eV?
sin? o3 = 0.51700¢
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Conclusion

@ Improvements in analysis techniques for IceCube-DeepCore

» Full sky sample
» More versatile reconstruction

@ Updated measurement of v, disappearance made

» Significant reduction in 63 and Am§2 ranges
» Good data/MC agreement obtained
» Result consistent with other experiments
* Preference for maximal mixing, same as T2K
* Higher energy of our sample — small/no impact from QE and RES uncertainties

» Just posted in arXiv (1707.07081) and submitted to PRL

@ Other measurements with this new sample are under way!

@ Stay tuned for more!
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v, disappearance oscillation analysis — inverted hierarchy

4 |
-3l
a2t
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Fitting Function used in this analysis

@ 30 years of MC for v components and several systematic variants

@ We use a sideband from data to measure the atmospheric ;. background shape
» Similar method used in PRD sample

@ Need to account for uncertainty in prediction, especially for background muons
@ Our solution is to fit a x? function instead of a £ function.
(npred ndata)2 A,)2

2 i (si—5
X = E : d + § : 52
( Fre )2 + (Jidata)Z o

ie{bins} je{syst}

npred data
data

: number of events in bin j for prediction (v MC + u sideband) and data
statlstlcal uncertainty in the data for bin

: statistical uncertainty in prediction with additional shape uncertainty in 1 sideband
s,, s, central value and sigma of a Gaussian prior of systematic s;

pred

vvyyvyy

@ All bins have large enough number of events a Gaussian distribution approximates well a
Poisson distribution

J.PAM. de André, J. Highnight DPF 2017 August 2nd, 2017 18/15



Our data and best fit in analysis binning

Cascade-like Track-like
—noosc. —bestfit §data —noosc. —bestfit §data
1000 E, 2[5.6.1.5] GeV. 1000 E, 2[5.6.1.5] GeV.
500 500
0 - 0 - h
1000 B, €[7.5.10.0] GeV 1000 'E, €[7.5.10.0] GeV
500 500
0 0 i
1000 ' 'E, €[10.0,13.3] GeV| 1000 ' 'E, €[10.0,13.3] GeV|
500 500
T oo, & E e ainama
£1000 B, £[133.17.5] GeV. £1000 B, £[133.17.5] GeV.
B B
20 500 26 500
g g E—— S
) . : ) : . h
1000 B, €[178.23.1] GeV. 1000 E, €[178,23.1) GeV.
& &
2z 500 IfI,F‘:.q'.'\-‘- z 500 ﬁ‘:.:"“—‘ﬂ_._‘_._
£ o ; £ o ;
51000 4 5, €[23.1,31.6] GeV. 51000 4 5, £[23.1,31.6] GeV.
300 IFFFFF*-.“"'H— 500 Fﬁx':h_._"‘“—ﬁ_._
0 . . ; 0 ; ; ;
1000 E, €[31.6,42.2 GeV 1000 E, €[31.6.42.2 GeV
500 L erere—ee ] 500
0 i . 0 . h
1000 B, €[12.2,30.2) GeV. 1000 5, €122,
500 500

0
-1.0 =05 0.0 0.5 1.0

€05 (0reco)

0 L
-1.0 =05 0.0 0.5 1.0

€05 (0reco)
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Matter Effects on Neutrino Oscillations
Prellmlnary Reference Earth Model (PREM) cos0, = -0.84

. - Increasing
= Phys.Earth.Plan.Int. 25, 297 (1981) ] Outey core density
Q
o 6 2 o ]
£ :  _E ]
E [ £ N
> 4 o} S
g e 2 £ B
S I o 8 = 2
g 3 8 5 (S %)
s 2 3 5 | O
*8' | £ (@] % i ~
w [ 9 Ix10° 3
0 . — =
0 2 4 6 )
Radius / km C
L
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“golden events”
@ Clear pu tracks

» Reduce contamination of cascades
(primarily » NC and v, CC)

2410
2420 *
—~
£
~ 2430
—
o -
)
el -
2440 @ Direct photons
% 49 Late photons
A —— MC muon
2450 ===- Track fit
------ Track fit + 25°
2460 LW

0 50 100 150
tarrival (DS)

Events

40 60
E, (GeV)

@ Require several non-scattered ~
@ select events “easy” to reconstruct

» 10° resolution in neutrino zenith
» 25% resolution in neutrino energy

J.P.A.M. de André, J. Highnight DPF 2017
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HybridReco/MultiNest

@ MultiNest is an implementation of
nested-sampling algorithm
» alternative approach to Markov
Chain MC
» designed to work efficiently in
multi-modal likelihood spaces

@ We use it in place of a “minimizer”

» Reconstruct 8 parameters
describing low-energy v,, CC
(HybridReco)

* (X,y,z,t) + (zenith, azimuth) +
(track length, cascade energy)

» If used while fixing track length at
0 m ="“cascade fit”

» Use the likelihood function
defined in Millipede (Poisson)

J.PA.M. de André, J. Highnight

Zenith Resclution Range for Muan Neutrinos &

g Energy Resolution Range for Muan Neutrinos
. Es o [Joespcore
S o0sF
[]DespCore+ | ; E M vespcore

Fesokution 50% Range | )

Preliminary Preliminary

L . . L L , s \ L L
0 15 20 25 30 0 15 20 25 90 36 40 45
True v, Enargy (GeV)

Median Energy Resalution for Muon Neutrinos

ERCIEC
True v, Ensrgy (GeV)
Median Resolution

14 = DesapCore ns;— — DeepCore

— DeepCore+

— DeepCore+

Median Resolution { )

Preliminary

Preliminary

Madian Energy Resolution (Rac-Trua/Trua)
I

-
fa

L S T I B DU PUE I
W 15 20 25 30 35 [ s e e a0 s
Trug v, Energy (GeV)

(a) Zenith resolution.

T, v o
(b) Energy resolution.

@ DeepCore — “golden event” analysis

@ DeepCore+ — this analysis
DPF 2017
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Inverted Corridor Cut

IceCube-86 (78+8) interstring (surface) distances

ul
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Systematics

@ Overall, the systematics can be split up into three broad categories:

@ Flux and cross-section

* Neutrino normalization

Spectral index ()

Ve + Ue NOrmalization

NC normalization

A(v/7) as both energy and zenith dependence
M:?ES

* % % % %

@ Detector related parameters

* QOverall DOM efficiency
* Relative DOM efficiency in both lateral and head-on directions

© Atmospheric background
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Systematics: Flux and Cross-section

@ Flux and cross-section systematics reweight our default models.
» We use Honda'’s 2015 flux model for our default MC production (arXiv:1502.03916)
» GENIE is used for our default cross-section models.

@ A~y — energy-dependent shift in event rate:
» This can arise from uncertainty on v (nominally v = —2.66) or from uncertainties in the
DIS cross section.

* Studies on DIS cross-section included uncertainties on the Bodek-Yang model used in
GENIE, uncertainties in the differential cross-section of DIS neutrino scattering, and studies
of hadronization uncertainties for high-W DIS events.

* |t was found these were highly degenerate with the spectral-index and overall normalization
or negligible so were not included in the fit.

@ The value of M7ES was found to have a small impact on the results so is included in
the fit.
» MSCOE was also investigated but found to be negligible
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Systematics: Flux and Cross-section

@ The normalizations of ve + 7e events and of NC events,

9
defined relative to v, + 7, CC events. s [(D) E, 3-30Gev
- . . . 7 D\"\o\m“ y,o/ﬁic
@ The v/ ratio have a directional/energy dependence, so a o TS suegment
- g “Fi ine”*
more sophisticated approach was used. s Fitted line
» From the K /= ratio of the atmospheric shower g4
o . Ss3
@ Parameterizations uses predictions from Barr et al. 5
(arXiv:0611266v1) —— e
0
100 -1 -0.5 0 0.5 1
cos 6,
“Fitted line" &5 &
g © —o— vcﬁe uncertainty
20 =8 Vivy uncertainty
§10> uncertaint
_g %15 “Fitted line"*
b= £
8 A g
5 akl! o ““A““““ §10
D
—o— v N rtai R N
T Yl uncertany nmag
s— v Nouncertamty | | Trtee E, >30 GeV
o1 1 10 100 1000 °1 05 0 05 1
E, (GeV) cos 6,
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Systematics: Detector

@ By far, the largest uncertainty in our measurement comes from the detector
systematics.
@ We have one that has to do with our overall DOM efficiency.
» This just scales up and down the amount of light seen in each PMT
@ There are also two systematics related to how the local ice properties effects our
DOM acceptance.
10.34 *(1+15%x- ?.5 *X**3) + p * x ’I" (X2 - 1)**3 + p2‘ *exp(10 * (x - 1.2))
H2 model

0.8
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0.4

relative sensitivity

02

oo
NN
uo

1
>
o

TTTTTTOCTTDT
o
W
<}

[N

,p2=0 ——
,p2=0

0.30,
0.35,
,p2=0 ——
0.30,

0.30,
0.30,
,p2=1
0.30,

p2=0 ——
p2=0 ——
p2=-5 - - -
p2=-3 = = =
p2=-1 - - -

p2=2 - - -
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Systematics: Detector

@ These effects are estimated by Monte Carlo at discrete values

@ A continuous distribution is determined by linear interpolation between the discrete
simulated values for each bin in the (energy, direction, track/cascade) analysis

histogram
1.3 1.3 1.3
121 —1.70 ‘ ! | 121 —112 ! ! | 121X —1.09 ! !
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L1 fos(8) € [0.75,0.50] ] L1 Eos(8) € [0.50, 0.25] ] 11 Te0s(6) €[0.25,0.00]
1.0 |;___=.:——:l:’*_E_—_:l Lo e 1.0
0.9} 1 0.9} 1 09}
0.8} 1 0.8} 1 0.8}
0,7 | 0,7 ' | 0,7 | | |
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