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Atmospheric neutrinos

CR interact with atmosphere producing
hadronic shower

I Decays produce ν

νe:νµ:ντ produced at ≈1:2:0

similar rate of ν and ν̄
I however, x-sec for ν̄ smaller than for ν
⇒ at detection less ν̄ than ν
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Neutrino oscillations with atmospheric neutrinos
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Several baselines available
I L/E dependency on oscillation
I Many orders of magnitude in E

IceCube/DeepCore:
I See clear νµ disappearance
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IceCube/DeepCore not (very) sensitive to:
I Neutrino mass ordering, δCP , νe appearance
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IceCube
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IceCube
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IceCube
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The IceCube Detector

50 m

1450 m

2450 m 

2820 m

IceCube Array
 86 strings including

5160 optical sensors

DeepCore 
8 strings-spacing optimized

480 optical sensors

Eiffel Tower
324 m 

IceCube Lab
IceTop
81 Stations
324 optical sensors

Bedrock

for lower energies

8 DeepCore strings 

Instrument 1 Gton of ice

Optimized for TeV-PeV neutrinos
I Astrophysical ν discovered!

At its center: DeepCore

IceCube DOM

10” PMT@
@I
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IceCube-DeepCore

DeepCore:
I ∼10 Mton region

with
denser instrumentation

I Located in clearest
ice

⇒ lower E threshold
⇒ study neutrino

oscillations
I Surrounding

detector used as
active veto against
atmospheric µ
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Detecting neutrinos in IceCube

ν interact in ice surrounding strings

shower
hadronic

n

νl l−, νl

Charged particles moving at greater
than speed of light in ice⇒ Cherenkov
light cone

3D array of PMTs detect produced light

J.P.A.M. de André, J. Highnight DPF 2017 August 2nd, 2017 8 / 15



Measurement strategy

Main background is atmospheric µ
I Use IceCube as veto to reject atm µ events

Reconstruct ν energy and direction
I oscillation distance (L) given by zenith

Measure oscillation by fitting L× E × PID
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Comparison to last published results

IC2014 analysis

Results in PRD 91, 072004 (2015)
Focus on νµ CC “golden events”

I Clear µ tracks
I Several non-scattered photons

Use only up-going events

Similarities in both analyses

Atmospheric µ background shape
estimated from data
ν reconstruction resolution similar
Both are 3 year data sets (not same)

This analysis
(arXiv:1707.07081)

Order of magnitude increase in statistics
Reconstruction fits full event topology
with likelihood-based method

I Can fit events with scattered photons
I Can reconstruct all events

PID variable separates sample in two
Full sky analysis

I Better control of systematic
uncertainties

Fitting includes term accounting for
statistical uncertainty from prediction
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Sample used in this analysis
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best fit uncertainty from statistics and data-driven background shape error

Analysis done with events
with Ereco ∈ [5.6,56] GeV

PID variable separates
sample in two:

I Track: νµ CC enriched
sample

I Cascade: mix of all ν
flavors

41599 events from
Apr. 2012-May 2015 used
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Systematics used in analysis and best fit

Parameters Priors Best Fit
NH IH

Flux and cross section parameters
Neutrino event rate [% of nominal] no prior 85 85
∆γ (spectral index) 0.00±0.10 -0.02 -0.02
νe + ν̄e relative normalization [%] 100±20 125 125
NC relative normalization [%] 100±20 106 106
∆(ν/ν̄) [σ], energy dependent‡ 0.00±1.00 -0.56 -0.59
∆(ν/ν̄) [σ], zenith dependent‡ 0.00±1.00 -0.55 -0.57
MA (resonance) [GeV] 1.12±0.22 0.92 0.93

Detector parameters
overall DOM efficiency [%] 100±10 102 102
relative DOM efficiency, lateral [σ] 0.0±1.0 0.2 0.2
relative DOM efficiency, head-on [a.u.] no prior -0.72 -0.66

Background
Atm. µ contamination [% of sample] no prior 5.5 5.6
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νµ disappearance oscillation analysis
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Fitting to data done in 3D
space (E , cos θ,PID)→
projected onto L/E for
illustration

I χ2/ndf = 117/119

Deficit of neutrinos on
Cascade-like sample
coming from νµ id-ed as
cascades
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νµ disappearance oscillation analysis
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Contours calculated using
Feldman-Cousins.
Result consistent with other
experiments.
Using data from 3 years of
detector operations.
This measurement is still
statistics limited!

∆m2
32 = 2.31+0.11

−0.13 × 10−3 eV2

sin2 θ23 = 0.51+0.07
−0.09
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Conclusion

Improvements in analysis techniques for IceCube-DeepCore
I Full sky sample
I More versatile reconstruction

Updated measurement of νµ disappearance made
I Significant reduction in θ23 and ∆m2

32 ranges
I Good data/MC agreement obtained
I Result consistent with other experiments

F Preference for maximal mixing, same as T2K
F Higher energy of our sample → small/no impact from QE and RES uncertainties

I Just posted in arXiv (1707.07081) and submitted to PRL

Other measurements with this new sample are under way!

Stay tuned for more!
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Backup

J.P.A.M. de André, J. Highnight DPF 2017 August 2nd, 2017 16 / 15



νµ disappearance oscillation analysis – inverted hierarchy
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Fitting Function used in this analysis

30 years of MC for ν components and several systematic variants
We use a sideband from data to measure the atmospheric µ background shape

I Similar method used in PRD sample

Need to account for uncertainty in prediction, especially for background muons
Our solution is to fit a χ2 function instead of a L function.

χ2 =
∑

i∈{bins}

(npred
i − ndata

i )2

(σpred
i )2 + (σdata

i )2
+

∑
j∈{syst}

(sj − ŝj )
2

σ̂2
sj

I npred
i , ndata

i : number of events in bin i for prediction (ν MC + µ sideband) and data
I σdata: statistical uncertainty in the data for bin i
I σpred

i : statistical uncertainty in prediction with additional shape uncertainty in µ sideband
I ŝj , σ̂sj : central value and sigma of a Gaussian prior of systematic sj

All bins have large enough number of events a Gaussian distribution approximates well a
Poisson distribution
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Our data and best fit in analysis binning
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Matter Effects on Neutrino Oscillations
Preliminary Reference Earth Model (PREM)

Phys.Earth.Plan.Int. 25, 297 (1981)
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“golden events”
Clear µ tracks

I Reduce contamination of cascades
(primarily ν NC and νe CC)

Require several non-scattered γ
select events “easy” to reconstruct

I 10◦ resolution in neutrino zenith
I 25% resolution in neutrino energy
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HybridReco/MultiNest

MultiNest is an implementation of
nested-sampling algorithm

I alternative approach to Markov
Chain MC

I designed to work efficiently in
multi-modal likelihood spaces

We use it in place of a “minimizer”
I Reconstruct 8 parameters

describing low-energy νµ CC
(HybridReco)

F (x,y,z,t) + (zenith, azimuth) +
(track length, cascade energy)

I If used while fixing track length at
0 m⇒“cascade fit”

I Use the likelihood function
defined in Millipede (Poisson)

DeepCore→ “golden event” analysis
DeepCore+→ this analysis
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Inverted Corridor Cut
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Systematics

Overall, the systematics can be split up into three broad categories:

1 Flux and cross-section
F Neutrino normalization
F Spectral index (γ)
F νe + ν̄e normalization
F NC normalization
F ∆(ν/ν̄) as both energy and zenith dependence
F MRES

A

2 Detector related parameters
F Overall DOM efficiency
F Relative DOM efficiency in both lateral and head-on directions

3 Atmospheric background
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Systematics: Flux and Cross-section

Flux and cross-section systematics reweight our default models.
I We use Honda’s 2015 flux model for our default MC production (arXiv:1502.03916)
I GENIE is used for our default cross-section models.

∆γ → energy-dependent shift in event rate:
I This can arise from uncertainty on γ (nominally γ = −2.66) or from uncertainties in the

DIS cross section.
F Studies on DIS cross-section included uncertainties on the Bodek-Yang model used in

GENIE, uncertainties in the differential cross-section of DIS neutrino scattering, and studies
of hadronization uncertainties for high-W DIS events.

F It was found these were highly degenerate with the spectral-index and overall normalization
or negligible so were not included in the fit.

The value of MRES
A was found to have a small impact on the results so is included in

the fit.
I MCCQE

A was also investigated but found to be negligible
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Systematics: Flux and Cross-section
The normalizations of νe + ν̄e events and of NC events,
defined relative to νµ + ν̄µ CC events.

The ν/ν̄ ratio have a directional/energy dependence, so a
more sophisticated approach was used.

I From the K/π ratio of the atmospheric shower

Parameterizations uses predictions from Barr et al.
(arXiv:0611266v1)
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Systematics: Detector
By far, the largest uncertainty in our measurement comes from the detector
systematics.
We have one that has to do with our overall DOM efficiency.

I This just scales up and down the amount of light seen in each PMT
There are also two systematics related to how the local ice properties effects our
DOM acceptance.
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Systematics: Detector

These effects are estimated by Monte Carlo at discrete values
A continuous distribution is determined by linear interpolation between the discrete
simulated values for each bin in the (energy, direction, track/cascade) analysis
histogram
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