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How Do We Bin?
★ Histogram binning is usually arbitrary. 

• Number of bins → Whatever seems to look reasonable. 
• Too many bins → Statistical fluctuations obscure structure. 

• Too few bins → Small structures are swallowed by background. 

★ Bayesian Blocks (BB) chooses ‘best’ number of blocks (bins), 
and ‘best’ choice for bin edges.

2



How Do We Bin?
★ Histogram binning is usually arbitrary. 

• Number of bins → Whatever seems to look reasonable. 
• Too many bins → Statistical fluctuations obscure structure. 

• Too few bins → Small structures are swallowed by background. 

★ Bayesian Blocks (BB) chooses ‘best’ number of blocks (bins), 
and ‘best’ choice for bin edges.

2



Bayesian 
Blocks

★ Input: 

• Data 
• False-positive rate (tuning 

parameter) 

★ Output: 

• Bin Edges 
★ Each edge is statistically 

significant 

• New edge → change in 
underlying pdf

3
Underlying pdfs: 3 Uniform distributions
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Bayesian Blocks
★ Developed by J. D. Scargle et. al.*, for use with time-series data in 

astronomy. 

★ Goal: characterize statistically significant variations in data. 

• Accomplish via optimal segmentation using non-parametric modeling. 

✦ Each segment treated as histogram bin (bins have variable widths). 

✦ Each segment associated with uniform distribution. 

✦ Combination of data and uniform distributions → calculation of fitness function. 

★ Finding maximal fitness function requires clever programming, not 
feasible to use naive (brute force) methods. 

• For N data points, 2N possible binnings → untenable for large N
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*STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS

http://iopscience.iop.org/article/10.1088/0004-637X/764/2/167/meta


★ The Fitness Function is a quantity that is maximized when 
the optimal segmentation of a dataset is achieved.
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★ For K bins, the total fitness, Ftotal, can be defined as the sum 
of the fitnesses of each bin, f(Bi):
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assuming the events in each bin follow a Poisson distribution.
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Penalty Term
★ Given the previous definitions, the total fitness, Ftotal, will 

be maximal when the number of bins, K, is equal to the 
number of data points. 

• This is not desirable! 

★ A penalty term, g(K), is introduced such that: 

★ Term reduces Ftotal as K increases. 

★ This term is user defined, and should be tuned on signal-
free data.
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Algorithm Overview

★ For N data points, there are 2N total bin combinations. 

★ BB algo finds optimal binning in O(N2). 

• Start: Ordered, unbinned data. 

• Iterate over data: 
✦ Calculate fitness for all new potential bins (“New bins” = set of all 

bins that include newest data point). 

✦ Determine current maximum total fitness (Use cached results of 
previous iterations with new best bin). 

• Finish iteration, return bin edges associated with max fitness.
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F= 2.9

• First data point added. 
• Fitness Function (F) is 

trivial, only one point 
considered. N

x (A.U.)

Algorithm Example
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F= 2.9 F= 2.3

• Second data point 
added. 

• Total fitness calculated 
(FT is sum of the fitness 
of all potential blocks) 

• For 2 bins, FT = 5.2

x (A.U.)

N

Algorithm Example
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F= 2.9 F= 2.3

FT= 5.8 (>2.9+2.3)

N

x (A.U.)

• FT of single bin > FT of 
two bins. 

• Single bin is chosen.

Algorithm Example
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F= 2.9 F= 2.3

F= 5.8

F= 0.7

N

x (A.U.)

• Third data point added

Algorithm Example
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F= 2.9 F= 2.3

F= 5.8

FT= 6.7 (>2.9+2.3+0.7, >5.8+0.7)N

x (A.U.)

• FT of single bin > FT of 
all other combos 
(using stored F values 
from previous 
iterations)

F= 0.7

Algorithm Example
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F= 2.9 F= 2.3

F= 5.8

F= 6.7

F= 0.3

N

x (A.U.)

• Fourth data point 
added

F= 0.7

Algorithm Example
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F= 2.9 F= 2.3

F= 5.8

F= 6.7

F= 0.3

F= 2.2

FT= 5.8+2.2=8.0 (>7.8, 6.7+0.3, 2.9+2.3+etc…) 

F= 7.8

N

x (A.U.)

• Maximum FT is for 2 
bins 
✴F value of first bin 

was stored from 
previous iteration 

• New change-point is 
determined between 
pts 2 and 3 

• Change-point is saved 
along with FT value

F= 0.7

Algorithm Example
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F= 2.9 F= 2.3

F= 5.8

F= 6.7

F= 0.3

F= 2.2

F= 1.5

N

x (A.U.)

• Final data point added

F= 0.7

Algorithm Example
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F= 2.9 F= 2.27

F= 5.84

F= 0.69

F= 6.7

F= 0.31

F= 2.2

F= 1.54

FT= 10.6 (> all other combos)

N

x (A.U.)

• Maximum FT is 
determined to be 
single bin 

• Previous change-point 
is ignored because of 
sub-optimal value 

• Final result yields bin 
edges at [1,5]

Algorithm Example



Visual Impact

18
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(a) Fixed-width binning. (b) BB binning.

FIG. 1: Comparison of simulated Drell-Yan distributions.

(a) Fixed-width binning. (b) BB binning.

FIG. 2: Comparison of simulated Jet momentum distributions.

★ Simulated Z→μμ example. 

• One distribution is slightly shifted w.r.t. other → typical HEP 
scenario before muon scale corrections are applied. 

★ Bayesian Blocks example shows more detail in peak, 
smooths out statistical fluctuation in tails.

Uniform Binning Bayesian Blocks



Bump Hunting
★ The bin edges determined by Bayesian Blocks are 

statistically significant. 

• Can they assist with analyses, outside of purely visual? 

★ Consider the H→γγ discovery (simulated):

19

• Falling diphoton BG, ~10k events. 
• ~230 Higgs signal events at 

Mγγ=125 GeV (~5 σ excess)
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★ Consider the H→γγ discovery (simulated):
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• Falling diphoton BG, ~10k events. 
• ~230 Higgs signal events at 

Mγγ=125 GeV (~5 σ excess)

Significant excess, difficult 
to discern by eye.



Bump Hunting
First try, naive binning of signal+background:

20
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(a) Bayesian Blocks (red line) and uniform binning (blue
histogram) for the background + signal toy data

(b) Application of the hybrid Bayesian Block algorithm.
The green line shows background + signal while the blue

histogram shows background only

FIG. 6: Application of Bayesian Blocks algorithm to toy background + signal data

FIG. 7: Distributions of Z scores for single-parameter
fits to toy distributions

obvious visual benefits, makes the Bayesian Block algo-
rithm an attractive choice for analyzing distributions in
particle physics.

V. LOOKING FOR A BROAD EXCESS

A. Overview

Analyses that focus on unearthing new physics in the
tails of distributions stand to benefit from an adaptive
binning approach. An example of such an analysis is
the search for microscopic black holes performed by the
CMS Collaboration [13]. The mass of the black hole
is sensitive to the details of the underlying theoretical
model, so the search strategy is based on a relatively in-
clusive event-based observable, namely, the sum of the

total transverse energy of all final state particles in an
event, S

T

. The signal corresponds to a broad distribu-
tion at high values of S

T

.
For the purpose of illustrating the benefit of choos-

ing a Bayesian Blocks binning, we assume the simplest
model of a semi-classical black hole production that de-
cays isotropically into several energetic final state parti-
cles. Such black holes can form at the LHC if gravity
is rendered su�ciently strong by the presence of large
extra dimensions (as posited in the ADD model) or a
warped extra dimension (as appears in the Randall Sun-
drum model). These black holes have large cross sections
and can be detected despite the presence of a substan-
tial background coming from standard model processes
characterized by many hadronic jets.
With the aim of mimicking the CMS analysis, we con-

sider distributions of S
T

for various particle multiplic-
ities, where a “particle” is a lepton, a photon, or a
hadronic jet. We model the multijet background using
an empirical pdf:

f
B

(x) =
A (1 + x)↵

x�+� ln x

(7)

where ↵, �, and � are free parameters determined in
a fit to distributions of S

T

[13] (A is a normalization
constant), and x is S

T

. This pdf is used to generate sets
of S

T

values for the multijet background, and the number
of values approximates the total number of data points
in Fig. 3 of Ref. [13].
In order to determine the values of the free parameters

in Eq. 7, the pdf is fit to a dataset that was generated
to mimic the S

T

(multiplicity � 2) distribution. This
function is also compared with the S

T

(multiplicity �
8) distribution in order to determine that the function
is indeed a reasonable choice. The results of the fit and
comparison are shown in Fig 8. Similarly to the procedure



Bump Hunting
First try, naive binning of signal+background:

20

Results not great. 

Falling background + rising signal = one large bin.
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Bump Hunting
★ Generate a “hybrid” binning, leveraging knowledge of signal shape: 

• Use Bayesian Blocks on simulated signal and background templates. 
• Combine the bin edges (background bin edges in signal region replaced by signal 

bin edges)

21
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(a) Third-order polynomial fit to the simulated background
distribution (b) Gaussian fit to the simulated signal distribution

FIG. 4: Fits to the background and signal distributions.

(a) Bayesian Blocks and uniform binning of the
background-only toy data

(b) Bayesian Blocks and uniform binning of the signal-only
toy data. The signal shape is reduced to three bins (i.e.,

four change points)

FIG. 5: Performance of BB algorithm for background-only and signal-only toy datasets.

the background and signal to be fixed. This treatment
leads to the greatest possible statistical power. The an-
alytical fits were performed with a maximum likelihood
method and a test statistic was defined based on the neg-
ative log-likelihood, NLL: ;

q
0

⌘ �2
⇣
NLL

A=

ˆ

A

�NLL
A=0

⌘
(6)

where Â � 0 is the value of A that minimizes NLL. Since
q
0

satisfies the criteria for Wilks’ Theorem and conse-
quently can be modeled as a �2 distribution [12], we de-
fine a Z score according to Z =

p
q
0

.
The hybrid set of bin edges will be referred to as

the “template shape”. In order to compute the aver-
age Z score, a set of 1000 toy datasets is generated. The

Bayesian Block template shape and the parametric func-
tions are fit to each dataset. The exact bin edges used for
the template fit are those defined in Section IVB. The
distributions of Z scores for both methods are shown in
Fig. 7.

The average Z scores for the Bayesian Block template
fit and the unbinned analytic fit are 5.35 and 5.57, re-
spectively. In this example, the statistical power of the
hybrid binning scheme is nearly as good as that of the
unbinned maximum likelihood fit, which itself is optimal.
These results are very encouraging, as they imply that
the Bayesian Blocks template can be almost as e↵ective
at hypothesis testing as a completely unbinned method,
and does not require any prior knowledge of a paramet-
ric description of the data. This result, along with the
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Background Only

Signal Only



Bump Hunting
★ Signal excess much more apparent with hybrid binning:

22

Naive BB
Hybrid BB

No parametric models used to generate binning, completely MC dependent. 
What is the sensitivity of this excess?



Bump Hunting
★ Calculate Gaussian Z-score (# of σ excess) for 1000 

simulations, and compare to unbinned likelihood from 
known underlying pdfs. 

• Z-score from unbinned likelihood are the upper-bound.

23
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characterized by many hadronic jets.
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sider distributions of S
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Hybrid binning is only slightly less sensitive than unbinned pdf, 
and is completely non-parametric!

Mean Z-scores: 
Bayesian Blocks Template: 5.35 σ 
Unbinned likelihood: 5.57 σ



Software
★ Python histogramming 

package developed for HEP: 

• Wraps matplotlib, adds automatic 
error bars, scaling, Bayesian 
Blocks binning, and more! 

★ Install with pip: 
• $ pip install histogram_plus
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https://brovercleveland.github.io/histogram_plus/
Documentation (in progress):

https://brovercleveland.github.io/histogram_plus/


Summary
★ The Bayesian Blocks algorithm is a data-driven, model-independent 

method for binning.  

• Bins are variable-width, edges represent statistically significant changes in data. 

• Improves visualization of distributions, even with dense peaks and sparse tails. 

★ Bayesian Blocks can also assist in template-based analyses. 

• Provides a non-parametric way of modeling distributions in histograms, with 
minimal loss in sensitivity when compared to unbinned methods. 

★ New paper on HEP application for Bayesian Blocks: 

• https://arxiv.org/abs/1708.00810
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https://arxiv.org/abs/1708.00810

