

Histogram Binning with Bayesian Blocks

Brian Pollack, Northwestern University 8/3/17

Coauthors: Sapta Bhattacharya, Michael Schmitt

arXiv: <u>1708.00810</u>

How Do We Bin?

- Histogram binning is usually arbitrary.
 - Number of bins → Whatever seems to look reasonable.
 - Too many bins → Statistical fluctuations obscure structure.
 - Too few bins → Small structures are swallowed by background.
- ★ Bayesian Blocks (BB) chooses 'best' number of blocks (bins), and 'best' choice for bin edges.

How Do We Bin?

- ★ Histogram binning is usually arbitrary.
 - Number of bins → Whatever seems to look reasonable.
 - Too many bins → Statistical fluctuations obscure structure.
 - Too few bins → Small structures are swallowed by background.

★ Bayesian Blocks (BB) chooses 'best' number of blocks (bins), and 'best' choice for bin edges.

Bayesian Blocks

★ Input:

- Data
- False-positive rate (tuning parameter)

Output:

- Bin Edges
- Each edge is statistically significant
 - New edge → change in underlying pdf

Underlying pdfs: 3 Uniform distributions

Bayesian Blocks

★ Input:

- Data
- False-positive rate (tuning parameter)

Output:

- Bin Edges
- Each edge is statistically significant
 - New edge → change in underlying pdf

Underlying pdfs: 3 Uniform distributions

Bayesian Blocks

- **★** Developed by J. D. Scargle et. al.*, for use with time-series data in astronomy.
- **★** Goal: characterize statistically significant variations in data.
 - Accomplish via <u>optimal segmentation</u> using non-parametric modeling.
 - Each segment treated as histogram bin (bins have variable widths).
 - Each segment associated with uniform distribution.
 - Combination of data and uniform distributions → calculation of <u>fitness function</u>.
- **★** Finding maximal fitness function requires clever programming, not feasible to use naive (brute force) methods.
 - For N data points, 2^N possible binnings \rightarrow untenable for large N

★ The <u>Fitness Function</u> is a quantity that is maximized when the optimal segmentation of a dataset is achieved.

- ★ The <u>Fitness Function</u> is a quantity that is maximized when the optimal segmentation of a dataset is achieved.
- ★ For K bins, the total fitness, F_{total} , can be defined as the sum of the fitnesses of each bin, $f(B_i)$:

$$F_{total} = \sum_{i=0}^{K} f(B_i)$$

- ★ The Fitness Function is a quantity that is maximized when the optimal segmentation of a dataset is achieved.
- ★ For K bins, the total fitness, F_{total} , can be defined as the sum of the fitnesses of each bin, $f(B_i)$:

$$F_{total} = \sum_{i=0}^{1} f(B_i)$$

$$| \mathbf{f}(B_0) + \mathbf{f}(B_1) + \mathbf{f}(B_2) + \mathbf{f}(B_3) + \mathbf{f}(B_4) = \mathbf{F}_{total}$$

$$P_{dx} = \lambda(x)dx \times e^{-\lambda(x)dx} \rightarrow \text{probability for an infinitesimal bin.}$$

$$P_{dx} = \lambda(x)dx \times e^{-\lambda(x)dx} \rightarrow \text{probability for an infinitesimal bin.}$$

$$\ln L_B = \sum_{n=0}^{\infty} \ln \lambda(x) + \sum_{n=0}^{\infty} \ln dx - \int \lambda(x) dx \rightarrow \text{log-likelihood for an entire bin.}$$

$$P_{dx} = \lambda(x)dx \times e^{-\lambda(x)dx} \rightarrow \text{probability for an infinitesimal bin.}$$

$$\ln L_B = \sum_{n=0}^{\infty} \ln \lambda(x) + \sum_{n=0}^{\infty} \ln dx - \int \lambda(x) dx \rightarrow \text{log-likelihood for an entire bin.}$$

$$P_{dx} = \lambda(x)dx \times e^{-\lambda(x)dx} \rightarrow \text{probability for an infinitesimal bin.}$$

$$\ln L_B = \sum_{n=0}^{\infty} \ln \lambda(x) + \sum_{n=0}^{\infty} \ln dx - \int \lambda(x) dx \rightarrow \text{log-likelihood for an entire bin.}$$

Penalty Term

- **★** Given the previous definitions, the total fitness, F_{total} , will be maximal when the <u>number of bins</u>, K, is equal to the <u>number of data points</u>.
 - This is not desirable!
- \star A penalty term, g(K), is introduced such that:

$$F_{total} = \sum_{i=0}^{K} f(B_i) \to \sum_{i=0}^{K} f(B_i) - g(K)$$

- **★** Term reduces *F*_{total} as *K* increases.
- ★ This term is user defined, and should be tuned on signalfree data.

Algorithm Overview

- **★** For N data points, there are 2^N total bin combinations.
- **\star** BB algo finds optimal binning in O(N²).
 - Start: Ordered, unbinned data.
 - Iterate over data:
 - Calculate fitness for all new potential bins ("New bins" = set of all bins that include newest data point).
 - Determine current maximum total fitness (Use cached results of previous iterations with new best bin).
 - Finish iteration, return bin edges associated with max fitness.

- First data point added.
- Fitness Function (F) is trivial, only one point considered.

- Second data point added.
- Total fitness calculated
 (F_T is sum of the fitness N 3 of all potential blocks)
- For 2 bins, $F_T = 5.2$

- F_T of single bin > F_T of two bins.
- Single bin is chosen.

 F_T of single bin > F_T of all other combos

 (using stored F values
 from previous
 iterations)

Fourth data point added

- Maximum F_T is for 2
 bins
 - *F value of first bin was stored from previous iteration
- New change-point is determined between pts 2 and 3
- Change-point is saved along with F_T value

Final data point added

- Maximum F_T is determined to be single bin
- Previous change-point is ignored because of sub-optimal value
- Final result yields bin
 edges at [1,5]

Visual Impact

- **★** Simulated Z→µµ example.
 - One distribution is slightly shifted w.r.t. other → typical HEP scenario before muon scale corrections are applied.
- ★ Bayesian Blocks example shows more detail in peak, smooths out statistical fluctuation in tails.

- ★ The bin edges determined by Bayesian Blocks are statistically significant.
 - Can they assist with analyses, outside of purely visual?
- **★** Consider the H→γγ discovery (simulated):

- Falling diphoton BG, ~10k events.
- ~230 Higgs signal events at $M_{\gamma\gamma}=125$ GeV (~5 σ excess)

- ★ The bin edges determined by Bayesian Blocks are statistically significant.
 - Can they assist with analyses, outside of purely visual?
- **★** Consider the H→γγ discovery (simulated):

- Falling diphoton BG, ~10k events.
- ~230 Higgs signal events at M_{yy}=125 GeV (~5 σ excess)

Significant excess, difficult to discern by eye.

First try, naive binning of signal+background:

First try, naive binning of signal+background:

Results not great.

Falling background + rising signal = one large bin.

- **★** Generate a "hybrid" binning, leveraging knowledge of signal shape:
 - Use Bayesian Blocks on simulated signal and background templates.
 - Combine the bin edges (background bin edges in signal region replaced by signal bin edges)

Signal excess much more apparent with hybrid binning:

No parametric models used to generate binning, completely MC dependent. What is the sensitivity of this excess?

- * Calculate Gaussian Z-score (# of σ excess) for 1000 simulations, and compare to unbinned likelihood from known underlying pdfs.
 - Z-score from unbinned likelihood are the <u>upper-bound</u>.

Mean Z-scores:

Bayesian Blocks Template: 5.35 σ

Unbinned likelihood: 5.57 σ

Hybrid binning is only slightly less sensitive than unbinned pdf, and is completely non-parametric!

Software

Python histogramming package developed for HEP:

 Wraps matplotlib, adds automatic error bars, scaling, <u>Bayesian</u>
 <u>Blocks binning</u>, and more!

Install with pip:

\$ pip install histogram_plus

Documentation (in progress):

https://brovercleveland.github.io/histogram_plus/

Out[3]: <matplotlib.text.Text at 0x113b93b50>

Summary

- ★ The Bayesian Blocks algorithm is a data-driven, model-independent method for binning.
 - Bins are variable-width, edges represent statistically significant changes in data.
 - Improves visualization of distributions, even with dense peaks and sparse tails.
- **★** Bayesian Blocks can also assist in template-based analyses.
 - Provides a non-parametric way of modeling distributions in histograms, with minimal loss in sensitivity when compared to unbinned methods.
- ★ New paper on HEP application for Bayesian Blocks:
 - https://arxiv.org/abs/1708.00810