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How Do We Bin?

* Histogram binning is usually arbitrary.

* Number of bins = Whatever seems to look reasonable.
 Too many bins — Statistical fluctuations obscure structure.

* TJoo few bins = Small structures are swallowed by background.

* Bayesian Blocks (BB) chooses ‘best’ number of blocks (bins),

and ‘best’ choice for bin edges.

Too Many Bins? 000, Too Few Bins?
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How Do We Bin?

* Histogram binning is usually arbitrary.

* Number of bins = Whatever seems to look reasonable.
 Too many bins — Statistical fluctuations obscure structure.

* TJoo few bins = Small structures are swallowed by background.

* Bayesian Blocks (BB) chooses ‘best’ number of blocks (bins),

and ‘best’ choice for bin edges.
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Bayesian Blocks

* Developed by J. D. Scargle et. al.*, for use with time-series data in

astronomy.
* Goal: characterize statistically significant variations in data.

* Accomplish via optimal segmentation using non-parametric modeling.

+ [Each segment treated as histogram bin (bins have variable widths).
+ Each segment associated with uniform distribution.

+ Combination of data and uniform distributions — calculation of fithess function.

* Finding maximal fitness function requires clever programming, not

feasible to use naive (brute force) methods.

* For N data points, 2V possible binnings — untenable for large N

*STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS
I



http://iopscience.iop.org/article/10.1088/0004-637X/764/2/167/meta

The Fitness Function

* The Fithess Function is a quantity that is maximized when

the optimal segmentation of a dataset is achieved.
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The Fitness Function

* The Fithess Function is a quantity that is maximized when

the optimal segmentation of a dataset is achieved.

* For K bins, the total fithess, Fiota, can be defined as the sum

of the fithesses of each bin, f(B)):
K
Ftotal — Z f(Bz)
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The Fitness Function

* The Fithess Function is a quantity that is maximized when

the optimal segmentation of a dataset is achieved.

* For K bins, the total fithess, Fiota, can be defined as the sum

of the fithesses of each bin, f(B)):
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The Fitness Function

The fitness, f(Bj), of each bin can be treated as a log-likelihood,

assuming the events in each bin follow a Poisson distribution.
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The Fitness Function

The fitness, f(Bj), of each bin can be treated as a log-likelihood,

assuming the events in each bin follow a Poisson distribution.

Py = Mz)dz x e~ *®)4% — probability for an infinitesimal bin.
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The Fitness Function

The fitness, f(Bj), of each bin can be treated as a log-likelihood,

assuming the events in each bin follow a Poisson distribution.

P, = )\(af)da: w o~ Mz)dr probability for an infinitesimal bin.

InLp = Zln)\ + Zlnda: — /A(a:)da: — log-likelihood for an entire bin.
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The Fitness Function

The fitness, f(Bj), of each bin can be treated as a log-likelihood,

assuming the events in each bin follow a Poisson distribution.

Py = Mz)dz x e~ *®)4% — probability for an infinitesimal bin.
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The Fitness Function

The fitness, f(Bj), of each bin can be treated as a log-likelihood,

assuming the events in each bin follow a Poisson distribution.

Py = Mz)dz x e~ *®)4% — probability for an infinitesimal bin.

InLp = Zln)\ + Zlnda; —/ r)dx — |log-likelihood for an entire bin.

%_ﬁr_ﬁ# InLp=nlnA— A\

A- amplitude (drop model independent terms)

x: width of block }\
n: number of events
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Penalty Term

* Given the previous definitions, the total fitness, Fiotar, Will

be maximal when the number of bins, K, is equal to the

number of data points.

e This is not desirablel!

* A penalty term, g(K), is introduced such that:

Fiotal = Z f(B;) — Z f(Bi) — g(K)

* Term reduces Fiotas @S K InCcreases.

* This term is user defined, and should be tuned on signal-

free data.




Algorithm Overview

* For N data points, there are 2N total bin combinations.
* BB algo finds optimal binning in O(N?).

« Start: Ordered, unbinned data.

* |terate over data:

+  Calculate fitness for all new potential bins (“New bins” = set of all

bins that include newest data point).

+  Determine current maximum total fithess (Use cached results of

previous iterations with new best bin).

* Finish iteration, return bin edges associated with max fitness.



Algorithm Example

5_
e First data point added.
e Fitness Function (F) is 4}
trivial, only one point
considered. N 3}
2_
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Algorithm Example

5[
e Second data point
added. il
e Total fithess calculated
(FT is sum of the fitness N 3
of all potential blocks)
e For 2 bins, Fr = 5.2 |
1} e °
F=2.9 F=2.3
(()).0 0.11 0.l2 0.13 0.14 0.15

X (A.U.)
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Algorithm Example

e [ of single bin > Fr of
two bins.
e Single bin is chosen.

F1= 5.8 (>2.9+2.3)

0.2 0.3 0.4
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Algorithm

e [hird data point added
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Algorithm Example

e 1 of single bin > Fr1 of
all other combos
(using stored F values

from previous Fr= 6.7 (>2.9+2.3+0.7, >5.8+0.7)
iterations)

0.2 0.3 0.4 0.5

X (A.U.)
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Algorithm Example

5— | | | | I
e Fourth data point 4r
added

Nl =87

,| FE=58
F=0.7
1 e o0 °
F=2.9 F=2.3 F=0.3
0.0 Oll 0l2 0.13 014 0.15
X (A.U.)
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Algorithm Example

* Maximum F is for 2 o ' ' ' , '
bins
*F value of first bin A =
was stored from
previous iteration N sl F: 6.7
* New change-point is  Fr=5.8+2.2=8.0 (>7.8, 6.7+0.3, 2.9§+2.3+etc...)
determined between E- 5.8 F=22 5
pts 2 and 3 |
e Change-point is saved
along with Fr value l-F: 3
0.0 0.1 0.2 0.3 014 015
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Algorithm

e Final data point added
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Algorithm Example

e Maximum Fris

determined to be oF
single bin

I

e Previous change-point 4

Fr= 10.6 (> all other combos)

IS ignored because of
sub-optimal value N3

* Final result yields bin
edges at [1,5] 2t

0
0.0 0.1 0.2 0.3 0.4 0.5

X (A.U.)
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Visual Impact

Dimuon Mass Distribution, Uniform Bins Dimuon Mass Distribution, Bayesian Blocks
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(a) Fixed-width binning. (b) BB binning.

* Simulated Z—py example.

* One distribution is slightly shifted w.r.t. other = typical HEP

scenario before muon scale corrections are applied.

* Bayesian Blocks example shows more detail in peak,

. smooths out statistical fluctuation in tails.
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Bump Hunting

* The bin edges determined by Bayesian Blocks are

statistically significant.

e (Can they assist with analyses, outside of purely visual?

* Consider the H—yy discovery (simulated):

-
w
]

1 Signal+BG

100 110 120 130 140 150 160 170 180
M,, (GeV)

Falling diphoton BG, ~10k events.
~230 Higgs signal events at
My=125 GeV (~5 o excess)
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Bump Hunting

* The bin edges determined by Bayesian Blocks are

statistically significant.

e (Can they assist with analyses, outside of purely visual?

* Consider the H—yy discovery (simulated):

" Higgs Signal
1 yy BG

100 110 120 130 140 150
M,, (GeV)

160 170 180

Falling diphoton BG, ~10k events.
~230 Higgs signal events at
My=125 GeV (~5 o excess)

Significant excess, difficult
to discern by eye.
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Bump Hunting

First try, naive binning of signal+background:

350 Naive BB binning for Combined Distribution

80 bins
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Bump Hunting

First try, naive binning of signal+background:

350 Naive BB binning for Combined Distribution

80 bins
1 b blocks |

300

250

200

150 |

Events/binwidth

100 ¢

50+

900 110 120 130 140 150 160 170 180
m.., (GeV)

Results not great.

Falling background + rising signal = one large bin.



Bump Hunting

* Generate a “hybrid” binning, leveraging knowledge of signal shape:

350

Use Bayesian Blocks on simulated signal and background templates.

Combine the bin edges (background bin edges in signal region replaced by signal

bin edges)

BB binning for Background Distribution
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Bump Hunting

* Signal excess much more apparent with hybrid binning:

Naive binning on bg only and bg+signal Hybrid binning on bg only and bg+signal
bg only bg only
250 | 1 bg+signal 250 | [ bg+signal
Naive BB _
. 200 . 200 Hybrld BB
g g TH
= 150 ; = 150 ;
:>: 100 :>: 100
50 - 50 -
000 110 120 130 140 150 160 170 180 000 110 120 130 140 150 160 170 180
my, (GeV) m,, (GeV)
No parametric models used to generate binning, completely MC dependent.
What is the sensitivity of this excess?
22
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Bump Hunting

* Calculate Gaussian Z-score (# of o excess) for 1000

simulations, and compare to unbinned likelihood from

known underlying pdfs.

 /-score from unbinned likelihood are the upper-bound.

Gaussian Z-score, 1000 Toys, Unbinned vs. BB

mean = 5.35 BB Hybrid
median = 5.34 [ NLL (constrained)
mean = 5.57 _l

[ median = 5.57

2 4 6 8 10
Z Score

Mean Z-scores:
Bayesian Blocks Template: 5.35 ¢
Unbinned likelihood: 5.57 ¢

Hybrid binning is only slightly less sensitive than unbinned pdf,

and is completely non-parametric!




Software

In [1]: import numpy as np
import matplotlib.pyplot as plt
from histogram plus.hist_funcs import hist

$matplotlib inline

* Python hiStogramming plt.rcParams|[ 'figure.figsize'] = (12,8)

In [2]: np.random.seed(8008)

paCkage developed for HEP: data = np.random.laplace(3, 1, size=1000)

data2 = np.random.laplace(6, 1, size=500)
weights = np.random.uniform(1l,2, size=1000)
weights2 = np.random.uniform(1l,2, size=500)

* Wraps matplotlib, adds automatic

In [3]: stacked_hists = hist([data,data2], weights=[weights, weights2], bins='blocks',
stacked=True, errorbars=True, scale='binwidth', p0=0.01)

error barS, Scaling, BayeSian marker_hists = hist(data, bins=25, weights=weights, histtype='marker',

errorbars=True, scale='binwidth')

BlOCkS bin n i nq and more' plt.title('Stacked, weighted histograms with Bayesian Blocks!')
) '

Out[3]: <matplotlib.text.Text at 0x113b93b50>

Stacked, weighted histograms with Bayesian Blocks!

* [nstall with pip: 700
* § pip install histogram plus 600 1
500 -
400 -
300 - +
Documentation (in progress): -
https://brovercleveland.github.io/histogram plus/ T
100
+K
0 -2 0 2 4 6 8 10
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https://brovercleveland.github.io/histogram_plus/

Summary

* The Bayesian Blocks algorithm is a data-driven, model-independent

method for binning.
 Bins are variable-width, edges represent statistically significant changes in data.
* |mproves visualization of distributions, even with dense peaks and sparse tails.
* Bayesian Blocks can also assist in template-based analyses.

* Provides a non-parametric way of modeling distributions in histograms, with

minimal loss in sensitivity when compared to unbinned methods.
* New paper on HEP application for Bayesian Blocks:

e https://arxiv.org/abs/1708.00810

25
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