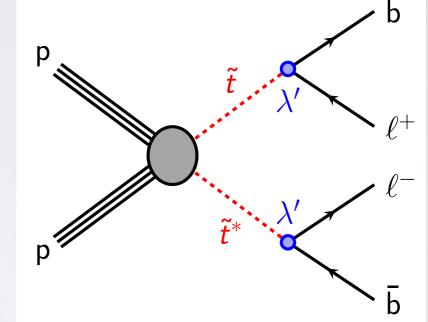

A search for *B*-*L R*-parity-violating scalar tops in $\sqrt{s} = 13$ TeV *pp* collisions with the ATLAS experiment

Leigh Schaefer Evelyn Thomson 2 August DPF 2017

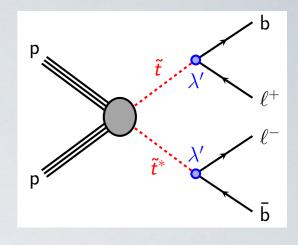
https://cds.cern.ch/record/2265808


B-L STOP: MOTIVATION

- The B-L model is a $U(1)_{B-L}$ gauged extension to the MSSM.
 - Additional particle content: right-handed neutrinos
- **R-parity is not conserved** in this model so the "collider" LSP can carry color and electric charge. $R = (-1)^{3(B-L)+2s}$
 - Gravitino LSP provides a dark matter candidate
 - No missing energy
 - Only lepton number is violated
 → proton is stable
- Observables in this model are related to the neutrino hierarchy.
- RPV couplings are small since related to neutrino mass Leigh Schaefer (Penn ATLAS)

INTRODUCTION

- We are interested in the pair production of top squarks which then decay via the B-L R-parity violating (RPV) coupling
- If the stop is the (n)LSP, it preferentially decays to a lepton (l) and a b-quark (b).



- We search for final states with eebb, $\mu\mu bb$, $e\mu bb$, with a **resonance in the invariant mass m**_{bl}.
- Results are reinterpreted with $BR(\tilde{t} \rightarrow bT) \neq 0$ for leptonically decaying taus.
- Run1 search excludes masses from 500 to 1000 GeV for branching ratios of at least 20% to be or bµ
 Leigh Schaefer (Penn ATLAS)

SIGNAL MODEL

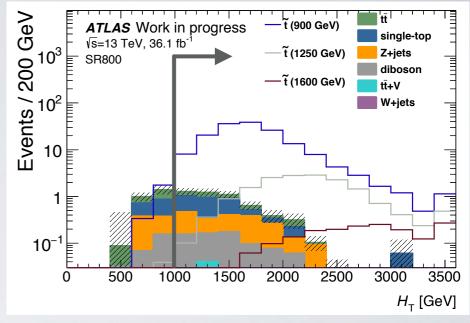
- Assume standard \tilde{t} pair production then decay with **RPV** coupling
- Signal points are generated with $m_{\tilde{t}}$ ranging from 600 GeV to **1.6 TeV** and with equal BR to be, bµ, bT
 - Signal model does not necessarily have equal BR to each lepton flavor
 - We apply truth reweighting to probe any BR
- Signal Regions are optimized assuming $BR(\tilde{t} \rightarrow be) = BR(\tilde{t} \rightarrow b\mu) = 50\%$
- Most tables and figures presented here assume these BRs Leigh Schaefer (Penn ATLAS) 4

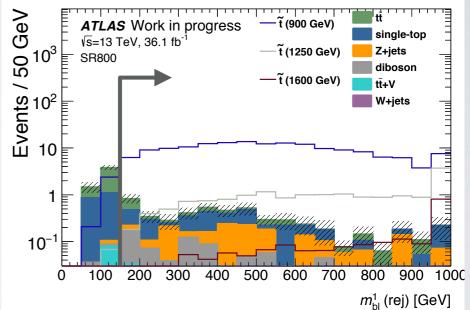
	Stop mass [GeV]	Pair production cross section [fb (<u>NLO+NLL Tool</u>)			
		√s=8 TeV	√s=13TeV		
	600	25±4.1	175±23		
	800	2.9±0.6	28±4.0		
	1200	(7.6±2.8)×10 ⁻²	1.6±0.3		
	1500	(6.6±3.4)×10 ⁻³	0.26±0.06		

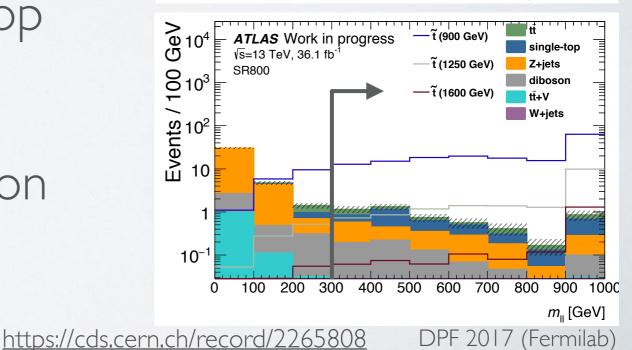
[fb]

BL PAIRING

- Select from the event: 2 highest p_T leptons

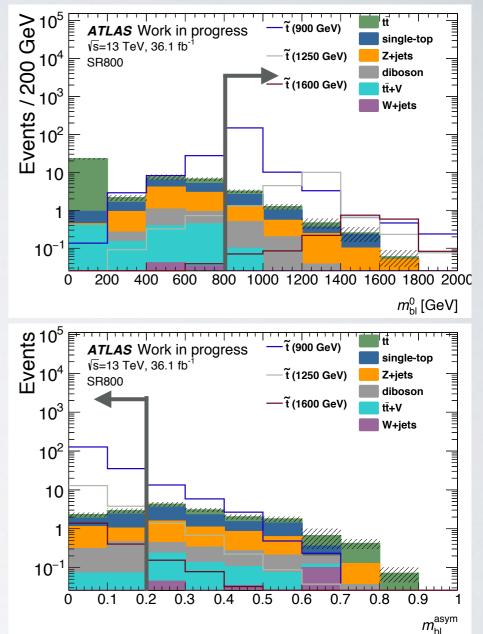

 (p_T > 40 GeV) and 2 highest p_T jets (p_T > 60 GeV), at least one of which must be *b*-tagged (overall 77% efficient as measured with ttbar)
- To identify the jet and lepton from the same stop decay leg, select the 2 pairs which minimize m_{bl} asymmetry


$$m_{b\ell}^{\text{asym}} = \frac{m_{b\ell}^0 - m_{b\ell}^1}{m_{b\ell}^0 + m_{b\ell}^1}$$


- We now have two selected $(m_{bl}^{acc0} > m_{bl}^{acc1})$ and two rejected $(m_{bl}^{rej0} > m_{bl}^{rej1}) bl$ pairs
- We search for a resonance in m_{bl}^{acc}

MAJOR BACKGROUNDS

- Drell-Yan, ttbar, and single top
 - Reduce all backgrounds using a cut on H_T = scalar sum of p_T of 2 signal leptons and 2 signal jets
 - Reduce ttbar and single top using a cut when the rejected bl pairing reconstructs the top decay
 - Reject Drell-Yan using a cut on m_{ll}


Leigh Schaefer (Penn ATLAS)

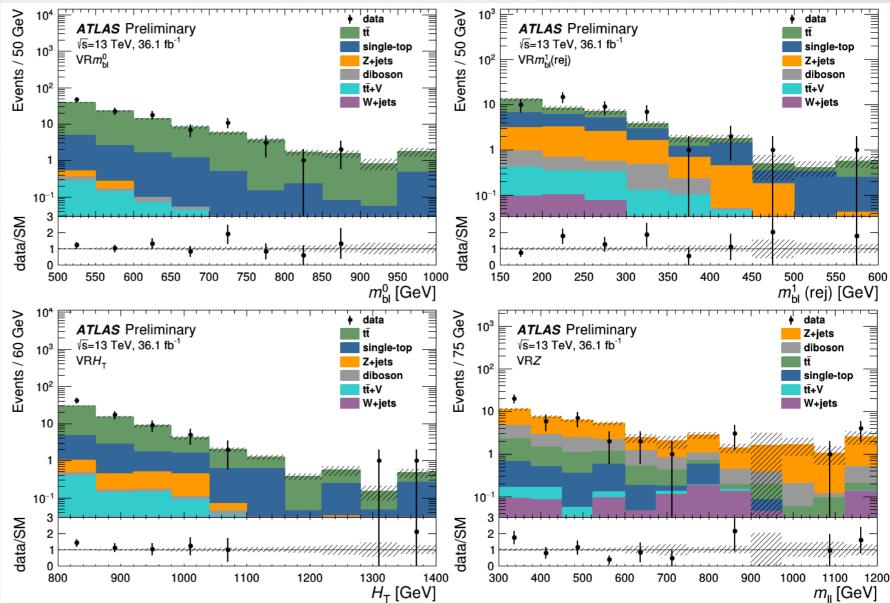
6

SELECTION

- Signal is expected to have:
 - m_{bl} resonance, reconstructing stop mass
 - small mbl
- In contrast, backgrounds are expected:
 - to fall off with m_{bl}^{ac}
 - to be relatively flat with mbl
- Define two nested signal regions (SRs) for low- and high- mass signals:
 - \rightarrow Require $m_{bl}^{acc} > 800 \text{ or } 1100 \text{ GeV}$
 - \rightarrow Require $m_{bl}^{asym} < 0.2$ for all regions

https://cds.cern.ch/record/2265808

Region	N _b	$m_{b\ell}^0$ [GeV]	$m_{b\ell}^1$ (rej)[GeV]	$H_{\rm T}$ [GeV]	$m_{\ell\ell}$ [GeV]	$m_{\rm CT}$ [GeV]
SR800	≥ 1	> 800	> 150	> 1000	> 300	-
SR1100	≥ 1	> 1100	> 150	> 1000	> 300	-
+ m _{bl} ^{asym} ≤0.2 for all regions						

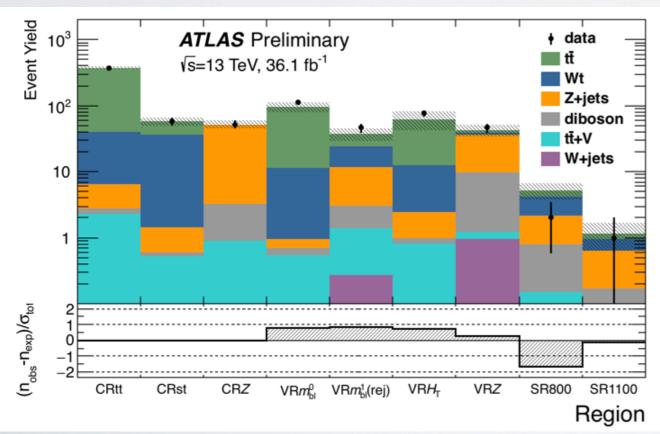

BACKGROUND ESTIMATION Dedicated control regions (CRs) are defined to set background rates for ttbar, single top, and Drell-Yan, then applied to validation regions (VRs) and

8

SRs

Four VRs

 extrapolate
 one variable
 each between
 CRs and SRs



https://cds.cern.ch/record/2265808

DPF 2017 (Fermilab)

RESULTS

- Two events in SR800 (slight deficit)
 - One of these events also passed SR1100 (no deficit)
- Both events are $\mu\mu$

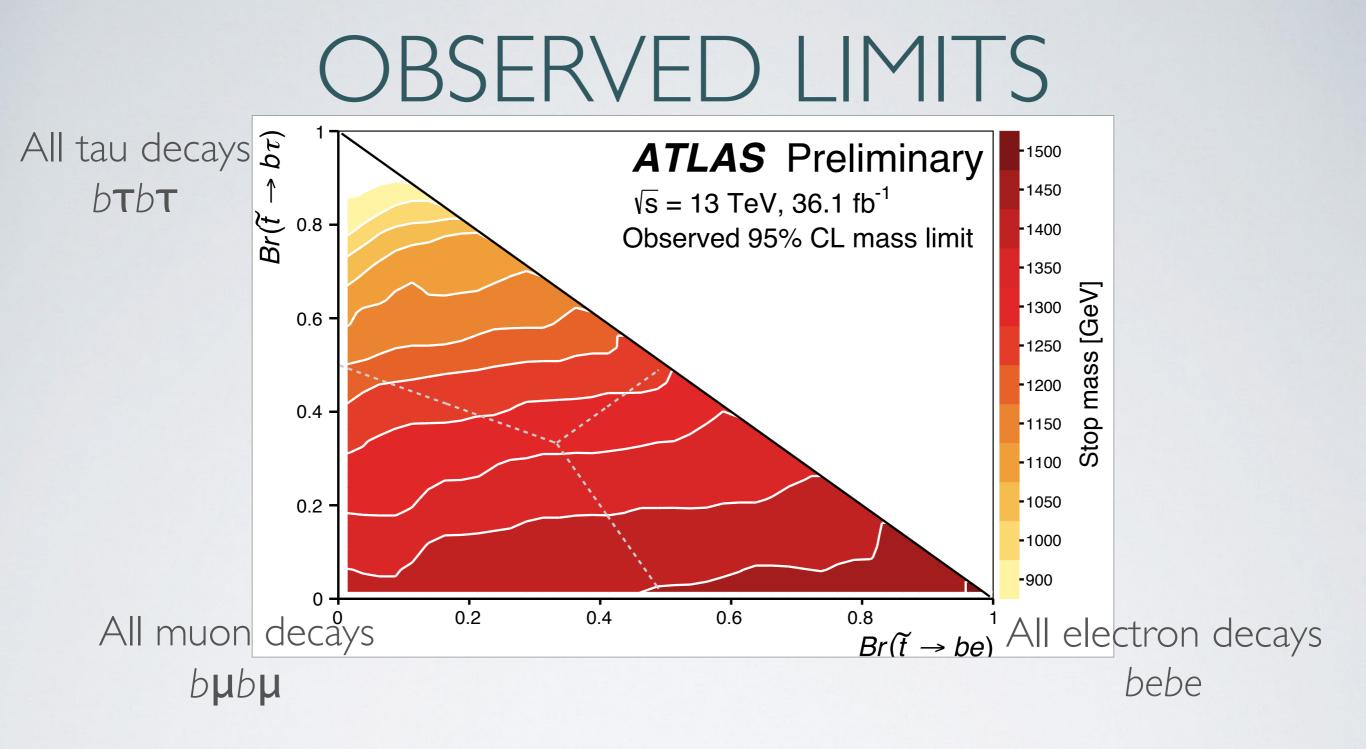
	SR800	SR1100
	inclusive	inclusive
Observed yield	2	1
Total post-fit bkg yield	5.2 ± 1.4	$1.2^{+0.6}_{-0.5}$
Post-fit single-top yield	2.0 ± 1.3	0.32 ± 0.29
Post-fit Z+jets yield	1.40 ± 0.33	0.47 ± 0.15
Post-fit $t\bar{t}$ yield	1.0 ± 0.5	$0.21^{+0.55}_{-0.21}$
Post-fit diboson yield	0.64 ± 0.23	0.13 ± 0.05
Post-fit $t\bar{t} + V$ yield	0.12 ± 0.03	0.03 ± 0.01
Post-fit W+jets yield	0.03 ± 0.03	$-0.01\substack{+0.02\\-0.01}$
Total MC bkg yield	4.9 ± 1.2	$1.1^{+0.6}_{-0.5}$
MC single-top yield	1.9 ± 1.0	0.29 ± 0.25
MC Z+jets yield	1.15 ± 0.21	0.38 ± 0.10
MC $t\bar{t}$ yield	1.1 ± 0.5	$0.22^{+0.57}_{-0.22}$
MC diboson yield	0.64 ± 0.23	0.13 ± 0.05
MC $t\bar{t} + V$ yield	0.12 ± 0.03	0.03 ± 0.01
MC W+jets yield	0.03 ± 0.03	$0.01\substack{+0.02\\-0.01}$
$N_{\rm BSM}^{\rm limit} \exp (95\% {\rm CL})$	$6.4^{+3.0}_{-1.9}$	$3.9^{+2.4}_{-0.5}$
$N_{\rm BSM}^{\rm limit}$ obs (95% CL)	4.0	3.9
$\sigma_{ m BSM}^{ m vis}[m fb]$	0.11	0.11

https://cds.cern.ch/record/2265808 DPF 2017 (Fermilab)

9

UNCERTAINTIES

- MC statistical and theoretical uncertainties dominate
- Theoretical uncertainties are applied to background normalization factors
 - Derived by comparing ratio of SR/CR yields in nominal and "test" case:
 - scaling ISR and FSR up and down
 - comparing different parton shower and generator simulations
 - Modeling of Wt/ttbar interference (see <u>Christian Herwig's talk</u>)
- CP uncertainties are generally minor

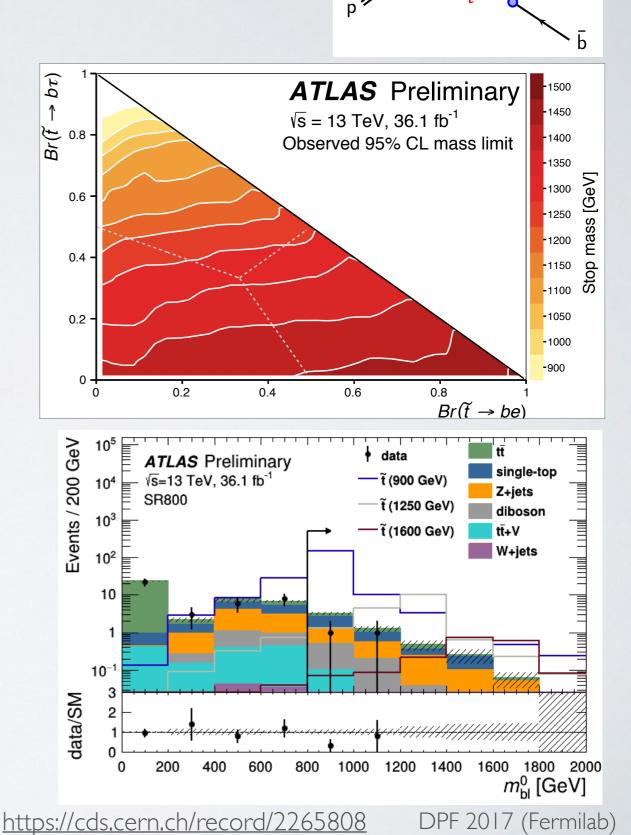

<i>b</i> -tagging	3%	5%
Jet energy resolution	2%	10%
Jet energy scale	1%	3%
Electrons	1%	4%
Muons	1%	3%
Theoretical modeling uncertai		170
MC statistics	8%	17%
tt	8%	45%
single-top	21%	22%
Z+jets	2%	4%
diboson	4%	3%
$t\bar{t} + W/Z$	1%	1%

SR800

SR1100

Source \ Region

• Jet energy resolution and b-tagging are the most significant, as expected

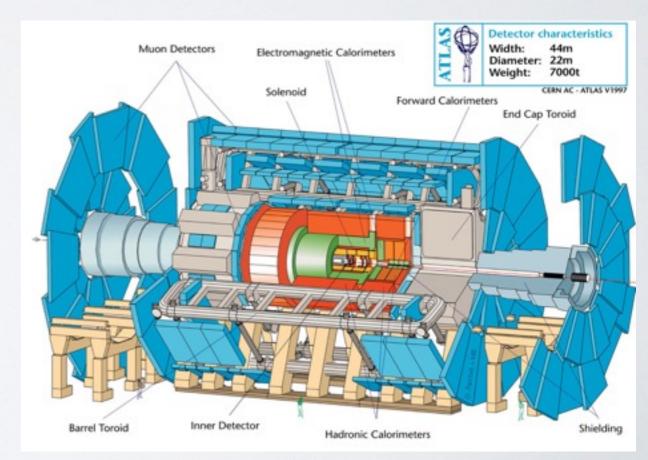


Stop masses from 900 GeV to 1.5 TeV have been excluded for $BR(\tilde{t} \rightarrow be) + BR(\tilde{t} \rightarrow b\mu) > 10\%$

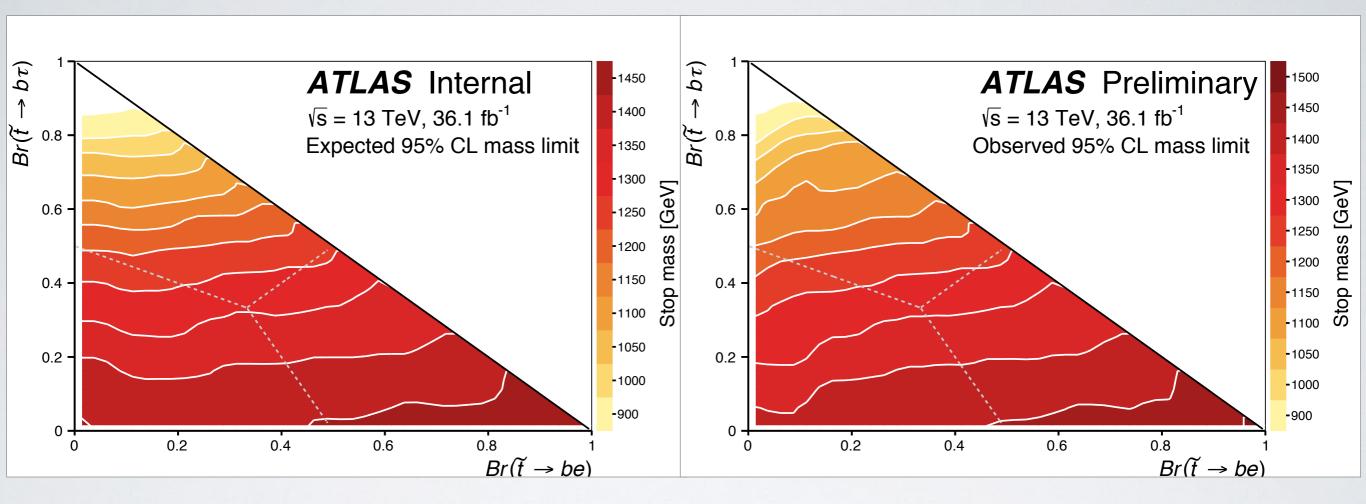
CONCLUSION

12

- We have presented a search for stop pair production which decays via an RPV coupling to a lepton and a *b*quark
- With the absence of an observed signal, strong limits have been set on the stop mass for branching ratios of at least 10% to be or bµ

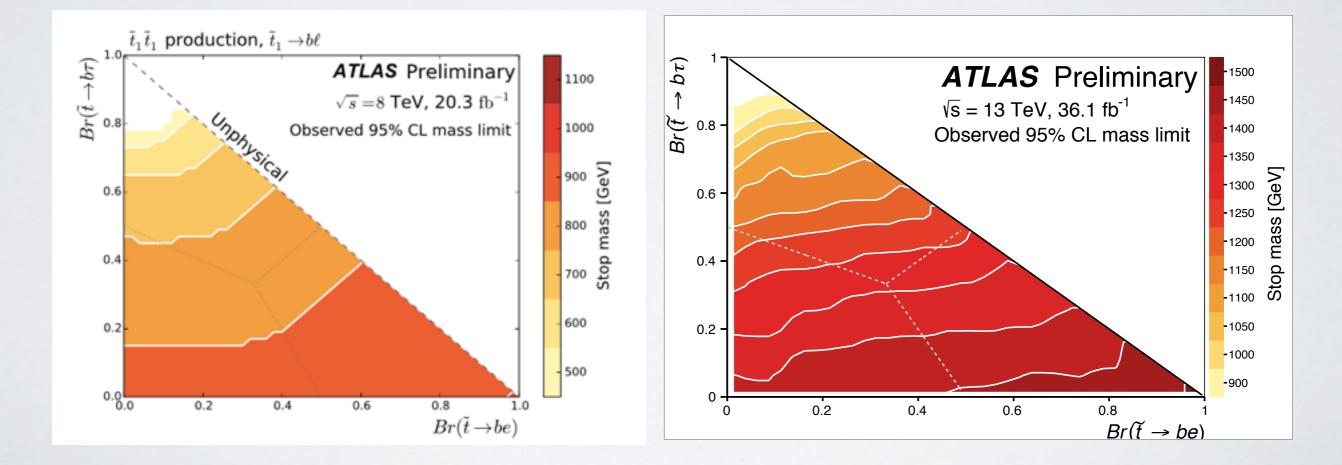

р

BACKUP

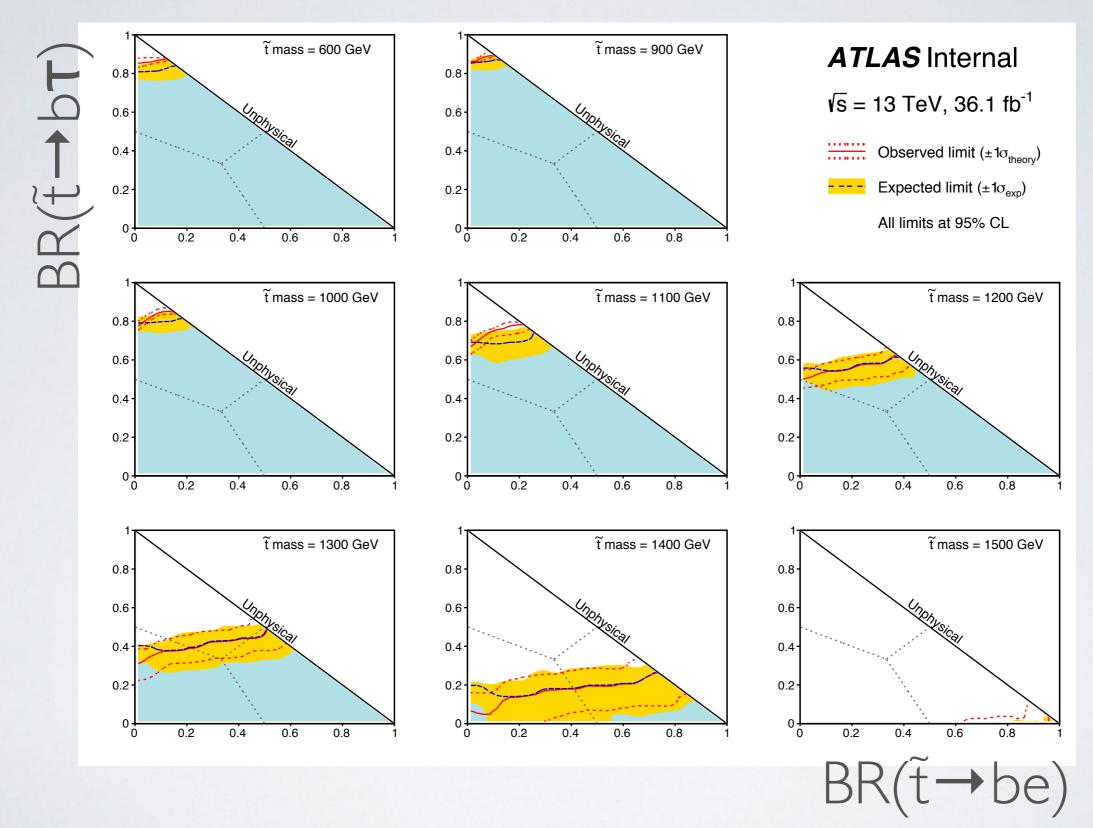

THE ATLAS DETECTOR

- Muon identification
 - Momentum resolution
 5% at 500 GeV
- Electron identification
 - Energy resolution
 1% at 100 GeV
- Anti- k_t jets with R=0.4
 - Energy resolution
 8% at 100 GeV

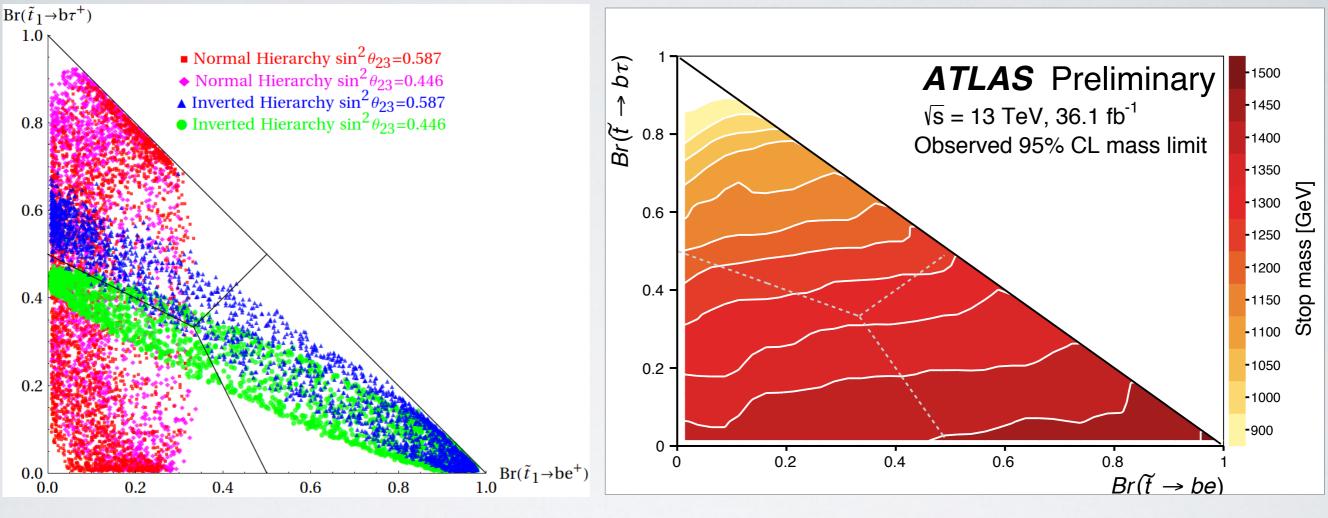
- B-jet identification
 - 40% efficient at 500 GeV
- Triggers
 - Single electron and single muon triggers 93-98% efficient



EXPECTED AND OBSERVED LIMITS



COMPARISON TO RUN1 LIMITS


 Stop mass limits at a given BR have increased from Run1 by at least 300 GeV

OBSERVED LIMITS

NEUTRINO MASS HIERARCHY

arXiv:1402.5434

The relative branching ratios to each lepton flavor are related to the neutrino hierarchy.

STOP MIXING ANGLE

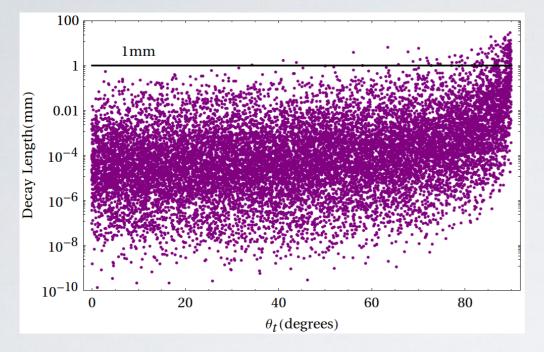


FIG. 1. Stop LSP decay length in millimeters versus stop mixing angle. The decay length increases sharply past 80° , where the stop is dominantly right-handed, due to the suppressed right-handed stop decays, Eq. (47).

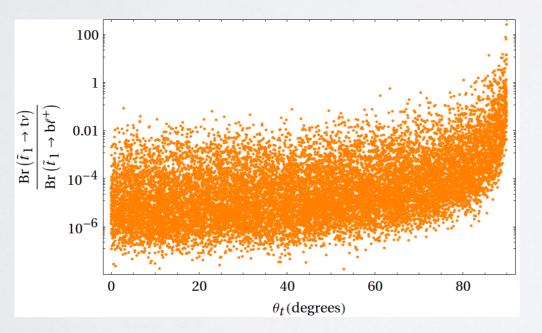
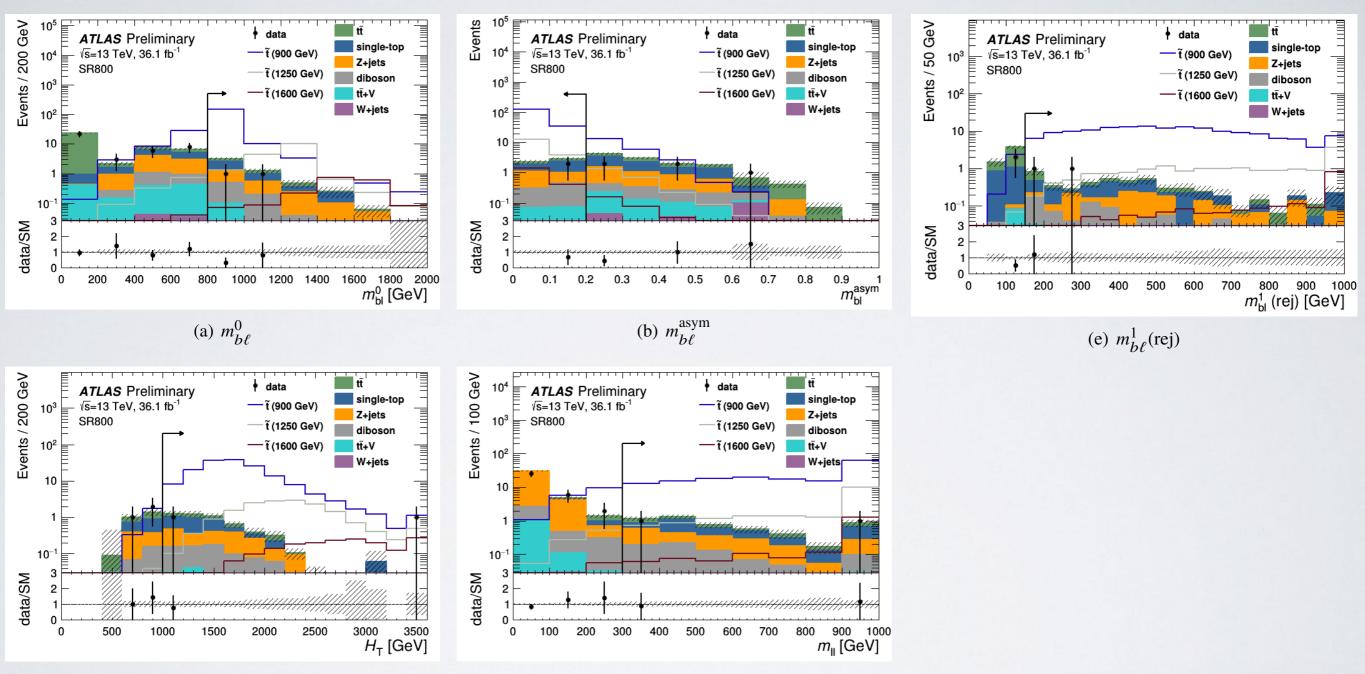


FIG. 2. $\frac{\text{Br}(\tilde{t}_1 \to t\nu)}{\text{Br}(\tilde{t}_1 \to b\ell^+)}$ versus stop mixing angle, where $\text{Br}(\tilde{t}_1 \to b\ell^+) \equiv \sum_{i=1}^3 \text{Br}(\tilde{t}_1 \to b\ell_i^+)$. For the admixture stop, the branching ratio to $b\ell^+$ is dominant and the branching ratio to $t\nu$ is insignificant for LHC purposes. For a mixing angle greater than about 80°, corresponding to a mostly right-handed stop, the branching ratio to $t\nu$ can be significant.

When stop mixing angle $\theta_t < 80^\circ$ (in other words, unless the stop is dominantly right-handed) the stop LSPs in this model:

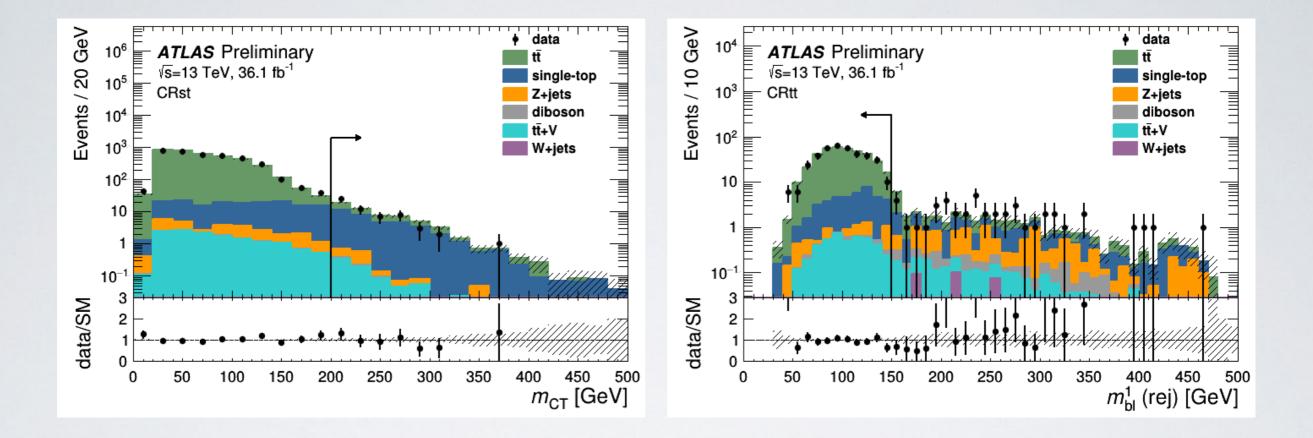
- decay promptly (Fig 1).
- preferentially decay to a lepton and a b-quark (Fig 2).


DPF 2017 (Fermilab)

<u>arXiv:1402.5434</u>

Leigh Schaefer (Penn ATLAS)

19


UNBLINDED SR DISTRIBUTIONS

(c) $H_{\rm T}$

(d) $m_{\ell\ell}$

CR DISTRIBUTIONS

Normalization factors: single top: 1.10 ± 0.27 ttbar: 0.94 ± 0.06 Drell-Yan: 1.22 ± 0.18

SIGNAL CUTFLOW

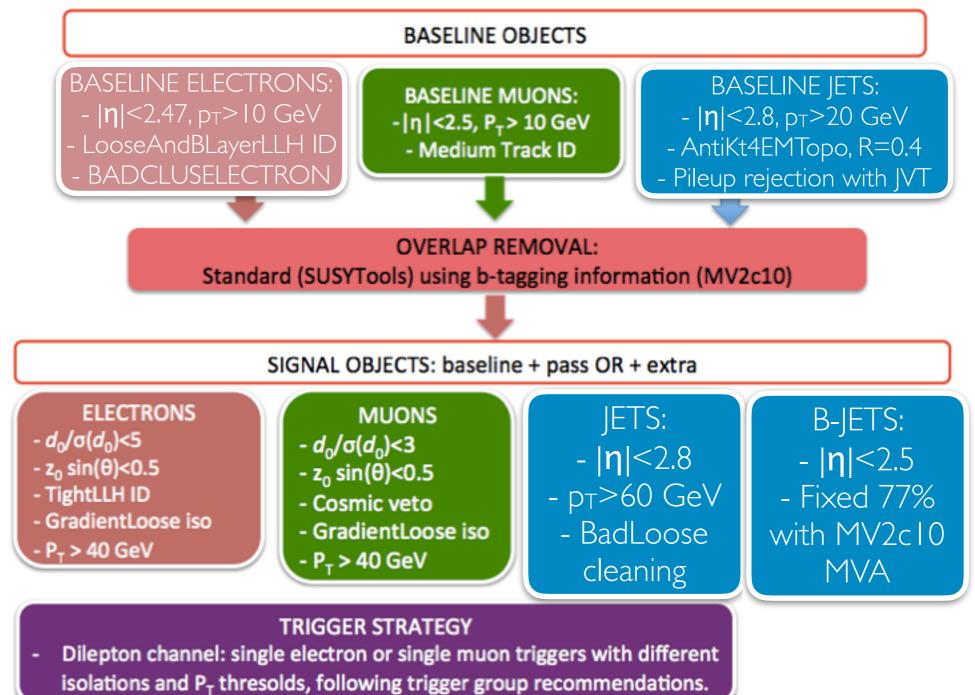

Selection	800 GeV yield (rel. eff.)	1200 GeV yield (rel. eff.)	1500 GeV yield (rel. eff.)
Total	1022	57	9
Production filter	737 (72.0%)	42.6 (73.8%)	6.9 (74.7%)
Event quality	737 (100.0%)	42.6 (100.0%)	6.9 (100.0%)
Trigger	705 (95.7%)	41.0 (96.3%)	6.7 (96.3%)
Jet cleaning	704 (99.9%)	40.9 (99.8%)	6.7 (99.8%)
Muon cleaning	704 (100.0%)	40.9 (100.0%)	6.6 (100.0%)
2 signal ℓ	385 (54.7%)	21.7 (53.0%)	3.5 (52.2%)
Trigger matching	385 (99.8%)	21.6 (99.8%)	3.5 (99.8%)
Opposite-charge leptons	375 (97.5%)	20.9 (96.8%)	3.3 (96.5%)
2 signal jets	363 (96.9%)	20.6 (98.2%)	3.3 (98.7%)
1 <i>b</i> -tagged jet	285 (78.5%)	14.3 (69.6%)	2.0 (62.3%)
$m_{b\ell}^{\rm asym} < 0.2$	245 (85.8%)	12.2 (85.3%)	1.8 (86.3%)
$H_{\rm T} > 1000 {\rm ~GeV}$	228 (92.9%)	12.1 (99.4%)	1.8 (99.7%)
$m_{\ell\ell} > 300 \text{ GeV}$	199 (87.6%)	11.5 (94.6%)	1.7 (96.4%)
$m_{b\ell}^{1}(rej) > 150 \text{ GeV}$	195 (97.8%)	11.4 (99.4%)	1.7 (99.9%)
$m_{b\ell}^{0} > 800 \text{GeV}$	81.2 (41.6%)	10.7 (93.4%)	1.6 (96.3%)
$m_{b\ell}^{1}(\text{rej}) > 150 \text{ GeV}$ $m_{b\ell}^{0} > 800 \text{ GeV}$ $m_{b\ell}^{0} > 1100 \text{ GeV}$	4.4 (2.3%)	8.4 (73.6%)	1.5 (89.5%)

Table 5: Full list of event selections and MC generator-weighted yields and efficiencies in the inclusive SR800 and SR1100 signal regions for several signal samples of varying \tilde{t} mass, assuming $Br(\tilde{t} \rightarrow be) = Br(\tilde{t} \rightarrow b\mu) = Br(\tilde{t} \rightarrow b\tau) = 1/3$. The production filter applies a loose trigger requirement and requires at least two electrons or muons of uncalibrated $p_{\rm T} > 9$ GeV and $|\eta| < 2.6$. The relative efficiencies for the $m_{b\ell}^0 > 1100$ GeV requirement are with respect to the $m_{b\ell}^1$ (rej) > 150 GeV requirement.

DISCRIMINATING VARIABLES • mb/ : to probe mt

- m_{bl}^{asym} : should be small if both bl pairs reconstruct $m_{\tilde{t}}$
- $H_T = p_T^{lep1} + p_T^{lep2} + p_T^{jet1} + p_T^{jet2}$: should be large with such heavy stops
- m_{ll}: to reject Drell-Yan background
- m_{bl}^{rej2}: to reject mis-paired top background, when a rejected pairing reconstructs a top
- m_{cT} : contransverse mass of the two leading jets; to reject $t\overline{t}$ events which have a kinematic endpoint at ~135 GeV. For this variable we require exactly 2 b-tagged jets. $m_{cT}^2(j_1, j_2) = [E_T(j_1) + E_T(j_2)]^2 - [\vec{P}_T(j_1) - \vec{P}_T(j_2)]^2$

OBJECT & EVENT SELECTION

 Event selection: two signal leptons with pT > 40 GeV and two signal jets with pT > 60 GeV
 Leigh Schaefer (Penn ATLAS)

CRANDVR DEFINITIONS

Region	N _b	$m_{b\ell}^0$ [GeV]	$m_{b\ell}^1$ (rej)[GeV]	$H_{\rm T}$ [GeV]	$m_{\ell\ell}$ [GeV]	$m_{\rm CT}$ [GeV]
CRtt	≥ 1	[200,500]	< 150	[600,800]	> 300	< 200*
CRst	= 2	[200,500]	< 150	< 800	> 120	> 200
CRZ	≥ 1	> 700	_	> 1000	[76.2,106.2]	- \
$VRm_{b\ell}^0$	≥ 1	> 500	< 150	[600,800]	> 300	_
$VRm_{b\ell}^1$ (rej)	≥ 1	[200,500]	> 150	[600,800]	> 300	-
VRHT	≥ 1	[200,500]	< 150	> 800	> 300	-
VRZ	= 0	[500,800]	> 150	> 1000	> 300	_

+ m_{bℓ}^{asym}≤0.2 for all regions

*only for events with ==2 b-tagged jets