

Measurement of Neutrino-Electron Elastic Scattering at NOvA Near Detector

NuMI Off-Axis v_e Appearance Experiment

- Upgraded NuMI muon neutrino beam (2.3% v_e in v_μ beam) at Fermilab (700 kW design)
- Longest baseline in operation (810 km), large matter effect (±30%), sensitive to mass hierarchy
- Far/Near detector is sited 14 mrad off-axis to produce a narrow-band beam around the oscillation maximum region

NuMI Off-Axis v_e Appearance Experiment

Flux uncertainty ~ 10%

The NOvA Detectors

- Composed of PVC modules extruded to form long tube-like cells: 16m long in FD, 4m ND
- Each cell is filled with liquid scintillator and has a loop of wavelength-shifting fiber (WLS) routed to an Avalanche Photodiode (APD)
- Cells arranged in planes, assembled in alternating vertical and horizontal directions
- Low-Z and low-density, each plane just 0.15 X_0 . Great for e^- vs π^0

Neutrino-Electron Elastic Scattering

$$V_{\mu} + e^{-} \rightarrow V_{\mu} + e^{-}$$
 $\overline{V}_{\mu} + e^{-} \rightarrow \overline{V}_{\mu} + e^{-}$

$$V_e + e^- \rightarrow V_e + e^ \overline{V}_e + e^- \rightarrow \overline{V}_e + e^-$$

- v-e scattering is pure leptonic process which can be calculated accurately (\sim 1%). So it can be used to absolutely constrain flux
- Because of the small Q^2 , the scattered electron is very forward, $E_e\theta^2 < 2m_e$
- The cross-section is very low ($\sim 10^{-4}$ of total), so PID and background rejection is very important to identify the signal
- 2.97*10²⁰ POT used

Neutrino-Electron Elastic Scattering identification

• v-e scattering identification: dE/dx based shower likelihoods in longitudinal and transverse directions

Neutrino-Electron Elastic Scattering identification

- v-e scattering identification: plane dE/dx and shower likelihoods
 - 1) beam background rejection
 - $-2) \pi^0$ rejection
- Other requirements: Containment, single shower, 0.5<energy<5GeV (oscillation region)

Low energy part can be used to measure neutrino magnetic moment, see Poster 268, B. Wang

Neutrino-Electron Elastic Scattering in a Trigger Window (ND)

Timing slicer separates different interactions in a spill

Neutrino-Electron Elastic Scattering after event selection (ND)

Neutrino-Electron Elastic Scattering after event selection

NOVA Simulation

Signal region: $E\theta^2 < 0.005$ $MC v_{\mu} CC + NC$ $E\theta^2 (GeV \times rad^2)$

Electron energy spectrum in signal region

In signal region, expect to see ~140 signal events and ~20 background events Background in signal region corrected by sideband Data/MC

Rock muon induced EM showers for efficiency study

Rock muon induced EM showers for efficiency study

Rock muon induced EM showers for efficiency study

Remove muon tracks in rock events to select Brem showers in the near detector → Simulation of EM showers is excellent

Use rock muon induced showers to estimate uncertainty in v-e scattering signal efficiency $\rightarrow \sim 5\%$

Systematic errors

Source

Relative syst.

Signal efficiency	5%
Single shower requirement	4%
Background correction	0.2%
Background difference between signal and background regions	0.7%
Background neutrino interactions (GENIE)	1%
Background energy scale	1%
Detector modeling	1%
Intensity effects	1%
Total Syst.	6%

Summary

- v-e elastic scattering measurement at NOvA is under way
- Data/MC from v-e elastic scattering measurement will be used to constrain the neutrino flux for ND analyses and FD oscillations
- With $3*10^{20}$ POT ND Data, systematics error $\sim 6\%$ and statistical error $\sim 10\%$ for (0.5-5) GeV

• Results coming out soon!

