A search for charged Higgs bosons at the LHC with the ATLAS $$\operatorname{detector}$

Blake Burghgrave

Northern Illinois University

Overview

- H^{\pm} are expected in association with a top quark
 - Low-mass: tt decays
 - High-mass: Like Wt, with W replaced by H^{\pm}
- This talk considers $H^{\pm} \rightarrow \tau \nu$
 - τ decays hadronically
 - Hadronic top quark decay ightarrow au+jets final state
 - Leptonic top quark decay $ightarrow au + {
 m lep}$ final state
- \bullet Work-in-progress, mostly from $\tau{+}{\rm lep}$
- Structure of this talk:
 - Theory and Motivation
 - Comparison to latest ATLAS results (ICHEP)
 - Background modeling
 - Analysis strategy
 - Expected limits

(arXiv:1409.5615)

Motivation

- Extensions to the Higgs sector include additional Higgs Bosons
- In particular, a Type II (MSSM-like) 2 Higgs Doublet Model includes:
 - Two neutral scalars h and H
 - One neutral pseudoscalar A
 - Charged H⁺ and H⁻
- H[±] decay modes depend on the particles' mass and the ratio of the VEVs of the doublets (tan β)
- $H^{\pm} \rightarrow \tau \nu$ (blue curve) looks promising, and is the topic of this talk

• Some changes since the last ATLAS $H^{\pm} \rightarrow \tau \nu$ result (ICHEP, above)

- Added $\tau + \text{lep channel}$
- Systematics and background normalization constrained with $t\bar{t}$ and W+jets CRs
- Low-mass H^{\pm} added, 90 160 GeV, last included in Run 1
- Intermediate-mass H^{\pm} added, 160–180 GeV, never included before
- Multi-Variate Analysis used, formerly $m_{\rm T}(\tau, E_{\rm T}^{\rm miss})$

tī Background

• Dominant SM background is top quark production

- A dilepton region, almost pure $t\bar{t}$, is used to constrain systematics
- Same selection as $\tau + \text{lep SR}$, but replace τ with an $e + \mu$ selection

$jet \rightarrow \tau$ Fakes

- jet $\rightarrow \tau$ are a significant background
- Modeled with a data-driven fake-factor method
 - FF measured in CRs with fakes from Multi-Jet (QCD) and W+jets events
 - Define anti- τ as objects failing τ -ID but passing a looser ID
 - FF= $\frac{N_{\text{fake-}\tau}}{N_{\text{anti-}\tau}}$, binned in p_{T}^{τ} and N_{tracks}^{τ}
 - Using FF: $N_{\text{fake-}\tau} = \text{FF} \times N_{\text{anti-}\tau}$
- rQCD approach is used to apply FFs in SRs and CRs
 - Weighted average of FFs from QCD/W+jets CRs
 - Relative weights from template fit on au-ID BDT scores of anti-au

$\ell \to \tau$ Fakes

• $\ell \to \tau$ fakes are a small background in the SR

• Checked in a $Z \rightarrow ee$ region, found to be modeled well by MC

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

- Multi-Variate Analysis using Boosted Decision Trees
 - FastBDT trained via a TMVA plugin
 - Signal binned in 5 mass ranges:
 - 90 to 120 GeV
 - 130 to 160 GeV (low mass 160 GeV)
 - 160 to 180 GeV (intermediate mass)
 - 200 to 400 GeV

Fold 1

Train

Train

Train

Train

Evaluation

- 500 to 2000 GeV
- Trained against dominant $t\bar{t}$ background
- Data-driven jet $\rightarrow \tau$ fakes included in 500 to 2000 GeV for τ +iets
- Background modeling and BDT training kept statistically independent via the k-fold method Fold 2

Train

Train

Train

Train

Evaluation

MVA input variable		au+jets	$\tau + lep$
E_{T}^{miss}		\checkmark	\checkmark
$p_{\rm T}^{\dagger}$		\checkmark	\checkmark
p_{T}^{b-jet}		\checkmark	\checkmark
$p_{\rm T}^{\ell}$			\checkmark
$\Delta \phi_{ au, miss}$		\checkmark	\checkmark
$ \begin{split} & \Delta \phi_{b\text{-jet,miss}} \\ & \Delta \phi_{\ell,\text{miss}} \\ & \Delta R_{\tau,\ell} \\ & \Delta R_{b\text{-jet},\ell} \\ & \Delta R_{b\text{-jet},\tau} \\ & \gamma = 2 \frac{p_T^{\tau\text{-track}}}{p_T^{\tau}} - 1 \end{split} $		\checkmark	\checkmark
			\checkmark
		\checkmark	
		\checkmark	\checkmark
		4	Fold 5
	Train	Fold 1	
	Train	Fold 2	
	Train	Fold 3	
ation	Train	Fold 4	

Fold 5

Evaluation

Train • BDT score used as discrminating variable, fit with profile likelihood ratio

Fold 3

Train

Train

Train

Evaluation

Fo

Tra

Tra

Tra E١

Train

• Fitted regions: τ +jets, $\tau + e$, $\tau + \mu$, and CRs for $t\bar{t}$ and W+jets

BDT Distributions in Validation/Control Regions

- BDT scores in $\tau + \text{lep}$ validation regions
- Agreement between data/background looks good

Expected BDT Distributions in Signal Regions

- τ +lep BDT score distributions (above) compared to $m_{\rm T}(\tau, E_{\rm T}^{\rm miss})$ (right)
- Signal normalized to background
- Significant improvement visible at 90 GeV (dark blue) and 200 GeV (dark blue in the top right, green in the bottom right)

Expected Limits, BDT vs $m_{\rm T}$

- Comparison of limits (w/o systematics) for cut-based and MVA approach
- MVA gives improvement over the full mass range, largest at lower masses

- Comparison of limits (w/o systematics) for au+lep and au+jets
- $\tau + \text{lep}$ more sensitive at low-mass
- $\tau+jets$ more sensitive at high-mass
- Comparable performance below ~400 GeV, expect improvements with combined limit

- Many improvements to the search for $H^\pm o au
 u$
- Signal mass range extended to low mass, now 90 to 2000 GeV
- First look at the intermediate mass range (near the top quark mass)
- Multi-Variate Analysis improves sensitivity
- Good data/background agreement in our CRs
- Including CRs in fit will constrain systematics