ADMX - the Axion Dark Matter eXperiment

Daniel Bowring, on behalf of the ADMX collaboration

APS-DPF 2017

31 July 2017
Axions and WIMPs

WIMPs scatter as quanta

- WIMP-nucleon scattering detector strategies
- Mass \sim 10s-100s of GeV?

Axions scatter as classical waves

- Coherently oscillating “clouds”
- $h/p \sim 100$ m
- Phase coherent signals \sim ms.
- μeV $< m_a <$ meV

D. Bowring | ADMX - the Axion Dark Matter eXperiment
Axion mass is only loosely constrained by theory/measurement.

- \(\mathcal{L}_{a\gamma\gamma} = g_{a\gamma\gamma} a E \cdot B \)
- DFSZ model for \(a \rightarrow \gamma\gamma \) detection relevant to DM axions. Points are predictions from theory.
- ADMX has demonstrated DFSZ-compatible sensitivity.
Signal power and SNR drive haloscope design.

\[
P \approx 0.5 \times 10^{-21} \, \text{W} \cdot \left(\frac{\rho_a}{0.5 \times 10^{-21} \, \text{g} \cdot \text{cm}^3} \right) \left(\frac{f_a}{1 \, \text{GHz}} \right) \times \left(\frac{g_{a\gamma\gamma}}{0.36} \right)^2 \left(\frac{V}{500 \, \text{L}} \right) \left(\frac{B}{7 \, \text{T}} \right)^2 \left(\frac{\min(Q_c, Q_a)}{10^5} \right) C
\]

Dicke radiometer equation explains design constraints:

- Signal power is limited: \(P \propto B^2 V \)
- \(t \lesssim 100 \, \text{s} \) for realistic run schedules
- System noise temperature \(T_s = T_{\text{phys}} + T_N \)
- At the quantum limit, \(T_N \to 48 \, \text{mK} \) at 1 GHz
Signal power and SNR drive haloscope design.

\[P \approx 0.5 \times 10^{-21} \text{ W} \cdot \left(\frac{\rho_a}{0.5 \times 10^{-21} \text{ g cm}^{-3}} \right) \left(\frac{f_a}{1 \text{ GHz}} \right) \]
\[\times \left(\frac{g_{a\gamma\gamma}}{0.36} \right)^2 \left(\frac{V}{500 \text{ L}} \right) \left(\frac{B}{7 \text{ T}} \right)^2 \left(\frac{\min(Q_c, Q_a)}{10^5} \right) C \]

Dicke radiometer equation explains design constraints:

- Signal power is limited: \(P \propto B^2 V \)
- \(t \lesssim 100 \text{ s} \) for realistic run schedules
- System noise temperature \(T_s = T_{\text{phys}} + T_N \)
- At the quantum limit, \(T_N \rightarrow 48 \text{ mK} \) at 1 GHz
Signal power and SNR drive haloscope design.

$$P \approx 0.5 \times 10^{-21} \text{ W} \cdot \left(\frac{\rho_a}{0.5 \times 10^{-21} \text{ g} \cdot \text{cm}^3}\right) \left(\frac{f_a}{1 \text{ GHz}}\right) \times \left(\frac{g_{a\gamma\gamma}}{0.36}\right)^2 \left(\frac{V}{500 \text{ L}}\right) \left(\frac{B}{7 \text{ T}}\right)^2 \left(\frac{\min(Q_c, Q_a)}{10^5}\right) C$$

Dicke radiometer equation explains design constraints:

- Signal power is limited: $P \propto B^2V$
- $t \lesssim 100 \text{ s}$ for realistic run schedules
- System noise temperature $T_s = T_{\text{phys}} + T_N$
- At the quantum limit, $T_N \rightarrow 48 \text{ mK}$ at 1 GHz
Signal power and SNR drive haloscope design.

\[P \approx 0.5 \times 10^{-21} \text{ W} \cdot \left(\frac{\rho_a}{0.5 \times 10^{-21} \text{ g} \cdot \text{cm}^3}\right) \left(\frac{f_a}{1 \text{ GHz}}\right) \times \left(\frac{g_{\alpha\gamma\gamma}}{0.36}\right)^2 \left(\frac{V}{500 \text{ L}}\right) \left(\frac{B}{7 \text{ T}}\right)^2 \left(\frac{\min(Q_c, Q_a)}{10^5}\right) \]

Dicke radiometer equation explains design constraints:

- Signal power is limited: \(P \propto B^2V \)
- \(t \lesssim 100 \text{ s} \) for realistic run schedules
- System noise temperature \(T_s = T_{\text{phys}} + T_N \)
- At the quantum limit, \(T_N \rightarrow 48 \text{ mK} \) at 1 GHz
ADMX Overview

- 500 MHz - 1 GHz cavity
- 7 T solenoid
- 3He-4He dilution refrigerator
- SQUID amplifiers
Quantum-limited amplifiers

- MSA = microstrip SQUID amplifier; JPA = Josephson Parametric Amplifier
- Recall $SNR \propto 1/T_s$.
Quantum-limited amplifiers issue \(\geq 1 \) photon of noise per resolved mode.

D. Bowring | ADMX - the Axion Dark Matter eXperiment

C. Caves, 1982

Characterization of noise temperature

Example Cavity Noise Measurement
Multiple MSA Biases

On Resonance
150 mK Cavity

Off Resonance
300 mK Attenuator

Digitized Power (Arb. Units)

Bias #4 (Optimal)
Bias #3
Bias #2
Bias #1

Frequency (MHz)

672.25 672.3 672.35 672.4 672.45
ADMX operations overview

1. Scan cavity frequency, integrate each frequency bin to desired SNR
3. Rescan candidates
4. Detection committee reviews persistent $> 3\sigma$ candidates:
 ▶ Switch to resonant mode with poor axion coupling
 ▶ Attenuate B-field (recall $P \propto B^2$)
 ▶ Blind signal injection
First axion search at DFSZ sensitivity!
Projected ADMX-G2 discovery potential

![Graph showing the discovery potential of ADMX-G2 with cavity frequency and axion mass on the axes. The graph highlights the ADMX G2 discovery potential and the DFSZ region.](image-url)
Projected ADMX-G2 discovery potential

Current experiment operates at DFSZ sensitivity in 500 MHz-1 GHz range.
Projected ADMX-G2 discovery potential

ADMX “sidecar” cavity used to test piezo tuning. TM$_{010}$ mode can probe 4-6 GHz, TM$_{020}$ mode can probe 6-7 GHz.
Projected ADMX-G2 discovery potential

Fabrication underway for 4-cavity array, 1-2 GHz.
Projected ADMX-G2 discovery potential

Fermilab concept for \(\geq 2 \) GHz cavity.
Quantum computing technology may be the path to ~ 10 GHz searches.

Quantum nondemolition measurements with solid-state qubits allow us to count single photons, beat the standard quantum limit.

Akash Dixit, (UC student, funding from Heising-Simons Foundation, talk on Tuesday, 1:50 pm, IARC.

Please visit our new and growing lab at SiDet this Friday!
Thanks for your attention!

This work is supported by U.S. Department of Energy Office of Science, Office of High Energy Physics, under awards DE-SC00098000, DE-SC0011665, DE-AC52-07NA27344, and DE-AC03-76SF00098, the Heising-Simons Foundation, and the Laboratory-Directed Research and Development programs at Fermi National Accelerator Laboratory, Lawrence Livermore National Laboratory, and Pacific Northwest National Laboratory.